
1 Data Binding For C++ Services
In order for an SCA runtime to invoke a C++ service, it must be able to map constructs described in a WSDL document to equivalent constructs in the C++ class. This specification defines one binding, for mapping WSDL constructs to SDO-based C++ services. Additional data bindings may be specified in other documents, or may be defined by particular runtime implementations.
1.1 SDO Data Binding

The following mapping defines a mapping to/from WSDL constructs and C++ constructs.
1.1.1 Simple Content Binding
The translation of XSD simple content types to C++ types follows the convention defined in the SDO specification. The following table summarizes that mapping as it applies to SCA services.
The following mapping is derived from the mappings for SDO types to XSD schema types [11.1], XSD schema types to SDO types [SDO 10.3.3], and SDO types to C++ types [SDO 9.1].
	XSD Schema Type (
	SDO Type (
	C++ Type

	(XSD Schema Type

	anySimpleType
	Object
	UNDEFINED

	anyType
	DataObject
	commonj::sdo::DataObject
	anyType

	anyURI
	URI
	std::string
	string

	base64Binary
	Bytes
	char*
	hexBinary

	Boolean
	Boolean
	bool
	Boolean

	Byte
	Byte
	int8_t
	Byte

	Date
	YearMonthDay
	std::string
	string

	dateTime
	DateTime
	std::string
	string

	Decimal
	Decimal
	UNDEFINED

	Double
	Double
	long double
	double

	Duration
	Duration
	std::string
	string

	ENTITIES
	Strings
	UNDEFINED

	ENTITY
	String
	std::string
	string

	Float
	Float
	float
	float

	gDay
	Day
	std::string
	string

	gMonth
	Month
	std::string
	stirng

	gMonthDay
	MonthDay
	std::string
	string

	gYear
	Year
	std::string
	string

	gYearMonth
	YearMonth
	std::string
	string

	hexBinary
	Bytes
	char*
	hexBinary

	ID
	String
	std::string
	string

	IDREF
	String
	std::string
	string

	IDREFS
	Strings
	UNDEFINED

	Int
	Int
	int32_t
	int

	Integer
	Integer
	UNDEFINED

	language
	String
	std::string
	string

	Long
	Long
	int64_t
	long

	Name
	String
	std::string
	string

	NCName
	String
	std::string
	string

	negativeInteger
	Integer
	UNDEFINED

	NMTOKEN
	String
	std::string
	string

	NMTOKENS
	Strings
	UNDEFINED

	nonNegativeInteger
	Integer
	UNDEFINED

	nonPositiveInteger
	Integer
	UNDEFINED

	normalizedString
	String
	std::string
	string

	NOTATION
	String
	std::string
	string

	positiveInteger
	Integer
	UNDEFINED

	QName
	URI
	std::string
	string

	short
	Short
	int16_t
	short

	string
	String
	std::string
	string

	time
	Time
	std::string
	string

	Token
	String
	std::string
	string

	unsignedByte
	Short
	int16_t
	short

	unsignedInt
	Long
	int64_t
	long

	unsignedLong
	Integer
	UNDEFINED

	unsignedShort
	Int
	int32_t
	int

1.1.2 Complex Content Binding

Any XSD complex types are mapped to an instance of an SDO DataObject.
1.1.3 Mapping C++ class/struct to WSDL 1.1 portType
A class or struct in C++ forms a 1:1 relationship with a portType in WSDL 1.1, where the name of the C++ type name maps to the WSDL portType/@name . The following demonstrates the mapping relationship from WSDL to C++.
WSDL Definition:

<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”>
 <portType name=”MyService”>

...

 </portType>
</definitions>

C++ Interface:
class MyService {
};

When mapping from WSDL to C++, the name associated with the WSDL portType may not be directly converted to a C++ type name. If that occurs, the runtime will attempt to map the WSDL name to a C++ interface name using the name conversion rules defined in 1.1.5. The following demonstrates the mapping relationship from C++ to WSDL.
C++ Interface:

class MyClass {
};

WSDL Definition:
<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”>
 <portType name=”MyClass”>

 ...

 </portType>

</definitions>
1.1.4 Mapping C++ Member Function to WSDL 1.1 operation
A member function of a C++ class or struct forms a 1:1 relationship to a WSDL 1.1 operation, where the name of the member function maps to the WSDL operation/@name. The following demonstrates the mapping relationship from WSDL to C++ for a class that has two member functions:
WSDL Definition:

<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 <portType name=”MyService”>

 <operation name=”operation1”>
 </operation>

 <operation name=”operation2”>

 </operation>

 </portType>

</definitions>

C++ Interface:

class MyClass {

public:

 void operation1(void);

 void operation2(void);

};

Similar to the conversion of WSDL portType names to C++ class names, conversion of WSDL portType names to C++ member function names requires that the names be valid identifiers. The rules that the runtime will follow in order to meet this requirement is defined in 1.1.6.
1.1.5 Mapping C++ Member Function Parameters to WSDL 1.1 messages
For each C++ member function, an input and output message will be generated for the the associated WSDL operation representing the request and response. The part/@name will be based on the name of the operation, appended with either “In” or “Out” depending on whether the message represents input or output messages.
Each parameter in the function is mapped to either the input or output message (or both) depending on how the parameter is passed to the function.

· If a parameter is passed by-value or by const-reference, then it will be included in the input message.
· If a parameter is passed by-reference, then it will be included in the input and output message.
· If a member function has a return value, it will be included in the output message with the name “return”.
· If there are no output parameters, the resulting WSDL structure will depend on whether the member function is annotated as a OneWay message.
· If it is OneWay, the resulting WSDL operation will not have an output child element and there there will not an associated output message.
· If it is not OneWay, the resulting WSDL operation will have an output child element and output message definition, however the output message will have no part children.
· If there are no input parameters, the WSDL operation will have an input child element and an input message definition, however the input message will have no part children.
Likewise, when mapping from a WSDL definition to a C++ operation, the nature of the parameters will be determined based on where a part is defined.

· If a part is unique to the output message, and is named “return”, it will be mapped to the return type of the resulting function.

· If both the input and output message contain parts with the same name and part, then that part will map to an in/out parameter in the resulting member function, and will be passed by-reference.
· If the part types do not match, then the parameter name for each message will be made unique by appending “_in” and “_out” to the name, respectively.
· If a part is unique to the input message, it will map to an in parameter in the resulting member function.
· If the type represents a primitive C++ type, it will be passed by-value.

· Otherwise it will be passed by const-reference.
· If a part is unique to the output message, it will map to an out parameter in the resulting member function, and will be passed by-reference.

WSDL Definition:

<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 <message name=”InMessage”>

 <part name=”name” type=”xsd:string”/>
 <part name=”id” type=”xsd:int”/>

 </message>

 <message name=”OutMessage”>
 <part name=”id” type=”xsd:int”/>

 <part name=”return” type=”xsd:string”/>
 </message>

 <portType name=”MyService”>

 <operation name=”operation1”>

 <input message=”InMessage”/>

 <output message=”OutMessage”/>

 </operation>

 </portType>

</definitions>

C++ Interface:

class MyService {
public:

 std::string operation1(const std::string& name, long& id);
};
1.1.6 Mapping C++ class/struct to WSDL 2.0 interface
TBD
1.1.7 Mapping C++ Member Function to WSDL 2.0 operation
TBD
1.1.8 Mapping C++ Member Function Parameters to WSDL 2.0 message types
TBD
1.1.9 Rules for Converting WSDL Names to C++ Identifiers.
TBD
�A number of standard C++ types are not included in this mapping since there isn’t a mapping to them from SDO types (for instance, for unsigned types), should we define a mapping for those C++ types even though SDO doesn’t support them, or should we wait until SDO can support them?

�SDO doesn’t define types for unsigned values, which makes these mappings a little uninituitive. Should we ignore the SDO mapping and define our own, or continue to defer to SDO, and expect them to resolve this at some point?

�Also need to define the behavior around overloaded operators.

�Need to incorporate guards around converting names to C++ identifiers.

