
[image: image1.png]OASIS)

Service Component Architecture Java Common Annotations and APIs Specification Version 1.1 + Issue 25
Committee Draft 01

03 October 2008

Specification URIs:

This Version:

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd01.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd01.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd01.pdf
Previous Version:

Latest Version:

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.pdf
Latest Approved Version:

Technical Committee:

OASIS Service Component Architecture / J (SCA-J) TC
Chair(s):

Simon Nash,

IBM

MIchael Rowley,
BEA Systems

Mark Combellack,
Avaya

Editor(s):

Ron Barack,

SAP

David Booz,

IBM

Mark Combellack,
Avaya

Mike Edwards,

IBM

Anish Karmarkar,
Oracle

Ashok Malhotra,
Oracle

Peter Peshev,

SAP

Related work:

This specification replaces or supersedes:

· Service Component Architecture Java Annotations and APIs Specification Version 1.00, March 21 2007

This specification is related to:

· Service Component Architecture Assembly Model Specification Version 1.1

· Service Component Architecture Policy Framework Specification Version 1.1

Declared XML Namespace(s):

http://docs.oasis-open.org/ns/opencsa/sca/200712
Abstract:

The SCA Java Common Annotation and APIs specify a Java syntax for programming concepts defined in the SCA Assembly Model Specification. It specifies a set of APIs and annotations that may be used by Java-based SCA specifications.

Specifically, this specification covers:

1. Implementation metadata for specifying component services, references, and properties

2. A client and component API

3. Metadata for asynchronous and conversational services

4. Metadata for callbacks

5. Definitions of standard component implementation scopes

6. Java to WSDL and WSDL to Java mappings

7. Security policy annotations

Note that individual programming models may chose to implement their own mappings of assembly model concepts using native APIs and idioms when appropriate.

Status:

This document was last revised or approved by the OASIS Service Component Architecture / J (SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/sca-j/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/sca-j/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/sca-j/.

Notices

Copyright © OASIS® 2005, 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", MACROBUTTON NoMacro [insert specific trademarked names and abbreviations here] are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents

71
Introduction

71.1 Terminology

71.2 Normative References

81.3 Non-Normative References

92
Implementation Metadata

92.1 Service Metadata

92.1.1 @Service

92.1.2 Java Semantics of a Remotable Service

92.1.3 Java Semantics of a Local Service

102.1.4 @Reference

102.1.5 @Property

102.2 Implementation Scopes: @Scope, @Init, @Destroy

112.2.1 Stateless scope

112.2.2 Request scope

112.2.3 Composite scope

112.2.4 Conversation scope

123
Interface

123.1 Java interface element ("interface.java")

123.2 @Remotable

123.3 @Conversational

134
Client API

134.1 Accessing Services from an SCA Component

134.1.1 Using the Component Context API

134.2 Accessing Services from non-SCA component implementations

134.2.1 ComponentContext

145
Error Handling

156
Asynchronous and Conversational Programming

156.1 @OneWay

156.2 Conversational Services

156.2.1 ConversationAttributes

166.2.2 @EndsConversation

166.3 Passing Conversational Services as Parameters

166.4 Conversational Client

176.5 Conversation Lifetime Summary

186.6 Conversation ID

186.6.1 Application Specified Conversation IDs

186.6.2 Accessing Conversation IDs from Clients

186.7 Callbacks

186.7.1 Stateful Callbacks

226.7.2 Stateless Callbacks

226.7.3 Implementing Multiple Bidirectional Interfaces

236.7.4 Accessing Callbacks

246.7.5 Customizing the Callback

246.7.6 Customizing the Callback Identity

246.7.7 Bindings for Conversations and Callbacks

267
Java API

267.1 Component Context

277.2 Request Context

287.3 CallableReference

287.4 ServiceReference

297.5 Conversation

297.6 ServiceRuntimeException

307.7 NoRegisteredCallbackException

307.8 ServiceUnavailableException

307.9 InvalidServiceException

307.10 ConversationEndedException

328
Java Annotations

328.1 @AllowsPassByReference

328.2 @Callback

348.3 @ComponentName

348.4 @Constructor

358.5 @Context

368.6 @Conversational

368.7 @ConversationAttributes

378.8 @ConversationID

388.9 @Destroy

388.10 @EagerInit

398.11 @EndsConversation

398.12 @Init

408.13 @OneWay

418.14 @Property

428.15 @Reference

448.15.1 Reinjection

468.16 @Remotable

478.17 @Scope

488.18 @Service

509
WSDL to Java and Java to WSDL

509.1 JAX-WS Client Asynchronous API for a Synchronous Service

5210
Policy Annotations for Java

5210.1 General Intent Annotations

5410.2 Specific Intent Annotations

5510.2.1 How to Create Specific Intent Annotations

5610.3 Application of Intent Annotations

5710.3.1 Inheritance And Annotation

5810.4 Relationship of Declarative And Annotated Intents

5910.5 Policy Set Annotations

5910.6 Security Policy Annotations

5910.6.1 Security Interaction Policy

6210.6.2 Security Implementation Policy

66A.
Acknowledgements

67B.
Non-Normative Text

68C.
Revision History

1 Introduction

The SCA Common Annotation, APIs, Client and Implementation Model specifies a Java syntax for programming concepts defined in the SCA Assembly Model Specification [1]. It specifies a set of APIs and annotations that may be used by Java-based SCA specifications.

Specifically, this specification covers:

1. Implementation metadata for specifying component services, references, and properties

2. A client and component API

3. Metadata for asynchronous and conversational services

4. Metadata for callbacks

5. Definitions of standard component implementation scopes

6. Java to WSDL and WSDL to Java mappings

7. Security policy annotations

Note that individual programming models may chose to implement their own mappings of assembly model concepts using native APIs and idioms when appropriate.

The goal of specifying the annotations, APIs, client and implementation model in this specification is to promote consistency and reduce duplication across various Java-related component implementation type specifications. The annotations, APIs, client and implementation model defined in this specification are designed to be used by other SCA Java-related specifications in either a partial or complete fashion.

This document defines implementation metadata using the annotation capability from JavaTM 2 Standard Edition (J2SE) 5. However, SCA also allows service clients and implementations to be written using J2SE 1.4. All metadata that is represented by annotations can also be expressed using a component type side file, as defined in the SCA Assembly Specification [1].

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

TBD
TBD

[1] SCA Assembly Specification

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd01.pdf
[2] SDO 2.1 Specification

http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf
[3] JAXB Specification

http://www.jcp.org/en/jsr/detail?id=31
[4] WSDL Specification

WSDL 1.1: http://www.w3.org/TR/wsdl
WSDL 2.0: http://www.w3.org/TR/wsdl20/
[5] SCA Policy Framework

http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf

[6] Common Annotation for Java Platform specification (JSR-250)

http://www.jcp.org/en/jsr/detail?id=250
[7] JAX-WS Specification (JSR-224)

http://www.jcp.org/en/jsr/detail?id=224
1.3 Non-Normative References

TBD
TBD
2 Implementation Metadata

This section describes SCA Java-based metadata, which applies to Java-based implementation types.

2.1 Service Metadata

2.1.1 @Service

The @Service annotation is used on a Java class to specify the interfaces of the services implemented by the implementation. Service interfaces are defined in one of the following ways:

· As a Java interface

· As a Java class

· As a Java interface generated from a Web Services Description Language [4] (WSDL) portType (Java interfaces generated from a WSDL portType are always remotable)

2.1.2 Java Semantics of a Remotable Service

A remotable service is defined using the @Remotable annotation on the Java interface that defines the service. Remotable services are intended to be used for coarse grained services, and the parameters are passed by-value. Remotable Services are not allowed to make use of method overloading.

The following snippet shows an example of a Java interface for a remote service:

package services.hello;
@Remotable
public interface HelloService {

 String hello(String message);

}
2.1.3 Java Semantics of a Local Service

A local service can only be called by clients that are deployed within the same address space as the component implementing the local service.

A local interface is defined by a Java interface with no @Remotable annotation or it is defined by a Java class.

The following snippet shows an example of a Java interface for a local service:

package services.hello;
public interface HelloService {

 String hello(String message);

}
The style of local interfaces is typically fine grained and is intended for tightly coupled interactions.

The data exchange semantic for calls to local services is by-reference. This means that code must be written with the knowledge that changes made to parameters (other than simple types) by either the client or the provider of the service are visible to the other.

2.1.4 @Reference

Accessing a service using reference injection is done by defining a field, a setter method parameter, or a constructor parameter typed by the service interface and annotated with an @Reference annotation.

2.1.5 @Property

Implementations can be configured with data values through the use of properties, as defined in the SCA Assembly specification [1]. The @Property annotation is used to define an SCA property .

2.2 Implementation Scopes: @Scope, @Init, @Destroy

Component implementations can either manage their own state or allow the SCA runtime to do so. In the latter case, SCA defines the concept of implementation scope, which specifies a visibility and lifecycle contract an implementation has with the SCA runtime. Invocations on a service offered by a component will be dispatched by the SCA runtime to an implementation instance according to the semantics of its implementation scope.

Scopes are specified using the @Scope annotation on the implementation class.

This document defines four scopes:

· STATELESS

· REQUEST

· CONVERSATION

· COMPOSITE

Java-based implementation types can choose to support any of these scopes, and they may define new scopes specific to their type.

An implementation type may allow component implementations to declare lifecycle methods that are called when an implementation is instantiated or the scope is expired.

@Init denotes a method called upon first use of an instance during the lifetime of the scope (except for composite scoped implementation marked to eagerly initialize, see section Composite Scope).

@Destroy specifies a method called when the scope ends.

Note that only no-argument methods may be annotated as lifecycle methods.

The following snippet is an example showing a fragment of a service implementation annotated with lifecycle methods:

@Init

public void start() {

...

}

@Destroy

public void stop() {

...

}

The following sections specify four standard scopes, which a Java-based implementation type may support.
2.2.1 Stateless scope

 For stateless scope components, there is no implied correlation between implementation instances used to dispatch service requests.

2.2.2 Request scope

The lifecycle of request scope extends from the point a request on a remotable interface enters the SCA runtime and a thread processes that request until the thread completes synchronously processing the request. During that time, all service requests are delegated to the same implementation instance of a request-scoped component.

There are times when a local request scoped service is called without there being a remotable service earlier in the call stack, such as when a local service is called from a non-SCA entity. In these cases, a remote request is always considered to be present, but the lifetime of the request is implementation dependent. For example, a timer event could be treated as a remote request.

2.2.3 Composite scope

All service requests are dispatched to the same implementation instance for the lifetime of the containing composite. The lifetime of the containing composite is defined as the time it becomes active in the runtime to the time it is deactivated, either normally or abnormally.

A composite scoped implementation may also specify eager initialization using the @EagerInit annotation. When marked for eager initialization, the composite scoped instance is created when its containing component is started. If a method is marked with the @Init annotation, it is called when the instance is created.

2.2.4 Conversation scope

A conversation is defined as a series of correlated interactions between a client and a target service. A conversational scope starts when the first service request is dispatched to an implementation instance offering a conversational service. A conversational scope completes after an end operation defined by the service contract is called and completes processing or the conversation expires. A conversation may be long-running (for example, hours, days or weeks) and the SCA runtime may choose to passivate implementation instances. If this occurs, the runtime must guarantee that implementation instance state is preserved.

Note that in the case where a conversational service is implemented by a Java class marked as conversation scoped, the SCA runtime will transparently handle implementation state. It is also possible for an implementation to manage its own state. For example, a Java class having a stateless (or other) scope could implement a conversational service.

A conversational scoped class MUST NOT expose a service using a non-conversational interface. When a service has a conversational interface it MUST be implemented by a conversation-scoped component. If no scope is specified on the implementation, then conversation scope is implied.

3 Interface

This section describes the SCA Java interface element and the SCA metadata for Java interfaces.

3.1 Java interface element ("interface.java")

The following snippet shows the schema for the Java interface element.

<interface.java interface="NCName" … />
The interface.java element has the following attributes:

· interface – the fully qualified name of the Java interface

The following snippet shows an example of the Java interface element:

<interface.java interface="services.stockquote.StockQuoteService"/>
Here, the Java interface is defined in the Java class file ./services/stockquote/StockQuoteService.class, where the root directory is defined by the contribution in which the interface exists.

For the Java interface type system, arguments and return values of the service methods are described using Java classes or simple Java types. Service Data Objects [2] are the preferred form of Java class because of their integration with XML technologies.

3.2 @Remotable

The @Remotable annotation on a Java interface indicates that the interface is designed to be used for remote communication. Remotable interfaces are intended to be used for coarse grained services. Operations' parameters and return values are passed by-value. Remotable Services are not allowed to make use of method overloading.

3.3 @Conversational

Java service interfaces may be annotated to specify whether their contract is conversational as described in the Assembly Specification [1] by using the @Conversational annotation. A conversational service indicates that requests to the service are correlated in some way.

When @Conversational is not specified on a service interface, the service contract is stateless.

4 Client API

This section describes how SCA services may be programmatically accessed from components and also from non-managed code, i.e. code not running as an SCA component.

4.1 Accessing Services from an SCA Component

An SCA component may obtain a service reference either through injection or programmatically through the ComponentContext API. Using reference injection is the recommended way to access a service, since it results in code with minimal use of middleware APIs. The ComponentContext API is provided for use in cases where reference injection is not possible.

4.1.1 Using the Component Context API

When a component implementation needs access to a service where the reference to the service is not known at compile time, the reference can be located using the component’s ComponentContext.

4.2 Accessing Services from non-SCA component implementations

This section describes how Java code not running as an SCA component that is part of an SCA composite accesses SCA services via references.

4.2.1 ComponentContext

Non-SCA client code can use the ComponentContext API to perform operations against a component in an SCA domain. How client code obtains a reference to a ComponentContext is runtime specific.

The following example demonstrates the use of the component Context API by non-SCA code:

ComponentContext context = // obtained through host environment-specific means
HelloService helloService =

context.getService(HelloService.class,"HelloService");
String result = helloService.hello("Hello World!");
5 Error Handling

Clients calling service methods may experience business exceptions and SCA runtime exceptions.

Business exceptions are thrown by the implementation of the called service method, and are defined as checked exceptions on the interface that types the service.

SCA runtime exceptions are raised by the SCA runtime and signal problems in management of component execution or problems interacting with remote services. The SCA runtime exceptions are defined in the Java API section.

6 Asynchronous and Conversational Programming

Asynchronous programming of a service is where a client invokes a service and carries on executing without waiting for the service to execute. Typically, the invoked service executes at some later time. Output from the invoked service, if any, must be fed back to the client through a separate mechanism, since no output is available at the point where the service is invoked. This is in contrast to the call-and-return style of synchronous programming, where the invoked service executes and returns any output to the client before the client continues. The SCA asynchronous programming model consists of:

· support for non-blocking method calls

· conversational services

· callbacks

Each of these topics is discussed in the following sections.

Conversational services are services where there is an ongoing sequence of interactions between the client and the service provider, which involve some set of state data – in contrast to the simple case of stateless interactions between a client and a provider. Asynchronous services may often involve the use of a conversation, although this is not mandatory.

6.1 @OneWay

Nonblocking calls represent the simplest form of asynchronous programming, where the client of the service invokes the service and continues processing immediately, without waiting for the service to execute.

Any method with a void return type and has no declared exceptions may be marked with an @OneWay annotation. This means that the method is non-blocking and communication with the service provider may use a binding that buffers the requests and sends it at some later time.

For a Java client to make a non-blocking call to methods that either return values or which throw exceptions, a Java client can use the JAX-WS asynchronous client API model that is described in section 9. It is considered to be a best practice that service designers define one-way methods as often as possible, in order to give the greatest degree of binding flexibility to deployers.

6.2 Conversational Services

A service may be declared as conversational by marking its Java interface with an @Conversational annotation. If a service interface is not marked with @Conversational, it is stateless.

6.2.1 ConversationAttributes

A Java-based implementation class may be marked with an @ConversationAttributes annotation, which is used to specify the expiration rules for conversational implementation instances.

An example of @ConversationAttributes is shown below:

package com.bigbank;
import org.osoa.sca.annotations.ConversationAttributes;

@ConversationAttributes(maxAge="30 days");

public class LoanServiceImpl implements LoanService {
}
6.2.2 @EndsConversation

A method of a conversational interface may be marked with an @EndsConversation annotation. Once a method marked with @EndsConversation has been called, the conversation between client and service provider is at an end, which implies no further methods may be called on that service within the same conversation. This enables both the client and the service provider to free up resources that were associated with the conversation.

It is also possible to mark a method on a callback interface (described later) with @EndsConversation, in order for the service provider to be the party that chooses to end the conversation.

If a conversation is ended with an explicit outbound call to an @EndsConversation method or through a call to the ServiceReference.endConversation() method, then any subsequent call to an operation on the service reference will start a new conversation. If the conversation ends for any other reason (e.g. a timeout occurred), then until ServiceReference.getConversation().end() is called, the ConversationEndedException is thrown by any conversational operation.

6.3 Passing Conversational Services as Parameters

The service reference which represents a single conversation can be passed as a parameter to another service, even if that other service is remote. This may be used to allow one component to continue a conversation that had been started by another.

A service provider may also create a service reference for itself that it can pass to other services. A service implementation does this with a call to the createSelfReference(…) method:

interface ComponentContext{

 …

 ServiceReference createSelfReference(Class

businessInterface);

 ServiceReference createSelfReference(Class

businessInterface, String serviceName);

}
The second variant, which takes an additional serviceName parameter, must be used if the component implements multiple services.

This capability may be used to support complex callback patterns, such as when a callback is applicable only to a subset of a larger conversation. Simple callback patterns are handled by the built-in callback support described later.

6.4 Conversational Client

The client of a conversational service does not need to be coded in a special way. The client can take advantage of the conversational nature of the interface through the relationship of the different methods in the interface and any data they may share in common. If the service is asynchronous, the client may like to use a feature such as the conversationID to keep track of any state data relating to the conversation.

The developer of the client knows that the service is conversational by introspecting the service contract. The following shows how a client accesses the conversational service described above:

@Reference

LoanService loanService;

// Known to be conversational because the interface is marked as

// conversational

public void applyForMortgage(Customer customer, HouseInfo houseInfo,

 int term)

{

LoanApplication loanApp;

loanApp = createApplication(customer, houseInfo);

loanService.apply(loanApp);

loanService.lockCurrentRate(term);

}

public boolean isApproved() {

 return loanService.getLoanStatus().equals("approved");

}

public LoanApplication createApplication(Customer customer,

 HouseInfo houseInfo) {

 return …;

}
6.5 Conversation Lifetime Summary

Starting conversations

Conversations start on the client side when one of the following occur:

· A @Reference to a conversational service is injected

· A call is made to CompositeContext.getServiceReference and then a method of the service is called.

Continuing conversations

The client can continue an existing conversation, by:

· Holding the service reference that was created when the conversation started

· Getting the service reference object passed as a parameter from another service, even remotely

· Loading a service reference that had been written to some form of persistent storage

Ending conversations

A conversation ends, and any state associated with the conversation is freed up, when:

· A service operation that has been annotated @EndsConveration has been called

· The server calls an @EndsConversation method on the @Callback reference

· The server's conversation lifetime timeout occurs

· The client calls Conversation.end()
· Any non-business exception is thrown by a conversational operation

If a method is invoked on a service reference after an @EndsConversation method has been called then a new conversation will automatically be started. If ServiceReference.getConversationID() is called after the @EndsConversation method is called, but before the next conversation has been started, it returns null.

If a service reference is used after the service provider's conversation timeout has caused the conversation to be ended, then ConversationEndedException is thrown. In order to use that service reference for a new conversation, its endConversation () method must be called.

6.6 Conversation ID

Every conversation has a conversation ID. The conversation ID can be generated by the system, or it can be supplied by the client component.

If a field or setter method is annotated with @ConversationID, then the conversation ID for the conversation is injected. The type of the field is not necessarily String. System generated conversation IDs are always strings, but application generated conversation IDs may be other complex types.

6.6.1 Application Specified Conversation IDs

It is possible to take advantage of the state management aspects of conversational services while using a client-provided conversation ID. To do this, the client does not use reference injection, but uses the ServiceReference.setConversationID() API.

The conversation ID that is passed into this method should be an instance of either a String or of an object that is serializable into XML. The ID must be unique to the client component over all time. If the client is not an SCA component, then the ID must be globally unique.

Not all conversational service bindings support application-specified conversation IDs or may only support application-specified conversation IDs that are Strings.

6.6.2 Accessing Conversation IDs from Clients

Whether the conversation ID is chosen by the client or is generated by the system, the client may access the conversation ID by calling getConversationID() on the current conversation object.

If the conversation ID is not application specified, then the ServiceReference.getConversationID() method is only guaranteed to return a valid value after the first operation has been invoked, otherwise it returns null.

6.7 Callbacks

A callback service is a service that is used for asynchronous communication from a service provider back to its client, in contrast to the communication through return values from synchronous operations. Callbacks are used by bidirectional services, which are services that have two interfaces:

· an interface for the provided service

· a callback interface that must be provided by the client
Callbacks may be used for both remotable and local services. Either both interfaces of a bidirectional service must be remotable, or both must be local. It is illegal to mix the two. There are two basic forms of callbacks: stateless callbacks and stateful callbacks.

A callback interface is declared by using an @Callback annotation on a service interface, with the Java Class object of the interface as a parameter. The annotation may also be applied to a method or to a field of an implementation, which is used in order to have a callback injected, as explained in the next section.

6.7.1 Stateless Callbacks

A stateless callback does not depend on the execution context of the callback method having access to the execution state of the method that originally invoked the bidirectional service. Any information needed by the callback method is either passed in the callback’s parameters or is obtained using data from these parameters. For example, information needed by the callback could be obtained from a database record that was retrieved using a key passed as a callback parameter.
A callback is stateless if its implementation has STATELESS or COMPOSITE scope. For a stateless-scoped implementation, the callback is dispatched using a newly initialized instance that doesn’t share any state with the instance that made the original bidirectional service invocation. For a composite-scoped implementation, a single copy of the component’s state is shared by all its methods including callbacks, so the callback’s execution context might or might not contain the same execution state as the method that invoked the bidirectional service.
The following example interfaces show a bidirectional interface with a stateless callback.

package somepackage;
import org.osoa.sca.annotations.Callback;
import org.osoa.sca.annotations.Remotable;
@Remotable

@Callback(OrderServiceCallback.class)

public interface OrderService {

 void queryStatus(String id);
}

@Remotable

public interface OrderServiceCallback {

 void updateStatus(String id, String status);
}
In this example, the queryStatus operation requests an update on the current status of an outstanding order which is identified by an order number. The order status is returned using the updateStatus callback operation, which includes the order number as well as the current status of the order.
The following code snippet illustrates a possible implementation of the example service, using the @Callback annotation to request that a callback proxy be injected. In this example, the service makes between zero and three callbacks with information about the status of the order.
@Callback
protected OrderServiceCallback callback;
public void queryStatus(String id) {
 if (isInvoiced(id)) {
 callback.updateStatus(id, “invoiced”);

 }
 if (isDispatched(id)) {
 callback.updateStatus(id, “dispatched”);

 }
 if (isPaid(id)) {
 callback.updateStatus(id, “paid”);

 }
}
The code snippet below is taken from the client of this example service. The client’s service implementation class implements the methods of the OrderServiceCallback interface as well as those of its service interface.

public class ClientImpl implements ClientService, OrderServiceCallback {
 private OrderService myService;
 @Reference
 public void setMyService(OrderService service) {

 myService = service;

 }

 public void aClientMethod() {
 ...
 myService.queryStatus(id);
 }
 public void updateStatus(String id, String status) {
 // code to process the status update
 }
}
Any correlation that the client needs to perform between service invocations and resulting callbacks is handled by business logic in the service and client implementations, using data passed as parameters of service and callback method invocations. If a client needs to store any persistent state to correlate service calls with subsequent callbacks, it is the responsibility of such a client to perform any persistent state management itself.

6.7.2 Stateful Callbacks

A stateful callback represents a specific implementation instance of the component that is the client of the service. The interface of a stateful callback should be marked as conversational.

The following example interfaces show an interaction over a stateful callback.

package somepackage;
import org.osoa.sca.annotations.Callback;
import org.osoa.sca.annotations.Conversational;
import org.osoa.sca.annotations.Remotable;
@Remotable

@Conversational

@Callback(MyServiceCallback.class)

public interface MyService {

 void someMethod(String arg);
}

@Remotable

@Conversational

public interface MyServiceCallback {

 void receiveResult(String result);
}
An implementation of the service in this example could use the @Callback annotation to request that a stateful callback be injected. The following is a fragment of an implementation of the example service. In this example, the request is passed on to some other component, so that the example service acts essentially as an intermediary. If the example service is conversation scoped, the callback will still be available when the backend service sends back its asynchronous response.

When an interface and its callback interface are both marked as conversational, then there is only one conversation that applies in both directions and it has the same lifetime. In this case, if both interfaces declare a @ConversationAttributes annotation, then only the annotation on the main interface applies.

@Callback
protected MyServiceCallback callback;
@Reference
protected MyService backendService;
public void someMethod(String arg) {
 backendService.someMethod(arg);
}
public void receiveResult(String result) {
 callback.receiveResult(result);

}
This fragment must come from an implementation that offers two services, one that it offers to its clients (MyService) and one that is used for receiving callbacks from the back end (MyServiceCallback). The code snippet below is taken from the client of this service, which also implements the methods defined in MyServiceCallback.

private MyService myService;
@Reference
public void setMyService(MyService service) {

myService = service;

}

public void aClientMethod() {

...

myService.someMethod(arg);
}
public void receiveResult(String result) {
 // code to process the result
}
Stateful callbacks support some of the same use cases as are supported by the ability to pass service references as parameters. The primary difference is that stateful callbacks do not require any additional parameters be passed with service operations. This can be a great convenience. If the service has many operations and any of those operations could be the first operation of the conversation, it would be unwieldy to have to take a callback parameter as part of every operation, just in case it is the first operation of the conversation. It is also more natural than requiring application developers to invoke an explicit operation whose only purpose is to pass the callback object that should be used.

6.7.3

6.7.4 Implementing Multiple Bidirectional Interfaces

Since it is possible for a single implementation class to implement multiple services, it is also possible for callbacks to be defined for each of the services that it implements. The service implementation can include an injected field for each of its callbacks. The runtime injects the callback onto the appropriate field based on the type of the callback. The following shows the declaration of two fields, each of which corresponds to a particular service offered by the implementation.

@Callback

protected MyService1Callback callback1;
@Callback

protected MyService2Callback callback2;
If a single callback has a type that is compatible with multiple declared callback fields, then all of them will be set.

6.7.5 Accessing Callbacks
In addition to injecting a reference to a callback service, it is also possible to obtain a reference to a Callback instance by annotating a field or method of type CallableReference with the @Callback annotation.

A reference implementing the callback service interface may be obtained using CallableReference.getService().

The following example fragments come from a service implementation that uses the callback API:

@Callback

protected CallableReference<MyCallback> callback;

public void someMethod() {

MyCallback myCallback = callback.getCallback(); …

myCallback.receiveResult(theResult);

}
Because CallableReference objects are serializable, they can be stored persistently and retrieved at a later time to make a callback invocation after the associated service request has completed. CallableReference objects can also be passed as parameters on service invocations, enabling the responsibility for making the callback to be delegated to another service.
Alternatively, a callback may be retrieved programmatically using the RequestContext API. The snippet below shows how to retrieve a callback in a method programmatically:

public void someMethod() {

MyCallback myCallback =

ComponentContext.getRequestContext().getCallback();

 …

myCallback.receiveResult(theResult);

}
This is necessary if the service implementation has COMPOSITE scope, because callback injection is not performed for composite-scoped implementations.

6.7.6

6.7.7

6.7.8 Bindings for Conversations and Callbacks
There are potentially many ways of representing the conversation ID for conversational services depending on the type of binding that is used. For example, it may be possible WS-RM sequence ids for the conversation ID if reliable messaging is used in a Web services binding. WS-Eventing uses a different technique (the wse:Identity header). There is also a WS-Context OASIS TC that is creating a general purpose mechanism for exactly this purpose.

SCA's programming model supports conversations, but it leaves up to the binding the means by which the conversation ID is represented on the wire.

7 Java API

This section provides a reference for the Java API offered by SCA.

7.1 Component Context

The following Java code defines the ComponentContext interface:

package org.osoa.sca;
public interface ComponentContext {

 String getURI();

 B getService(Class businessInterface, String referenceName);

 ServiceReference getServiceReference(Class businessInterface,

 String referenceName);

 Collection getServices(Class businessInterface,

String referenceName);

 Collection<ServiceReference> getServiceReferences(Class

businessInterface, String referenceName);

 ServiceReference createSelfReference(Class

businessInterface);

 ServiceReference createSelfReference(Class businessInterface,

 String serviceName);

 B getProperty(Class type, String propertyName);

 <B, R extends CallableReference> R cast(B target)

 throws IllegalArgumentException;

RequestContext getRequestContext();

 ServiceReference cast(B target) throws IllegalArgumentException;

}

· getURI() - returns the absolute URI of the component within the SCA domain

· getService(Class businessInterface, String referenceName) – Returns a proxy for the reference defined by the current component. The getService() method takes as its input arguments the Java type used to represent the target service on the client and the name of the service reference. It returns an object providing access to the service. The returned object implements the Java interface the service is typed with. This method MUST throw an IllegalArgumentException if the reference has multiplicity greater than one.

· getServiceReference(Class businessInterface, String referenceName) – Returns a ServiceReference defined by the current component. This method MUST throw an IllegalArgumentException if the reference has multiplicity greater than one.
· getServices(Class businessInterface, String referenceName) – Returns a list of typed service proxies for a business interface type and a reference name.

· getServiceReferences(Class businessInterface, String referenceName) –Returns a list typed service references for a business interface type and a reference name.

· createSelfReference(Class businessInterface) – Returns a ServiceReference that can be used to invoke this component over the designated service.
· createSelfReference(Class businessInterface, String serviceName) – Returns a ServiceReference that can be used to invoke this component over the designated service. Service name explicitly declares the service name to invoke

· getProperty (Class type, String propertyName) - Returns the value of an SCA property defined by this component.

· getRequestContext() - Returns the context for the current SCA service request, or null if there is no current request or if the context is unavailable. This method MUST return non-null when invoked during the execution of a Java business method for a service operation or callback operation, on the same thread that the SCA runtime provided, and MUST return null in all other cases.

· cast(B target) - Casts a type-safe reference to a CallableReference

A component may access its component context by defining a field or setter method typed by org.osoa.sca.ComponentContext and annotated with @Context. To access the target service, the component uses ComponentContext.getService(..).
The following shows an example of component context usage in a Java class using the @Context annotation.

private ComponentContext componentContext;

@Context

public void setContext(ComponentContext context) {

componentContext = context;

}

public void doSomething() {

HelloWorld service =

componentContext.getService(HelloWorld.class,”HelloWorldComponent”);

service.hello(“hello”);

}
Similarly, non-SCA client code can use the ComponentContext API to perform operations against a component in an SCA domain. How the non-SCA client code obtains a reference to a ComponentContext is runtime specific.

7.2 Request Context

The following shows the RequestContext interface:

package org.osoa.sca;
import javax.security.auth.Subject;
public interface RequestContext {

Subject getSecuritySubject();

String getServiceName();
 <CB> CallableReference<CB> getCallbackReference();

 <CB> CB getCallback();

 CallableReference getServiceReference();
}
The RequestContext interface has the following methods:

· getSecuritySubject() – Returns the JAAS Subject of the current request

· getServiceName() – Returns the name of the service on the Java implementation the request came in on

· getCallbackReference() – Returns a callable reference to the callback as specified by the caller

· getCallback() – Returns a proxy for the callback as specified by the caller

· getServiceReference() – When invoked during the execution of a service operation, this method MUST return a CallableReference that represents the service that was invoked. When invoked during the execution of a callback operation, this method MUST return a CallableReference that represents the callback that was invoked.

7.3 CallableReference

The following Java code defines the CallableReference interface:

package org.osoa.sca;
public interface CallableReference extends java.io.Serializable {
 B getService();

 Class getBusinessInterface();

 boolean isConversational();

 Conversation getConversation();

}

The CallableReference interface has the following methods:

· getService() - Returns a type-safe reference to the target of this reference. The instance returned is guaranteed to implement the business interface for this reference. The value returned is a proxy to the target that implements the business interface associated with this reference.

· getBusinessInterface() – Returns the Java class for the business interface associated with this reference.

· isConversational() – Returns true if this reference is conversational.

· getConversation() – Returns the conversation associated with this reference. Returns null if no conversation is currently active.

·
7.4 ServiceReference

ServiceReferences may be injected using the @Reference annotation on a field, a setter method, or constructor parameter taking the type ServiceReference. The detailed description of the usage of these methods is described in the section on Asynchronous Programming in this document.

The following Java code defines the ServiceReference interface:

package org.osoa.sca;
public interface ServiceReference extends CallableReference {

 Object getConversationID();

 void setConversationID(Object conversationId) throws

IllegalStateException;

}

The ServiceReference interface has the methods of CallableReference plus the following:

· getConversationID() - Returns the id supplied by the user that will be associated with future conversations initiated through this reference, or null if no ID has been set by the user.

· setConversationID(Object conversationId) – Set the ID, supplied by the user, to associate with any future conversation started through this reference. If the value supplied is null then the id will be generated by the implementation. Throws an IllegalStateException if a conversation is currently associated with this reference.

·
·
·
7.5 Conversation

The following snippet defines Conversation:

package org.osoa.sca;
public interface Conversation {

 Object getConversationID();

 void end();

}

The Conversation interface has the following methods:

· getConversationID() – Returns the identifier for this conversation. If a user-defined identity had been supplied for this reference then its value will be returned; otherwise the identity generated by the system when the conversation was initiated will be returned.

· end() – Ends this conversation.

7.6 ServiceRuntimeException

The following snippet shows the ServiceRuntimeException.

package org.osoa.sca;
public class ServiceRuntimeException extends RuntimeException {

…

}
This exception signals problems in the management of SCA component execution.

7.7

7.8 ServiceUnavailableException

The following snippet shows the ServiceUnavailableException.

package org.osoa.sca;
public class ServiceUnavailableException extends ServiceRuntimeException {

…

}
This exception signals problems in the interaction with remote services. These are exceptions that may be transient, so retrying is appropriate. Any exception that is a ServiceRuntimeException that is not a ServiceUnavailableException is unlikely to be resolved by retrying the operation, since it most likely requires human intervention

7.9 InvalidServiceException

The following snippet shows the InvalidServiceException.

package org.osoa.sca;
public class InvalidServiceException extends ServiceRuntimeException {

…

}
This exception signals that the ServiceReference is no longer valid. This can happen when the target of the reference is undeployed. This exception is not transient and therefore is unlikely to be resolved by retrying the operation and will most likely require human intervention.

7.10 ConversationEndedException

The following snippet shows the ConversationEndedException.

package org.osoa.sca;
public class ConversationEndedException extends ServiceRuntimeException {

…

}
8 Java Annotations

This section provides definitions of all the Java annotations which apply to SCA.

8.1 @AllowsPassByReference

The following Java code defines the @AllowsPassByReference annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface AllowsPassByReference {
}
The @AllowsPassByReference annotation is used on implementations of remotable interfaces to indicate that interactions with the service from a client within the same address space are allowed to use pass by reference data exchange semantics. The implementation promises that its by-value semantics will be maintained even if the parameters and return values are actually passed by-reference. This means that the service will not modify any operation input parameter or return value, even after returning from the operation. Either a whole class implementing a remotable service or an individual remotable service method implementation can be annotated using the @AllowsPassByReference annotation.

@AllowsPassByReference has no attributes

The following snippet shows a sample where @AllowsPassByReference is defined for the implementation of a service method on the Java component implementation class.

@AllowsPassByReference
public String hello(String message) {

…

}
8.2 @Callback

The following Java code defines shows the @Callback annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE, METHOD, FIELD)
@Retention(RUNTIME)
public @interface Callback {

Class<?> value() default Void.class;
}
The @Callback annotation is used to annotate a service interface with a callback interface, which takes the Java Class object of the callback interface as a parameter.

The @Callback annotation has the following attribute:

· value – the name of a Java class file containing the callback interface

The @Callback annotation may also be used to annotate a method or a field of an SCA implementation class, in order to have a callback object injected

The following snippet shows a callback annotation on an interface:

@Remotable

@Callback(MyServiceCallback.class)

public interface MyService {

 void someAsyncMethod(String arg);

}

An example use of the @Callback annotation to declare a callback interface follows:

package somepackage;
import org.osoa.sca.annotations.Callback;
import org.osoa.sca.annotations.Remotable;
@Remotable

@Callback(MyServiceCallback.class)

public interface MyService {

 void someMethod(String arg);
}

@Remotable

public interface MyServiceCallback {

 void receiveResult(String result);
}

In this example, the implied component type is:

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200712" >

<service name="MyService">
<interface.java interface="somepackage.MyService"

 callbackInterface="somepackage.MyServiceCallback"/>

</service>

</componentType>
8.3 @ComponentName

The following Java code defines the @ComponentName annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface ComponentName {
}
The @ComponentName annotation is used to denote a Java class field or setter method that is used to inject the component name.

The following snippet shows a component name field definition sample.

@ComponentName

private String componentName;
The following snippet shows a component name setter method sample.

@ComponentName

public void setComponentName(String name) {

 //…

}

8.4 @Constructor

The following Java code defines the @Constructor annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.CONSTRUCTOR;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(CONSTRUCTOR)

@Retention(RUNTIME)

public @interface Constructor {

 String[] value() default "";

}

The @Constructor annotation is used to mark a particular constructor to use when instantiating a Java component implementation.

The @Constructor annotation has the following attribute:

· value (optional) – identifies the property/reference names that correspond to each of the constructor arguments. The position in the array determines which of the arguments are being named.

The following snippet shows a sample for the Constructor annotation.

public class HelloServiceImpl implements HelloService {

 public HelloServiceImpl(){
 ...
 }

 @Constructor
 public HelloServiceImpl(String someProperty){
 ...
 }

 public String hello(String message) {
 ...
 }
}
8.5 @Context

The following Java code defines the @Context annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface Context {
}
The @Context annotation is used to denote a Java class field or a setter method that is used to inject a composite context for the component. The type of context to be injected is defined by the type of the Java class field or type of the setter method input argument; the type is either ComponentContext or RequestContext.

The @Context annotation has no attributes.

The following snippet shows a ComponentContext field definition sample.

@Context
protected ComponentContext context;
The following snippet shows a RequestContext field definition sample.

@Context
protected RequestContext context;
8.6 @Conversational

The following Java code defines the @Conversational annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)
@Retention(RUNTIME)
public @interface Conversational {
}
The @Conversational annotation is used on a Java interface to denote a conversational service contract.

The @Conversational annotation has no attributes.

The following snippet shows a sample for the Conversational annotation.

package services.hello;
import org.osoa.sca.annotations.Conversational;
@Conversational
public interface HelloService {
 void setName(String name);
 String sayHello();
}
8.7 @ConversationAttributes

The following Java code defines the @ConversationAttributes annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)
@Retention(RUNTIME)
public @interface ConversationAttributes {

String maxIdleTime() default "";

String maxAge() default "";

boolean singlePrincipal() default false;
}
The @ConversationAttributes annotation is used to define a set of attributes which apply to conversational interfaces of services or references of a Java class. The annotation has the following attributes:

· maxIdleTime (optional) - The maximum time that can pass between successive operations within a single conversation. If more time than this passes, then the container may end the conversation.

· maxAge (optional) - The maximum time that the entire conversation can remain active. If more time than this passes, then the container may end the conversation.

· singlePrincipal (optional) – If true, only the principal (the user) that started the conversation has authority to continue the conversation. The default value is false.

The two attributes that take a time express the time as a string that starts with an integer, is followed by a space and then one of the following: "seconds", "minutes", "hours", "days" or "years".

Not specifying timeouts means that timeouts are defined by the SCA runtime implementation, however it chooses to do so.

The following snippet shows the use of the @ConversationAttributes annotation to set the maximum age for a Conversation to be 30 days.

package service.shoppingcart;
import org.osoa.sca.annotations.ConversationAttributes;
@ConversationAttributes (maxAge="30 days");
public class ShoppingCartServiceImpl implements ShoppingCartService {

...
}
8.8 @ConversationID

The following Java code defines the @ConversationID annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface ConversationID {
}
The @ConversationID annotation is used to annotate a Java class field or setter method that is used to inject the conversation ID. System generated conversation IDs are always strings, but application generated conversation IDs may be other complex types.

The following snippet shows a conversation ID field definition sample.

@ConversationID

private String conversationID;
The type of the field is not necessarily String.

8.9 @Destroy

The following Java code defines the @Destroy annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(METHOD)
@Retention(RUNTIME)
public @interface Destroy {
}
The @Destroy annotation is used to denote a single Java class method that will be called when the scope defined for the implementation class ends. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method when the scope defined for the implementation class ends. If the implementation class has a method with an @Destroy annotation that does not match these criteria, the SCA runtime MUST NOT instantiate the implementation class.

The following snippet shows a sample for a destroy method definition.

@Destroy
void myDestroyMethod() {

…
}
8.10 @EagerInit

The following Java code defines the @EagerInit annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)

@Retention(RUNTIME)

public @interface EagerInit {

}

8.11 @EndsConversation

The following Java code defines the @EndsConversation annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(METHOD)
@Retention(RUNTIME)
public @interface EndsConversation {
}
The @EndsConversation annotation is used to denote a method on a Java interface that is called to end a conversation.

The @EndsConversation annotation has no attributes.

The following snippet shows a sample using the @EndsConversation annotation.

package services.shoppingbasket;
import org.osoa.sca.annotations.EndsConversation;
public interface ShoppingBasket {
 void addItem(String itemID, int quantity);
 @EndsConversation
 void buy();
}
8.12 @Init

The following Java code defines the @Init annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(METHOD)
@Retention(RUNTIME)
public @interface Init {
}
The @Init annotation is used to denote a single Java class method that is called when the scope defined for the implementation class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all property and reference injection is complete. If the implementation class has a method with an @Init annotation that does not match these criteria, the SCA runtime MUST NOT instantiate the implementation class.

The following snippet shows an example of an init method definition.

@Init
public void myInitMethod() {

…

}
8.13 @OneWay

The following Java code defines the @OneWay annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(METHOD)
@Retention(RUNTIME)
public @interface OneWay {
}
The @OneWay annotation is used on a Java interface or class method to indicate that invocations will be dispatched in a non-blocking fashion as described in the section on Asynchronous Programming.

The @OneWay annotation has no attributes.

The following snippet shows the use of the @OneWay annotation on an interface.

package services.hello;
import org.osoa.sca.annotations.OneWay;
public interface HelloService {
 @OneWay
 void hello(String name);
}
8.14 @Property

The following Java code defines the @Property annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({METHOD, FIELD, PARAMETER})
@Retention(RUNTIME)
public @interface Property {

String name() default "";

boolean required() default false;
}
The @Property annotation is used to denote a Java class field or a setter method that is used to inject an SCA property value. The type of the property injected, which can be a simple Java type or a complex Java type, is defined by the type of the Java class field or the type of the setter method input argument.

The @Property annotation may be used on fields, on setter methods or on a constructor method parameter.

Properties may also be injected via setter methods even when the @Property annotation is not present. However, the @Property annotation must be used in order to inject a property onto a non-public field. In the case where there is no @Property annotation, the name of the property is the same as the name of the field or setter.

Where there is both a setter method and a field for a property, the setter method is used.

The @Property annotation has the following attributes:

· name (optional) – the name of the property, defaults to the name of the field of the Java class

· required (optional) – specifies whether injection is required, defaults to false

The following snippet shows a property field definition sample.

@Property(name="currency", required=true)
protected String currency;
The following snippet shows a property setter sample

@Property(name="currency", required=true)
public void setCurrency(String theCurrency) {

}
If the property is defined as an array or as any type that extends or implements java.util.Collection, then the implied component type has a property with a many attribute set to true.

The following snippet shows the definition of a configuration property using the @Property annotation for a collection.

...

private List<String> helloConfigurationProperty;
@Property(required=true)
public void setHelloConfigurationProperty(List<String> property) {

helloConfigurationProperty = property;

}

...

8.15 @Reference

The following Java code defines the @Reference annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({METHOD, FIELD, PARAMETER})
@Retention(RUNTIME)
public @interface Reference {

String name() default "";

boolean required() default true;
}
The @Reference annotation is used to denote a Java class field, a setter method, or a constructor parameter that is used to inject a service that resolves the reference. The interface of the service injected is defined by the type of the Java class field or the type of the setter method input argument.

References may also be injected via setter methods even when the @Reference annotation is not present. However, the @Reference annotation must be used in order to inject a reference onto a non-public field. In the case where there is no @Reference annotation, the name of the reference is the same as the name of the field or setter.

Where there is both a setter method and a field for a reference, the setter method is used.

The @Reference annotation has the following attributes:

· name (optional) – the name of the reference, defaults to the name of the field of the Java class

· required (optional) – whether injection of service or services is required. Defaults to true.

The following snippet shows a reference field definition sample.

@Reference(name="stockQuote", required=true)
protected StockQuoteService stockQuote;
The following snippet shows a reference setter sample

@Reference(name="stockQuote", required=true)
public void setStockQuote(StockQuoteService theSQService);
The following fragment from a component implementation shows a sample of a service reference using the @Reference annotation. The name of the reference is “helloService” and its type is HelloService. The clientMethod() calls the “hello” operation of the service referenced by the helloService reference.
package services.hello;
private HelloService helloService;

@Reference(name="helloService", required=true)
public setHelloService(HelloService service) {

helloService = service;

}

public void clientMethod() {

String result = helloService.hello("Hello World!");

…

}
The presence of a @Reference annotation is reflected in the componentType information that the runtime generates through reflection on the implementation class. The following snippet shows the component type for the above component implementation fragment.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200712">

<!-- Any services offered by the component would be listed here -->

<reference name="helloService" multiplicity=”1..1”>

<interface.java interface="services.hello.HelloService"/>

</reference>
</componentType>

If the reference is not an array or collection, then the implied component type has a reference with a multiplicity of either 0..1 or 1..1 depending on the value of the @Reference required attribute – 1..1 applies if required=true.

If the reference is defined as an array or as any type that extends or implements java.util.Collection, then the implied component type has a reference with a multiplicity of either 1..n or 0..n, depending on whether the required attribute of the @Reference annotation is set to true or false – 1..n applies if required=true.

The following fragment from a component implementation shows a sample of a service reference definition using the @Reference annotation on a java.util.List. The name of the reference is “helloServices” and its type is HelloService. The clientMethod() calls the “hello” operation of all the services referenced by the helloServices reference. In this case, at least one HelloService should be present, so required is true.

@Reference(name="helloServices", required=true)

protected List<HelloService> helloServices;

public void clientMethod() {
…

for (int index = 0; index < helloServices.size(); index++) {

HelloService helloService =

(HelloService)helloServices.get(index);

String result = helloService.hello("Hello World!");

}

…

}
The following snippet shows the XML representation of the component type reflected from for the former component implementation fragment. There is no need to author this component type in this case since it can be reflected from the Java class.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200712">

<!-- Any services offered by the component would be listed here -->

<reference name="helloServices" multiplicity="1..n">

<interface.java interface="services.hello.HelloService"/>

</reference>

</componentType>
At runtime, the representation of an unwired reference depends on the reference's multiplicity. An unwired reference with a multiplicity of 0..1 must be null. An unwired reference with a multiplicity of 0..N must be an empty array or collection.

8.15.1 Reinjection

References MAY be reinjected after the initial creation of a component if the reference target changes due to a change in wiring that has occurred since the component was initialized. In order for reinjection to occur, the following MUST be true:

1. The component MUST NOT be STATELESS or REQUEST scoped.

2. The reference MUST use either field-based injection or setter injection. References that are injected through constructor injection MUST NOT be changed. Setter injection allows for code in the setter method to perform processing in reaction to a change.

3. If the reference has a conversational interface, then reinjection MUST NOT occur while the conversation is active.

If a reference target changes and the reference is not reinjected, the reference MUST continue to work as if the reference target was not changed.

If an operation is called on a reference where the target of that reference has been undeployed, the SCA runtime SHOULD throw InvalidServiceException. If an operation is called on a reference where the target of the reference has become unavailable for some reason, the SCA runtime SHOULD throw ServiceUnavailableException. If the target of the reference is changed, the reference MAY continue to work, depending on the runtime and the type of change that was made. If it doesn't work, the exception thrown will depend on the runtime and the cause of the failure.

A ServiceReference that has been obtained from a reference by ComponentContext.cast() corresponds to the reference that is passed as a parameter to cast(). If the reference is subsequently reinjected, the ServiceReference obtained from the original reference MUST continue to work as if the reference target was not changed. If the target of a ServiceReference has been undeployed, the SCA runtime SHOULD throw InvalidServiceException when an operation is invoked on the ServiceReference. If the target of a ServiceReference has become unavailable, the SCA runtime SHOULD throw ServiceUnavailableException when an operation is invoked on the ServiceReference. If the target of a ServiceReference is changed, the reference MAY continue to work, depending on the runtime and the type of change that was made. If it doesn't work, the exception thrown will depend on the runtime and the cause of the failure.

A reference or ServiceReference accessed through the component context by calling getService() or getServiceReference() MUST correspond to the current configuration of the domain. This applies whether or not reinjection has taken place. If the target has been undeployed or has become unavailable, the result SHOULD be a reference to the undeployed or unavailable service, and attempts to call business methods SHOULD throw an exception as described above. If the target has changed, the result SHOULD be a reference to the changed service.

The rules for reference reinjection also apply to references with a multiplicity of 0..N or 1..N. This means that in the cases listed above where reference reinjection is not allowed, the array or Collection for the reference MUST NOT change its contents. In cases where the contents of a reference collection MAY change, then for references that use setter injection, the setter method MUST be called for any change to the contents. The reinjected array or Collection MUST NOT be the same array or Collection object previously injected to the component.

	
	Effect on

	Change event
	Reference
	Existing ServiceReference Object
	Subsequent invocations of ComponentContext.getServiceReference() or getService()

	Change to the target of the reference
	MAY be reinjected (if other conditions* apply). If not reinjected, then it MUST continue to work as if the reference target was not changed.
	MUST continue to work as if the reference target was not changed.
	Result corresponds to the current configuration of the domain.

	Target service undeployed
	Business methods SHOULD throw InvalidServiceException.
	Business methods SHOULD throw InvalidServiceException.
	Result SHOULD be a reference to the undeployed or unavailable service. Business methods SHOULD throw InvalidServiceException.

	Target service changed
	MAY continue to work, depending on the runtime and the type of change that was made. If it doesn't work, the exception thrown will depend on the runtime and the cause of the failure.
	MAY continue to work, depending on the runtime and the type of change that was made. If it doesn't work, the exception thrown will depend on the runtime and the cause of the failure.
	Result SHOULD be a reference to the changed service.

	* Other conditions:

1. The component MUST NOT be STATELESS or REQUEST scoped.

2. The reference MUST use either field-based injection or setter injection. References that are injected through constructor injection MUST NOT be changed.

** Result of invoking ComponentContext.cast() corresponds to the reference that is passed as a parameter to cast().

8.16 @Remotable

The following Java code defines the @Remotable annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)
@Retention(RUNTIME)
public @interface Remotable {
}
The @Remotable annotation is used to specify a Java service interface as remotable. A remotable service can be published externally as a service and must be translatable into a WSDL portType.

The @Remotable annotation has no attributes.

The following snippet shows the Java interface for a remotable service with its @Remotable annotation.

package services.hello;
import org.osoa.sca.annotations.*;
@Remotable
public interface HelloService {

String hello(String message);

}
The style of remotable interfaces is typically coarse grained and intended for loosely coupled interactions. Remotable service interfaces are not allowed to make use of method overloading.

Complex data types exchanged via remotable service interfaces must be compatible with the marshalling technology used by the service binding. For example, if the service is going to be exposed using the standard web service binding, then the parameters must be Service Data Objects (SDOs) 2.0 or 2.1 [2] or JAXB 2.0 [3] types.

Independent of whether the remotable service is called from outside of the composite that contains it or from another component in the same composite, the data exchange semantics are by-value.

Implementations of remotable services may modify input data during or after an invocation and may modify return data after the invocation. If a remotable service is called locally or remotely, the SCA container is responsible for making sure that no modification of input data or post-invocation modifications to return data are seen by the caller.

The following snippet shows a remotable Java service interface.

package services.hello;
import org.osoa.sca.annotations.*;
@Remotable
public interface HelloService {

String hello(String message);
}
package services.hello;
import org.osoa.sca.annotations.*;
@Service(HelloService.class)
public class HelloServiceImpl implements HelloService {

public String hello(String message) {

...

}
}
8.17 @Scope

The following Java code defines the @Scope annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)
@Retention(RUNTIME)
public @interface Scope {

String value() default "STATELESS";
}
The @Scope annotation may only be used on a service's implementation class. It is an error to use this annotation on an interface.

The @Scope annotation has the following attribute:

· value – the name of the scope.
The default value is 'STATELESS'. For 'STATELESS' implementations, a different implementation instance may be used to service each request. Implementation instances may be newly created or be drawn from a pool of instances.
SCA defines the following scope names, but others can be defined by particular Java-based implementation types:
STATELESS
REQUEST
COMPOSITE
CONVERSATION

The following snippet shows a sample for a CONVERSATION scoped service implementation:

package services.hello;
import org.osoa.sca.annotations.*;
@Service(HelloService.class)
@Scope("CONVERSATION")

public class HelloServiceImpl implements HelloService {

public String hello(String message) {

...

}
}
8.18 @Service

The following Java code defines the @Service annotation:

package org.osoa.sca.annotations;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target(TYPE)
@Retention(RUNTIME)
public @interface Service {

Class<?>[] interfaces() default {};

Class<?> value() default Void.class;
}
The @Service annotation is used on a component implementation class to specify the SCA services offered by the implementation. The class need not be declared as implementing all of the interfaces implied by the services, but all methods of the service interfaces must be present. A class used as the implementation of a service is not required to have an @Service annotation. If a class has no @Service annotation, then the rules determining which services are offered and what interfaces those services have are determined by the specific implementation type.

The @Service annotation has the following attributes:

· interfaces – The value is an array of interface or class objects that should be exposed as services by this component.

· value – A shortcut for the case when the class provides only a single service interface.

Only one of these attributes should be specified.

A @Service annotation with no attributes is meaningless, it is the same as not having the annotation there at all.

The service names of the defined services default to the names of the interfaces or class, without the package name.

If a Java implementation needs to realize two services with the same interface, then this is achieved through subclassing of the interface. The subinterface must not add any methods. Both interfaces are listed in the @Service annotation of the Java implementation class.

The following snippet shows an implementation of the HelloService marked with the @Service annotation.

package services.hello;
import org.osoa.sca.annotations.Service;
@Service(HelloService.class)
public class HelloServiceImpl implements HelloService {
 public void hello(String name) {
 System.out.println("Hello " + name);
 }
}
9 WSDL to Java and Java to WSDL

The SCA Client and Implementation Model for Java applies the WSDL to Java and Java to WSDL mapping rules as defined by the JAX-WS specification [7] for generating remotable Java interfaces from WSDL portTypes and vice versa.

For the purposes of the Java-to-WSDL mapping algorithm, the interface is treated as if it had a @WebService annotation on the class, even if it doesn't, and the org.osoa.annotations.OneWay annotation should be treated as a synonym for javax.jws.OneWay. For the WSDL-to-Java mapping, the generated @WebService annotation implies that the interface is @Remotable.

For the mapping from Java types to XML schema types SCA supports both the SDO 2.1 [2] mapping and the JAXB 2.0 [3] mapping. Having a choice of binding technologies is allowed, as noted in the first paragraph of section 5 of the JSR 181 (version 2) specification, which is referenced by the JAX-WS specification.

The JAX-WS mappings are applied with the following restrictions:

· No support for holders

Note: This specification needs more examples and discussion of how JAX-WS's client asynchronous model is used.

9.1 JAX-WS Client Asynchronous API for a Synchronous Service

The JAX-WS specification defines a mapping of a synchronous service invocation, which provides a client

application with a means of invoking that service asynchronously, so that the client can invoke a service operation and proceed to do other work without waiting for the service operation to complete its processing. The client application can retrieve the results of the service either through a polling mechanism or via a callback method which is invoked when the operation completes.

For SCA reference interfaces defined using interface.java, the Java interface MAY contain the additional client-side asynchronous polling and callback methods defined by JAX-WS. For SCA service interfaces defined using interface.java, the Java interface MUST NOT contain these methods. If these methods are present, SCA Runtimes MUST NOT include them in the SCA reference interface as defined by the Assembly specification. These methods are recognized as follows.

For each method M in the interface, if another method P in the interface has

a. a method name that is M's method name with the characters "Async" appended, and

b. the same parameter signature as M, and

c. a return type of Response<R> where R is the return type of M

then P is a JAX-WS polling method that isn't part of the SCA interface contract.

For each method M in the interface, if another method C in the interface has

a. a method name that is M's method name with the characters "Async" appended, and

b. a parameter signature that is M's parameter signature with an additional final parameter of type AsyncHandler<R> where R is the return type of M, and

c. a return type of Future<?>

then C is a JAX-WS callback method that isn't part of the SCA interface contract.

As an example, an interface may be defined in WSDL as follows:

<!-- WSDL extract -->

<message name="getPrice">

 <part name="ticker" type="xsd:string"/>

</message>

<message name="getPriceResponse">

 <part name="price" type="xsd:float"/>

</message>

<portType name="StockQuote">

 <operation name="getPrice">

 <input message="tns:getPrice"/>

 <output message="tns:getPriceResponse"/>

 </operation>

</portType>

The JAX-WS asynchronous mapping will produce the following Java interface:

// asynchronous mapping

@WebService

public interface StockQuote {

 float getPrice(String ticker);

 Response<Float> getPriceAsync(String ticker);

 Future<?> getPriceAsync(String ticker, AsyncHandler<Float>);

}

For SCA interface definition purposes, this is treated as equivalent to the following:

// synchronous mapping

@WebService

public interface StockQuote {

 float getPrice(String ticker);

}

SCA runtimes MUST support the use of the JAX-WS client asynchronous model. In the above example, if the client implementation uses the asynchronous form of the interface, the two additional getPriceAsync() methods can be used for polling and callbacks as defined by the JAX-WS specification.

10 Policy Annotations for Java

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence how implementations, services and references behave at runtime. The policy facilities are described in the SCA Policy Framework specification [5]. In particular, the facilities include Intents and Policy Sets, where intents express abstract, high-level policy requirements and policy sets express low-level detailed concrete policies.

Policy metadata can be added to SCA assemblies through the means of declarative statements placed into Composite documents and into Component Type documents. These annotations are completely independent of implementation code, allowing policy to be applied during the assembly and deployment phases of application development.

However, it can be useful and more natural to attach policy metadata directly to the code of implementations. This is particularly important where the policies concerned are relied on by the code itself. An example of this from the Security domain is where the implementation code expects to run under a specific security Role and where any service operations invoked on the implementation must be authorized to ensure that the client has the correct rights to use the operations concerned. By annotating the code with appropriate policy metadata, the developer can rest assured that this metadata is not lost or forgotten during the assembly and deployment phases.

The SCA Java Common Annotations specification provides a series of annotations which provide the capability for the developer to attach policy information to Java implementation code. The annotations concerned first provide general facilities for attaching SCA Intents and Policy Sets to Java code. Secondly, there are further specific annotations that deal with particular policy intents for certain policy domains such as Security.

The SCA Java Common Annotations specification supports using the Common Annotation for Java Platform specification (JSR-250) [6]. An implication of adopting the common annotation for Java platform specification is that the SCA Java specification support consistent annotation and Java class inheritance relationships.

10.1 General Intent Annotations

SCA provides the annotation @Requires for the attachment of any intent to a Java class, to a Java interface or to elements within classes and interfaces such as methods and fields.

The @Requires annotation can attach one or multiple intents in a single statement.

Each intent is expressed as a string. Intents are XML QNames, which consist of a Namespace URI followed by the name of the Intent. The precise form used follows the string representation used by the javax.xml.namespace.QName class, which is as follows:

"{" + Namespace URI + "}" + intentname
Intents may be qualified, in which case the string consists of the base intent name, followed by a ".", followed by the name of the qualifier. There may also be multiple levels of qualification.

This representation is quite verbose, so we expect that reusable String constants will be defined for the namespace part of this string, as well as for each intent that is used by Java code. SCA defines constants for intents such as the following:

 public static final String SCA_PREFIX=”{http://docs.oasis-open.org/ns/opencsa/sca/200712}”;

 public static final String CONFIDENTIALITY = SCA_PREFIX + “confidentiality”;

 public static final String CONFIDENTIALITY_MESSAGE = CONFIDENTIALITY + “.message”;

Notice that, by convention, qualified intents include the qualifier as part of the name of the constant, separated by an underscore. These intent constants are defined in the file that defines an annotation for the intent (annotations for intents, and the formal definition of these constants, are covered in a following section).

Multiple intents (qualified or not) are expressed as separate strings within an array declaration.

An example of the @Requires annotation with 2 qualified intents (from the Security domain) follows:

@Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})

This attaches the intents "confidentiality.message" and "integrity.message".

The following is an example of a reference requiring support for confidentiality:

package org.osoa.sca.annotation;

import static org.osoa.sca.annotation.Confidentiality.*;

public class Foo {

 @Requires(CONFIDENTIALITY)

 @Reference

 public void setBar(Bar bar) {
 …

}

}
Users may also choose to only use constants for the namespace part of the QName, so that they may add new intents without having to define new constants. In that case, this definition would instead look like this:

package org.osoa.sca.annotation;

import static org.osoa.sca.Constants.*;

public class Foo {

 @Requires(SCA_PREFIX+”confidentiality”)

 @Reference

 public void setBar(Bar bar) {

 …

}

}
The formal syntax for the @Requires annotation follows:

@Requires(“qualifiedIntent” | {“qualifiedIntent” [, “qualifiedIntent”]}

where

qualifiedIntent ::= QName | QName.qualifier | QName.qualifier1.qualifier2

The following shows the formal definition of the @Requires annotation:

package org.osoa.sca.annotation;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import java.lang.annotation.Inherited;

@Inherited
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Requires {

String[] value() default "";
}
The SCA_NS constant is defined in the Constants interface:

package org.osoa.sca;
public interface Constants {

String SCA_NS="http://docs.oasis-open.org/ns/opencsa/sca/200712";
 String SCA_PREFIX = "{"+SCA_NS+"}";
}
10.2 Specific Intent Annotations

In addition to the general intent annotation supplied by the @Requires annotation described above, it is also possible to have Java annotations that correspond to specific policy intents. SCA provides a number of these specific intent annotations and it is also possible to create new specific intent annotations for any intent.

The general form of these specific intent annotations is an annotation with a name derived from the name of the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation in the form of a string or an array of strings.

For example, the SCA confidentiality intent described in the section on General Intent Annotations using the @Requires(CONFIDENTIALITY) intent can also be specified with the specific @Confidentiality intent annotation. The specific intent annotation for the "integrity" security intent is:

@Integrity

An example of a qualified specific intent for the "authentication" intent is:

@Authentication({“message”, “transport”})

This annotation attaches the pair of qualified intents: "authentication.message" and "authentication.transport" (the sca: namespace is assumed in this both of these cases – "http://docs.oasis-open.org/ns/opencsa/sca/200712").

The general form of specific intent annotations is:

@<Intent>[(qualifiers)]

where Intent is an NCName that denotes a particular type of intent.

Intent ::= NCName

qualifiers ::= ”qualifier” | {“qualifier” [, “qualifier”] }

qualifier ::= NCName | NCName/qualifier

10.2.1 How to Create Specific Intent Annotations

SCA identifies annotations that correspond to intents by providing an @Intent annotation which must be used in the definition of an intent annotation.

The @Intent annotation takes a single parameter, which (like the @Requires annotation) is the String form of the QName of the intent. As part of the intent definition, it is good practice (although not required) to also create String constants for the Namespace, the Intent and for Qualified versions of the Intent (if defined). These String constants are then available for use with the @Requires annotation and it should also be possible to use one or more of them as parameters to the @Intent annotation.

Alternatively, the QName of the intent may be specified using separate parameters for the targetNamespace and the localPart for example:

 @Intent(targetNamespace=SCA_NS, localPart=”confidentiality”).

The definition of the @Intent annotation is the following:

package org.osoa.sca.annotation;
import static java.lang.annotation.ElementType.ANNOTATION_TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import java.lang.annotation.Inherited;

@Retention(RUNTIME)

@Target(ANNOTATION_TYPE)

public @interface Intent {

 String value() default "";

 String targetNamespace() default "";

 String localPart() default "";

}

When an intent can be qualified, it is good practice for the first attribute of the annotation to be a string (or an array of strings) which holds one or more qualifiers.

In this case, the attribute’s definition should be marked with the @Qualifier annotation. The @Qualifier tells SCA that the value of the attribute should be treated as a qualifier for the intent represented by the whole annotation. If more than one qualifier value is specified in an annotation, it means that multiple qualified forms are required. For example:

@Confidentiality({“message”,”transport”})

implies that both of the qualified intents ”confidentiality.message" and "confidentiality.transport” are set for the element to which the confidentiality intent is attached.

The following is the definition of the @Qualifier annotation.

package org.osoa.sca.annotation;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import java.lang.annotation.Inherited;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface Qualifier {

}

Examples of the use of the @Intent and @Qualifier annotations in the definition of specific intent annotations are shown in the section dealing with Security Interaction Policy.

10.3 Application of Intent Annotations

The SCA Intent annotations can be applied to the following Java elements:

· Java class

· Java interface

· Method

· Field

Where multiple intent annotations (general or specific) are applied to the same Java element, they are additive in effect. An example of multiple policy annotations being used together follows:

@Authentication
@Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})

In this case, the effective intents are "authentication", “confidentiality.message” and “integrity.message”.

If an annotation is specified at both the class/interface level and the method or field level, then the method or field level annotation completely overrides the class level annotation of the same type.

The intent annotation can be applied either to classes or to class methods when adding annotated policy on SCA services. Applying an intent to the setter method in a reference injection approach allows intents to be defined at references.

10.3.1 Inheritance And Annotation

The inheritance rules for annotations are consistent with the common annotation specification, JSR 250.

The following example shows the inheritance relations of intents on classes, operations, and super classes.

package services.hello;

import org.osoa.sca.annotations.Remotable;

import org.osoa.sca.annotations.Integrity;

import org.osoa.sca.annotations.Authentication;

@Integrity(“transport”)

@Authentication

public class HelloService {

@Integrity

@Authentication(“message”)

public String hello(String message) {...}

@Integrity

@Authentication(“transport”)

public String helloThere() {...}

}

package services.hello;

import org.osoa.sca.annotations.Remotable;

import org.osoa.sca.annotations.Confidentiality;

import org.osoa.sca.annotations.Authentication;

@Confidentiality(“message”)

public class HelloChildService extends HelloService {

@Confidentiality(“transport”)

public String hello(String message) {...}

@Authentication

String helloWorld() {...}

}

Example 2a. Usage example of annotated policy and inheritance.

The effective intent annotation on the helloWorld method is Integrity(“transport”), @Authentication, and @Confidentiality(“message”).

The effective intent annotation on the hello method of the HelloChildService is @Integrity(“transport”), @Authentication, and @Confidentiality(“transport”),

The effective intent annotation on the helloThere method of the HelloChildService is @Integrity and @Authentication(“transport”), the same as in HelloService class.

The effective intent annotation on the hello method of the HelloService is @Integrity and @Authentication(“message”)

The listing below contains the equivalent declarative security interaction policy of the HelloService and HelloChildService implementation corresponding to the Java interfaces and classes shown in Example 2a.

<?xml version="1.0" encoding="ASCII"?>
<composite
xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200712"

name="HelloServiceComposite" >

<service name=”HelloService” requires=”integrity/transport

authentication”>

…

</service>

<service name=”HelloChildService” requires=”integrity/transport

authentication confidentiality/message”>

…

</service>

...

<component name="HelloServiceComponent">*

<implementation.java class="services.hello.HelloService"/>

<operation name=”hello” requires=”integrity

authentication/message”/>

<operation name=”helloThere” requires=”integrity

authentication/transport”/>

</component>

<component name="HelloChildServiceComponent">*

<implementation.java class="services.hello.HelloChildService" />

<operation name=”hello” requires=”confidentiality/transport”/>

<operation name=”helloThere” requires=” integrity/transport

authentication”/>

<operation name=helloWorld” requires=”authentication”/>

</component>

...
</composite>
Example 2b. Declaratives intents equivalent to annotated intents in Example 2a.

10.4 Relationship of Declarative And Annotated Intents

Annotated intents on a Java class cannot be overridden by declarative intents either in a composite document which uses the class as an implementation or by statements in a component Type document associated with the class. This rule follows the general rule for intents that they represent fundamental requirements of an implementation.

An unqualified version of an intent expressed through an annotation in the Java class may be qualified by a declarative intent in a using composite document.

10.5 Policy Set Annotations

The SCA Policy Framework uses Policy Sets to capture detailed low-level concrete policies (for example, a concrete policy is the specific encryption algorithm to use when encrypting messages when using a specific communication protocol to link a reference to a service).

Policy Sets can be applied directly to Java implementations using the @PolicySets annotation. The PolicySets annotation either takes the QName of a single policy set as a string or the name of two or more policy sets as an array of strings:

@PolicySets(“<policy set QName>” |

 { “<policy set QName>” [, “<policy set QName>”] })

As for intents, PolicySet names are QNames – in the form of “{Namespace-URI}localPart”.

An example of the @PolicySets annotation:

@Reference(name="helloService", required=true)

@PolicySets({ MY_NS + “WS_Encryption_Policy",

 MY_NS + "WS_Authentication_Policy" })

public setHelloService(HelloService service) {

. . .

}

In this case, the Policy Sets WS_Encryption_Policy and WS_Authentication_Policy are applied, both using the namespace defined for the constant MY_NS.

PolicySets must satisfy intents expressed for the implementation when both are present, according to the rules defined in the Policy Framework specification [5].

The SCA Policy Set annotation can be applied to the following Java elements:

· Java class

· Java interface

· Method

· Field

10.6 Security Policy Annotations

This section introduces annotations for SCA’s security intents, as defined in the SCA Policy Framework specification [5].

10.6.1 Security Interaction Policy

The following interaction policy Intents and qualifiers are defined for Security Policy, which apply to the operation of services and references of an implementation:

· @Integrity

· @Confidentiality

· @Authentication

All three of these intents have the same pair of Qualifiers:

· message

· transport

The following snippets shows the @Integrity, @Confidentiality and @Authentication annotations:

package org.osoa.sca.annotation;
import java.lang.annotation.*;
import static org.osoa.sca.Constants.SCA_NS;
@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE,ElementType.METHOD,
 ElementType.FIELD, ElementType.PARAMETER})

@Intent(Integrity.INTEGRITY)
public @interface Integrity {

 String INTEGRITY = SCA_NS+”integrity”;
 String INTEGRITY_MESSAGE = INTEGRITY+”.message”;
 String INTEGRITY_TRANSPORT = INTEGRITY+”.transport”;
 @Qualifier
 String[] value() default "";
}
package org.osoa.sca.annotation;

import java.lang.annotation.*;

import static org.osoa.sca.Constants.SCA_NS;
@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE,ElementType.METHOD,
 ElementType.FIELD, ElementType.PARAMETER})
@Intent(Confidentiality.CONFIDENTIALITY)
public @interface Confidentiality {
 String CONFIDENTIALITY = SCA_NS+”confidentiality”;
 String CONFIDENTIALITY_MESSAGE = CONFIDENTIALITY+”.message”;
 String CONFIDENTIALITY_TRANSPORT = CONFIDENTIALITY+”.transport”;
 @Qualifier
 String[] value() default "";
}

package org.osoa.sca.annotation;
import java.lang.annotation.*;
import static org.osoa.sca.Constants.SCA_NS;
@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE,ElementType.METHOD,
 ElementType.FIELD, ElementType.PARAMETER})
@Intent(Authentication.AUTHENTICATION)
public @interface Authentication {
 String AUTHENTICATION = SCA_NS+”authentication”;
 String AUTHENTICATION_MESSAGE = AUTHENTICATION+”.message”;
 String AUTHENTICATION_TRANSPORT = AUTHENTICATION+”.transport”;
 @Qualifier
 String[] value() default "";
}
The following example shows an example of applying an intent to the setter method used to inject a reference. Accessing the hello operation of the referenced HelloService requires both "integrity.message” and "authentication.message” intents to be honored.

//Interface for HelloService

public interface service.hello.HelloService {

String hello(String helloMsg);

}

// Interface for ClientService

public interface service.client.ClientService {

public void clientMethod();

}

// Implementation class for ClientService

package services.client;
import services.hello.HelloService;
import org.osoa.sca.annotations.*;
@Service(ClientService.class)
public class ClientServiceImpl implements ClientService {

private HelloService helloService;

@Reference(name="helloService", required=true)

@Integrity(“message”)

@Authentication(“message”)

public void setHelloService(HelloService service) {

helloService = service;

}

public void clientMethod() {

String result = helloService.hello("Hello World!");

…

}
}
Example 1. Usage of annotated intents on a reference.

10.6.2 Security Implementation Policy

SCA defines a number of security policy annotations that apply as policies to implementations themselves. These annotations mostly have to do with authorization and security identity. The following authorization and security identity annotations (as defined in JSR 250) are supported:

· RunAs

Takes as a parameter a string which is the name of a Security role.
eg. @RunAs("Manager")

· Code marked with this annotation will execute with the Security permissions of the identified role.
· RolesAllowed

Takes as a parameter a single string or an array of strings which represent one or more role names. When present, the implementation can only be accessed by principals whose role corresponds to one of the role names listed in the @roles attribute. How role names are mapped to security principals is implementation dependent (SCA does not define this).
eg. @RolesAllowed({"Manager", "Employee"})
· PermitAll

No parameters. When present, grants access to all roles.
· DenyAll

No parameters. When present, denies access to all roles.

· DeclareRoles
Takes as a parameter a string or an array of strings which identify one or more role names that form the set of roles used by the implementation.
eg. @DeclareRoles({"Manager", "Employee", "Customer"})

(all these are declared in the Java package javax.annotation.security)

For a full explanation of these intents, see the Policy Framework specification [5].

10.6.2.1 Annotated Implementation Policy Example

The following is an example showing annotated security implementation policy:

package services.account;
@Remotable
public interface AccountService {

AccountReport getAccountReport(String customerID);
}
The following is a full listing of the AccountServiceImpl class, showing the Service it implements, plus the service references it makes and the settable properties that it has, along with a set of implementation policy annotations:

package services.account;
import java.util.List;
import commonj.sdo.DataFactory;
import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.RolesAllowed;
import org.osoa.sca.annotations.RunAs;
import org.osoa.sca.annotations.PermitAll;
import services.accountdata.AccountDataService;
import services.accountdata.CheckingAccount;
import services.accountdata.SavingsAccount;
import services.accountdata.StockAccount;
import services.stockquote.StockQuoteService;

@RolesAllowed(“customers”)

@RunAs(“accountants”)

public class AccountServiceImpl implements AccountService {

@Property

protected String currency = "USD";

@Reference

protected AccountDataService accountDataService;

@Reference

protected StockQuoteService stockQuoteService;

@RolesAllowed({“customers”, “accountants”})

public AccountReport getAccountReport(String customerID) {

 DataFactory dataFactory = DataFactory.INSTANCE;

 AccountReport accountReport =

(AccountReport)dataFactory.create(AccountReport.class);

 List accountSummaries = accountReport.getAccountSummaries();

 CheckingAccount checkingAccount =

accountDataService.getCheckingAccount(customerID);

 AccountSummary checkingAccountSummary =

(AccountSummary)dataFactory.create(AccountSummary.class);

 checkingAccountSummary.setAccountNumber(checkingAccount.getAccountNumber());

 checkingAccountSummary.setAccountType("checking");

 checkingAccountSummary.setBalance(fromUSDollarToCurrency

(checkingAccount.getBalance()));

 accountSummaries.add(checkingAccountSummary);

 SavingsAccount savingsAccount =

accountDataService.getSavingsAccount(customerID);

 AccountSummary savingsAccountSummary =

(AccountSummary)dataFactory.create(AccountSummary.class);

 savingsAccountSummary.setAccountNumber(savingsAccount.getAccountNumber());

 savingsAccountSummary.setAccountType("savings");

 savingsAccountSummary.setBalance(fromUSDollarToCurrency

(savingsAccount.getBalance()));

 accountSummaries.add(savingsAccountSummary);

 StockAccount stockAccount = accountDataService.getStockAccount(customerID);

 AccountSummary stockAccountSummary =

(AccountSummary)dataFactory.create(AccountSummary.class);

 stockAccountSummary.setAccountNumber(stockAccount.getAccountNumber());

 stockAccountSummary.setAccountType("stock");

 float balance= (stockQuoteService.getQuote(stockAccount.getSymbol()))*

stockAccount.getQuantity();

 stockAccountSummary.setBalance(fromUSDollarToCurrency(balance));

 accountSummaries.add(stockAccountSummary);

 return accountReport;

}

@PermitAll

public float fromUSDollarToCurrency(float value) {

 if (currency.equals("USD")) return value; else

 if (currency.equals("EURO")) return value * 0.8f; else

 return 0.0f;

}
}
Example 3. Usage of annotated security implementation policy for the java language.

In this example, the implementation class as a whole is marked:

· @RolesAllowed(“customers”) - indicating that customers have access to the implementation as a whole

· @RunAs(“accountants”) – indicating that the code in the implementation runs with the permissions of accountants

The getAccountReport(..) method is marked with @RolesAllowed({“customers”, “accountants”}), which indicates that this method can be called by both customers and accountants.

The fromUSDollarToCurrency() method is marked with @PermitAll, which means that this method can be called by any role.

A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
B. Non-Normative Text

C. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	1
	2007-09-26
	Anish Karmarkar
	Applied the OASIS template + related changes to the Submission

	2
	2008-02-28
	Anish Karmarkar
	Applied resolution of issues: 4, 11, and 26

	3
	2008-04-17
	Mike Edwards
	Ed changes

	4
	2008-05-27
	Anish Karmarkar

David Booz

Mark Combellack
	Added InvalidServiceException in Section 7

Various editorial updates

	WD04
	2008-08-15
	Anish Karmarkar
	* Applied resolution of issue 9 (it was applied before, not sure by whom, but it was applied incorrectly)

* Applied resolution of issue 12, 22, 23, 29, 31, 35, 36, 37, 44, 45

* Note that issue 33 was applied, but not noted, in a previous version

* Replaced the osoa.org NS with the oasis-open.org NS

	WD05
	2008-10-03
	Anish Karmarkar
	* Fixed the resolution of issue 37 but re-adding the sentence: "However, the @... annotation must be used in order to inject a property onto a non-public field. -- in the @Property and @Reference section

* resolution of issue 9 was applied incorrectly. Fixed that -- removed the requirement for throwing an exception on ComponentContext.getServiceReferences() when multiplicity of references > 1

* minor ed changes

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 68
sca-javacaa-1.1-spec-WD05

03 October 2008

Copyright © OASIS® 2005, 2008. All Rights Reserved.

Page 1 of 68

