
Software Lifecycle Models

James Falkner, Sun Microsystems, Inc.

October 31, 2005

Table of Contents:

I. Introduction
II. Lifecycles of interest
III. Product Lifecycle
III. Customer IT Lifecycle
IV. Traditional Software Lifecycle

I. Introduction

Describing the various software lifecycles at a high level helps to provide a basis for the
identification of the overall phases that corporations, its partners, and its customers experience
when producing, delivering, deploying and maintaining software systems using SDD standards.

Understanding the phases in each lifecycle helps one to understand the participants in the overall
lifecycle. Participants may be translated into stakeholders in the architecture, user profiles and
personas. High-level scenarios can be identified based on looking further into each phase of the
relevant lifecycles. Refer to the User Profiles section for additional information.

II. Lifecycles of Interest

The following diagram depicts the major software lifecycles and the general intersection of these
lifecycles. Software built using SDD can exist throughout the depicted lifecycles. In some cases,
software remains within a single lifecycle (such as a product built for, and solely used by, a service
department). In other cases, software travels through many lifecycles in parallel, such as a product
that has previously shipped and is now in active development (for a new version) and sustainment
within the originating organization and an ISV.

Lifecycle Description

Open Source Project Lifecycle Open source projects provide some of the
componentry found within products. The
architecture needs to consider how such
projects evolve and how they can impact
development and sustainment of products.

Product Lifecycle Encompasses all internal activities related to
development, assembly, test, initial delivery and
sustainment of software products. Often under-
represented in use cases and scenarios.

ISV Product Lifecycle The architecture needs to address requirements
associated with how ISVs embed and
redistribute components.

Third Party Product Lifecycle In a few cases, a product embeds and
preintegrates third party components. In many
cases, customers integrate third party products
themselves.

Customer IT Lifecycles The lifecycles pertaining to how IT organizations
evaluate, acquire, deploy and maintain software
infrastructure and IT development organizations
develop, deploy and maintain application
services.

Service Lifecycle Emphasizes corporation's role in supporting and
servicing deployments of products through
various interface points (service calls, customer
visits, IT project)

Illustration 1: Software Lifecycles of Interest

Customer IT
Lifecycle

Open Source
Project

Lifecycle

ISV Product
Lifecycle

3rd-Party
Product
Lifecycle

Service
Lifecycle

Product
Lifecycle

ISV
Service
Lifecycle

3rd Party
Product
Lifecycle

Lifecycle Description

ISV Service Lifecycle Inclusion of this lifecycle helps emphasize the
need for ISVs to be able to support and service
product deployments that include components
from a given corporation.

For purposes of discussion for SDD, the Product Lifecycle and Customer IT Lifecycle are the most
interesting in that SDD can meet requirements in these lifecycles, but more importantly many of the
requirements in the union of these two lifecycles are also found in other lifecycles. Hence the
remainder of this document will focus on the Product lifecycle and Customer IT Lifecycle.

III. Product Lifecycle

The major phases of this lifecycle depict the milestones that software systems go through, from the
developer's desktop to the customer's door. It includes:

Product Development – Creation of basic value. What's more important here is that design criteria
and design goal decisions made at this stage can have a very good, or very bad, impact on all other
phases of the lifecycle.

Product Packaging/ Assembly - This phase is where individual software components are
packaged and assembled into aggregate sets of deliverable software. Flaws or ineffeciencies in
this phase can quickly be magnified as they impact the rest of the lifecycle.

Test - Testing ensures quality. Difficult testing, lack of coverage, and lack of scalability of testing
methods contribute to poor quality.

Deliver - Even after quality components are developed, tested, and packaged, delivery problems
can result in large customer dissatisfaction, and contribute to a poor first impression during the later
IT planning phases.

IV. Customer IT Lifecycle

The following diagram represents the major phases of the Customer IT Lifecycle. The term
"Infrastructure" is inclusive of all components necessary to provide services to business
applications. This typically includes middleware such as application or directory services. "Business
Application" refers to applications that a customer deploys on top of infrastructure components.

SDD Use Cases and ultimately requirements stem from various impacts that SDD-flavored
technologies can have throughout these phases of the lifecycle. Specific impacted areas in these
phases include:

Phase Areas of Impact

Preparation • Awareness of Business Requirements
• Organization Planning
• vendor and Technology Evaluation and

Shortlisting
• Project Planning and Budgeting

Architecture and Design • Architecture Design and Review
• Prototyping and Proof of Concept
• Vendor and Technology Selection

Development • Business Logic and Process Flows
• Integration
• Training

Business Application QA • Provisioning and Operation of QA
Infrastructure

Infrastructure Provisioning • Acquisition and Testing
• Creation of 1st Server Image
• Provisioning of 2-n Servers

Business Application Provisioning

Infrastructure Operations • Monitoring
• Defect Reporting and Tracking
• Installation of Updates

Illustration 2: Customer IT Lifecycle

Preparation

Architecture
and Design

Development

Business App
QA

Infrastructure
Provisioning

Business App
Provisioning

Intrastructure
Operations

Business App
Operations

Transition/
Retirement

Phase Areas of Impact

Business Application Operations • Business Application Bug Fixes
• Release Planning
• Release Implementation

Transition and Retirement

IV. Traditional Software Lifecycle

This method of depicting the software lifecycle is one of many variations on the traditional
“build/ship/patch” lifecycle and is a useful way to theme requirements and/or use cases:

An informal representation of what most people think the software lifecycle looks like is illustrated
below:

All of these phases have attributes which contribute to a successful or unsuccessful product. It is
also important to note that the lifecycle starts at the beginning, when the first line of code is written,
through the end, when the last piece of executable code is retired. Some high-level features that
contribute to the overall experience are outlined below, for the informal lifecycle points illustrated
above:

Product Development - Powerful installation and management mechanisms stem from well-
defined product content. In other words, the success of the product with respect to its deployment
is largely based on the quality and completenessw of the things it delivers and installs.

Packaging – Consistent packaging of content allows consumers to easily know what it is they have
on their systems. Packages are the atomic unit of installation to most administrators, and should
represent coherent, intuitive subdivisions of the overall product. Also, consistency between
platforms eases the learning curve of administrators moving between different platforms.

Integration and RE – The last step before software leaves the “factory” is the bundling of individual
components into an end-user-consumable chunk. Given a consistent and complete description of
the individual components, integrating them essentially provides the “icing on the cake” for a given
product. This is also a key point in the validation of software, as it is the last chance to catch

Upgrade/
Update

Production
Deployment

EvaluateConfigureInstall

Manufacturing
(RE)

IntegrationPackagingProduct
Development

Uninstall

Product Product

Metadata

Support

X

inconsistencies that may lead to problems further down the line.

Install – Once customers purchase or otherwise acquire software, it is in this phase that the
software is actually deployed to hosting environments. This is done through a number of methods
today, including manual or automated downloading off of a corporate web presence, purchasing of
physical media, or setting up of local cache servers to distribute software internally. However, the
goal is always the same, and consistency between the number of avenues of installation can greatly
simplify the user experience, and help management of installed software through a similar number
of avenues.

Configure - The goal of installation is nearly always to leave installed software on a system or set
of systems, ready to be run and already useful. Since running and useful software requires
configuration, installers often contain software to decide or specify configuration options and to carry
out these configuration steps. Combining the 'install', 'decide' and 'configure' steps results in an
installer that proves monolithic and inflexible. It is not possible to reuse portions of the installer
elsewhere, nor is it possible to perform only the file-system-object portion of the install and leave the
configuration to a subsequent step. If, however, these three steps are broken up, many useful
operations may be supported, such as factory installs (with later configuration), or serializing and re-
using configuration.

Evaluate – In the Evaluation phase, previously installed and configured software is put into
operation, in order to evaluate its usefulness. This is typically done for software which is to
ultimately be “rolled out” to a number of hosting environments. The software is first executed in a
safe, controlled environment, where its behavior can be analyzed and contained. Once the
software is evaluated, it is either discarded if it does not meet requirements, or it is prepped for the
next phase of deployment (in many cases it goes straight to full-scale deployment).

Production Deployment - Production deployment typically occurs after a product is evaluated in
the Eval phase. The deployment phase consists of moving the software out to its production
location, initiating the application services, and hooking existing services into the new services. This
phase is typically controlled by higher-level provisioning applications. However, in order for these
higher-level frameworks to be successful, the lower-level software being deployed must meet
certain criteria and expose certain controllable interfaces in order to properly deploy into a given
environment.

Upgrade/Update - One of the more difficult and error-prone phases of the lifecycle are software
updates. This is because of the literally infinite states that an installation can have before it is
upgraded. Any successful upgrade of a product begins at the source of the product and ends with a
clear understanding of what happens during an upgrade, what the expected outcome is, and how to
determine whether the upgrade was successful or not. Several scenarios within this phase must be
represented with supporting use cases and ultimately requirements:

• Backwards compatibility

• Minimized Downtime

• Obsolescence

• Configuration and Data Migration

• Patching/Hotfixes

• New Features

Uninstall - The final phase of the lifecycle is the retiring of the product. This means taking it out of
production and removing traces of it from any individual nodes on the network. Uninstall is
theoretically defined as the inverse of install. There are many facets of uninstall that must be taken
into account, including

• Removal of executable code

• Disposition of configuration and application data

• Dependency resolution

