

draft-cantor-versioning-02 1 3/5/2003

 1

OASIS Security Assertion Markup 2

Language (SAML) Versioning Issues and 3

Considerations 4

Draft 02, 6 March 2003 5

Document identifier: 6

draft-cantor-versioning-02 7

Location: 8

http://www.oasis-open.org/committees/security/docs/ 9

Author: 10

Scott Cantor, The Ohio State University and Internet2 (cantor.2@osu.edu) 11

Contributors: 12

The author would like to acknowledge contributions to this document from several members of 13
the Liberty Alliance Technical Expert Group, including but not limited to: 14

Jeff Hodges, John Kemp, Jonathan Sergent, Xavier Serret, Tom Wason 15

Their contributions do not imply agreement with any or all of the positions taken by this document. 16

Abstract: 17

This document defines useful terminology and explores some of the issues facing the committee 18
and SAML implementers as the standard prepares to move beyond 1.0. Various possible 19
approaches to versioning the standard and its components are discussed along with their 20
implications as perceived by the author. 21

Status: 22

This is currently an individual submission that reflects contributions from the listed parties and 23
other committee members, but does not reflect the consensus of the SSTC. 24

If you are on the security-services@lists.oasis-open.org list for committee members, send 25
comments there. If you are not on that list, subscribe to the security-services-26
comment@lists.oasis-open.org list and send comments there. To subscribe, send an email 27
message to security-services-comment-request@lists.oasis-open.org with the word "subscribe" 28
as the body of the message. 29

For information on whether any patents have been disclosed that may be essential to 30
implementing this specification, and any offers of patent licensing terms, please refer to the 31
Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-32
open.org/committees/security/). 33

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS] 34

draft-cantor-versioning-02 2 3/5/2003

Table of Contents 35

1 Introduction .. 3 36

2 Key Questions and Assumptions ... 4 37

3 Terminology and Implications .. 6 38

3.1 Implementation Types ... 6 39

3.1.1 Validating .. 6 40

3.1.2 Non-Validating .. 6 41

3.2 Compatibility.. 6 42

3.2.1 Backward Compatibility... 7 43

3.2.2 Forward Compatibility ... 7 44

3.3 Versions .. 7 45

3.3.1 Major and Minor Version... 7 46

3.3.2 Namespace Version.. 8 47

3.3.3 Schema Definition... 8 48

3.3.4 Schema Version.. 8 49

3.3.5 Message Version .. 9 50

3.3.6 Specification Version .. 9 51

4 Schema Changes and Versioning ... 10 52

4.1 Adding a Global Element or Type ... 10 53

4.2 Adding a Required Element or Attribute to an Existing Type.. 10 54

4.3 Adding an Optional Element or Attribute to an Existing Type... 10 55

4.4 Removing an Element or Attribute .. 11 56

4.5 Extending an Existing Complex Type ... 11 57

4.6 Changing a Simple Type... 11 58

5 Security Considerations ... 12 59

6 A Modest Proposal... 13 60

7 References... 14 61

 62

draft-cantor-versioning-02 3 3/5/2003

1 Introduction 63

This document discusses some of the considerations facing the SSTC during the transition from the 1.0 64
document set to 1.1 and beyond. Versioning of XML standards is not a particularly well understood 65
process, (at least not by the author), and there are a significant number of different components of the 66
standard which can affect and be affected by the versioning activity. The author is also an implementer of 67
the standard, and is conscious of the effects that different approaches may have on the maintainability 68
and compatibility of different implementation strategies. Finally, creating a set of definitions for somewhat 69
informal descriptions of goals or characteristics of the versioning process will help more precisely 70
communicate the intent of the committee. 71

Where there are established practices and definitions in place, they should be brought to the attention of 72
the committee so that a fuller understanding and a better outcome might be achieved. 73

While versioning can be discussed in different contexts, the purpose of this document is to explore 74
versioning on a technical basis for implementers and deployers, and not at the level at which political and 75
marketing considerations may impact nomenclature. 76

Critical points being made will be highlighted in bold face for casual readers. 77

draft-cantor-versioning-02 4 3/5/2003

2 Key Questions and Assumptions 78

Before delving into terminology and detail, it's useful to lay the groundwork for evaluating some of the 79
conclusions reached later by laying out a handful of key considerations that influence the problem space. 80
What are the questions that must be answered? What are the critical decision points that lead to different 81
conclusions? 82

? How do we define terms like "major version", "minor version", and "compatibility"? 83

? How minor is "minor"? Minor to whom? Implementers? Deployers? Specification authors? 84

? When XML is used to define protocols, are the schemas defined frozen at the time that 85
implementations ship? Or should implementations understand and account for schema change? 86

? What are the security implications of schemas and schema evolution? 87

? Is a namespace change "minor" if the schema remains largely the same? 88

? Are parallel implementations a reasonable burden of minor version compatibility? 89

? Is runtime interoperability between new implementations and deployed implementations 90
important? How important is it? 91

Some of these questions are answered directly or indirectly in the sections that follow. Many of these 92
questions are subjective, and thus the author's opinion as to their answers leads to the conclusions 93
reached in various places. 94

For clarity and context, I find myself proceeding from these general principles: 95

? Runtime interoperability is king. Robust evolution implies the freedom to evolve protocols without 96
building numerous redundant implementations or requiring continuous redeployment. 97

? If XML is to be used to define protocols, then it should be used in a fashion consistent with its 98
design and philosophy (if anybody can agree what that is, anyway). 99

? Namespace change is a big hammer that shouldn't be used to drive small nails. 100

? Schema change is a complex but ultimately powerful evolutionary tool, but it requires careful 101
design and consideration, well-defined specifications (leading to predictable implementations), 102
and security analysis, especially in a security specification. 103

I specifically disagree at least in part with these assumptions that I have encountered during 104
discussion with others: 105

? Schemas cannot be modified at all once published without changing the namespace. 106

? A new schema copied from an existing schema into a new namespace (usually with some 107
relationship between the namespace names) should be considered a minor "compatible" revision 108
of the original schema. 109

? A specification incorporating two sets of schema and processing rules for the same basic 110
information is backward compatible in a useful way with a specification containing one of the two 111
sets. 112

Essentially, I take issue with those assumptions as not providing an especially useful framework to 113
discuss anything other than what I perceive to be major revisions of a specification. They do serve such a 114
purpose; however I think the scope of impact of the changes that would be permissible under those 115
assumptions are extremely large, and violate the spirit of a minor revision. They also do not seem to me 116
especially useful in scoping the specification changes that could be introduced in a minor revision, which 117
is another purpose for framing a revision as minor instead of major. 118

draft-cantor-versioning-02 5 3/5/2003

Once a new namespace is introduced, all bets are off. Any change could be made without impacting the 119
ability of an implementation to process older messages, because it essentially splits the implementation in 120
two with respect to conformance. The best that might be said of such an approach is that there probably 121
will be significant commonality of code if the new schema strongly resembles the old, but it's difficult to 122
gauge that without also considering semantics. 123

draft-cantor-versioning-02 6 3/5/2003

3 Terminology and Implications 124

Where possible, agreeing to a set of common definitions will help clarify discussions within the committee 125
and more clearly communicate the intent of the committee to the interested community. Guiding principles 126
can be established for the versioning activity with reference to such definitions so that questions need not 127
be answered as to why one approach or another was taken in deference to another. The committee might 128
even see fit to publish a statement of intent to follow certain guidelines when advancing the specification 129
so that future versions evolve in a consistent and predictable way. This will serve the interests of users 130
and implementers alike, and may speed the evolutionary process. 131

In certain cases, it is useful to explore the implications of these definitions on each other and the 132
versioning process. 133

3.1 Implementation Types 134

For the purpose of discussing the effect that various kinds of changes have on the implementations of an 135
XML specification, it is useful to classify such implementations into categories that distinguish the degree 136
and form of impact of those changes. 137

3.1.1 Validating 138

A validating implementation is one that applies XML schema validation to incoming messages before 139
passing them to a higher level processing engine. This validation process does not necessarily rely on the 140
W3C XML Schema validation process specifically; other schema languages exist and provide similar 141
features. It merely implies that before further examination of messages, an automated processing step 142
insures that the message fully conforms to the syntax required by the specification. Any violation of that 143
syntax renders a message unrecognizable and in error. 144

A validating implementation is by definition unable to process messages defined by a newer version of a 145
specification if the newer version adds any content, optional or mandatory, to any messages defined by 146
the older version. The exception is in the event that the older version includes schema wildcard content 147
placeholders that permit unknown content to appear, though care must be taken with respect to the 148
namespace(s) in which that unknown content is placed. 149

3.1.2 Non-Validating 150

A non-validating implementation is one that does not apply XML schema validation to incoming messages 151
before passing them to a higher level processing engine. It may or may not apply tests of well-formed-152
ness to incoming messages. 153

A non-validating implementation is obligated to accept any incoming message which adheres to the 154
syntax defined by the specification. It is impossible to know in the absence of additional information 155
whether messages which deviate from that syntax will be accepted by a non-validating 156
implementation. However, unless such an implementation implements a large degree of manual 157
processing that largely duplicates the work performed by a schema validator, it is unlikely that certain 158
kinds of invalid messages would be detected and rejected. Whether this is a violation of the conformance 159
rules defined by a specification depends on those rules. Historically, the ability to process messages 160
that take syntactic liberties with a specification has been deemed a virtue, and a sign of 161
robustness. 162

3.2 Compatibility 163

The primary purpose behind versioning at a technical level is to communicate to specification 164
implementers and to the implementations themselves an expectation of compatibility (or of 165

draft-cantor-versioning-02 7 3/5/2003

incompatibility). The possibility of compatibility in the face of (and despite) change must exist in order for 166
fine-grained versioning to make sense. Compatibility should be addressed at both syntactic and semantic 167
levels, independently. Different versioning mechanisms may address syntax, semantics, or both. 168

3.2.1 Backward Compatibility 169

If we say that two versions of the specification are backward compatible, then the messages and/or 170
semantics defined by the older version are consumable by schemas and implementations of the newer 171
version. 172

However, a very important assumption that underlies much of the rest of this document is that it is not a 173
reasonable definition of backward compatibility to presume that a new specification can simply 174
incorporate any and all schema and processing rules of an older specification while subsequently 175
redefining significant portions of that schema in a new namespace so that changes can be made. While 176
such an implementation might be called backward compatible, functionally, the specification does not 177
assist in the effort to remain compatible and is more properly termed a major revision that requires both 178
the old and new versions to be implemented side by side. 179

3.2.2 Forward Compatibility 180

If we say that two versions of the specification are forward compatible, then the messages and/or 181
semantics defined by the newer version are consumable by schemas and implementations of the older 182
version. 183

3.3 Versions 184

A specification such as SAML can be described on several different levels, each having a potentially 185
independent version, though the committee may choose to intrinsically link one or more of these versions 186
so that they are revised in concert. It is important to identify each of the different versioning 187
mechanisms, and clarify which are intended to be independent and which are intended to reflect 188
one another. 189

3.3.1 Major and Minor Version 190

In most cases, the various versioning mechanisms will represent either formally (by explicitly 191
distinguishing) or informally (using a conventional notation such as major.minor) the notion of both a 192
major and minor version. This is common to many specifications and should connote the usual general 193
intent. However, the exact scope of changes that would constitute a minor revision seems vaguely 194
defined in the XML arena. Precise definitions of "compatibility" or "understanding a message" are hard 195
to come by. 196

Major versions should represent fundamental changes to the information being versioned that do not 197
imply a possibility of compatibility in syntax, semantics, or implementation. Higher major versions may be 198
a superset or a subset of functionality present in lower major versions. 199

Minor versions should represent less significant changes to the information being versioned that imply 200
specific expectations of compatibility. Higher minor versions must be a superset, and must be backward 201
compatible with lower minor versions. Furthermore, higher minor versions should be forward compatible 202
with lower minor versions to the greatest extent possible. 203

Most especially, an implementation must be able to treat a message with a higher minor version as 204
though it were of a lower minor version, or be able to recognize explicitly when it cannot. Without this 205
capability, there is much less advantage to maintaining minor version compatibility, and no effective 206
difference between a major and minor revision beyond higher level concepts of change scope and a 207
general sense that a minor revision should require fewer implementation changes than a major revision. 208
Useful perhaps, but far less useful than the real runtime interoperability that some degree of forward 209
compatibility offers. 210

draft-cantor-versioning-02 8 3/5/2003

For this to be possible, syntactic compatibility must be maintained throughout all minor version changes, 211
and new semantics must be optional to implement and must either be optional to process or be 212
communicated as required to process. Adding syntactic extensions with required semantics is only 213
possible if the original version permits a syntax that can communicate required vs. optional semantics in a 214
forward compatible way, such as the "mustUnderstand" attribute in [SOAP] or the Condition element 215
processing rules in [SAMLCore]. 216

The effect of such a mechanism is to permit syntactically compatible but semantically incompatible 217
extensions to be introduced, while maintaining well-defined behavior in older versions. Newer messages 218
without mandatory-to-process extensions can then be processed by older implementations as though 219
they were of the older version, satisfying the rule above. 220

3.3.2 Namespace Version 221

The most coarse (and somewhat implicit) versioning mechanism available to an XML specification is the 222
namespace(s) in which the elements and attributes that make up the specification's XML syntax are 223
placed. Namespaces are opaque strings to an XML processor. While it is common (though not universal) 224
practice to include version information or date information in a namespace URI, such information is not 225
used directly by an XML processor, and is only visible to an XML application in a manual fashion. 226

If a namespace in a specification is replaced by another, this should constitute a major version change to 227
that part of the specification. 228

Note that namespaces by themselves were not originally formulated as a versioning mechanism. From an 229
XML perspective, the element "foo" in two different (even similarly named) namespaces were intended to 230
bear no relationship to one another. It seems that as schemas and data typing have become more 231
pervasive, this picture has become muddier. 232

3.3.3 Schema Definition 233

If an XML schema, in whatever schema language, is defined as a normative part of a specification, then 234
the syntax rules defined by that schema form the definition of the messages permitted by the 235
specification. In most cases, a schema is bound permanently to a particular XML namespace. The 236
namespace cannot be changed without effectively creating a new schema that is not related to the old 237
one in XML terms. Strictly speaking, a subsequent revision of the specification could choose to 238
modify or add to that schema (without changing the namespace, since that would constitute a 239
replacement of the original schema). If such modification is not permitted, schema evolution and 240
forward compatibility become competing goals. 241

It should be clear that if content is removed from the schema or if cardinalities decrease, it is likely that 242
backward compatibility will not be possible. Further, any addition or increase in cardinality to a schema 243
will break forward compatibility, unless the addition is a new message that does not relate to an older 244
message or is used in a new way (as part of a new profile, for example). 245

3.3.4 Schema Version 246

A seemingly little-used feature of [XSD] is the "version" attribute that can be placed on the schema 247
element in a schema definition. There are no normative processing rules defined for an XML 248
processor or a schema validator with respect to this attribute. As an example, consider the version 249
value placed in the normative schema defined for [XSD] itself, "Id: XMLSchema.xsd,v 1.48 2001/04/24 250
18:56:39 ht Exp". Suffice to say, this does not appear to be intended for consumption by any typical kind 251
of versioning algorithm, apart from an identity test equivalent to a namespace comparison. 252

Further, consider that the value of the version attribute would not be used by a validating implementation 253
during schema validation unless additional steps were taken to examine the schema; a non-validating 254
implementation would quite likely never see such a value, since it is by definition not using the schema 255
directly. 256

draft-cantor-versioning-02 9 3/5/2003

3.3.5 Message Version 257

A message version is defined as in-band content that identifies the major and/or minor version of 258
a message. The version information is carried as content within the message, rather than as part of the 259
message definition. Message versioning seems primarily useful as a way to communicate semantic 260
distinctions between messages with a common syntax. 261

To see why, consider a strategy in which the message version is revised in concert with the message's 262
primary namespace (i.e. the namespace of the root element of the versioned message). A typical 263
implementation, whether validating or not, using either a SAX or DOM processing model, is likely to see 264
the namespace before it has a chance to examine the message version, and thus can just as easily base 265
any processing decisions on the namespace. 266

Since minor revisions must have some degree of common syntax to remain backward compatible, 267
message versioning would seem to be a significant vehicle for indicating minor revisions. The 268
other versioning mechanisms tend to imply syntactic change, and would generally be considered major 269
revisions. 270

3.3.6 Specification Version 271

A specification version is applied by the specification's approving body to the set of normative 272
syntactic and semantic rules that govern the messages defined by the specification. It may be 273
reflected by the other kinds of versioning attached to the content of the specification, discussed in the 274
previous sections, or it may be independent of them. In fact, many different versions of various types may 275
coexist within a single specification. 276

Political and marketing considerations seem best suited for resolution with this kind of 277
versioning. Ultimately, it has little or no technical impact and should not imply anything about the other 278
version changes it might encompass. For example, a major revision technically might be marketed as a 279
minor revision because little new functionality is introduced, merely corrections to technical problems, 280
security holes, etc. 281

draft-cantor-versioning-02 10 3/5/2003

4 Schema Changes and Versioning 282

XML is of course designed to be extensible (duh!), a goal furthered (but also sometimes complicated) by 283
the extension facilities described by [XSD]. Understanding the implications of different kinds of extension 284
techniques on the versioning process is one of the most important pieces of the versioning puzzle. This 285
might suggest guidelines that can be followed in deciding when and how to add extensions in subsequent 286
specification versions. 287

The following set of examples describe a variety of potential changes to a specification and explore how 288
those changes would seem to impact the specification, versioning, and implementations. 289

4.1 Adding a Global Element or Type 290

When adding a new globally visible (or root) element to a specification, the definition could be added to 291
an existing namespace or a new namespace. Either approach would be backward compatible, but neither 292
would be forward compatible. Thus, either approach would constitute a minor revision of the 293
specification. With respect to implementations, neither a validating nor a non-validating implementation 294
of the original version could process the new definition usefully, regardless of how the definition was 295
added. 296

4.2 Adding a Required Element or Attribute to an Existing Type 297

If the existing type contains a schema wildcard that permits the addition of the new element or attribute in 298
the location at which it is added, then this would be a forward compatible change. It would not, however, 299
be backward compatible, since older messages would not carry the required information and would not 300
be considered valid. Therefore this cannot be considered a minor revision. This holds regardless of 301
what namespace is used to define the new element or attribute. 302

4.3 Adding an Optional Element or Attribute to an Existing Type 303

If the existing type contains a schema wildcard that permits the addition of the new element or attribute in 304
the location at which it is added, then this would be a forward compatible change. It would always be 305
backward compatible even without a wildcard, since older messages would not carry the new information 306
and would still be considered valid. At the syntactic level, then, this is a minor revision of the 307
specification. 308

However, an additional consideration must be whether the semantics of the optional information are 309
mandatory or optional to implement. If the extension has optional semantics, then forward compatibility 310
holds. If the extension has mandatory semantics, then forward compatibility does not hold. Additionally, 311
a mandatory extension would violate the rule that a message of a higher minor version be 312
treatable as being of a lower minor version or identified as an error. This should be held distinct from 313
a case in which the message can communicate the semantics of an extension within the message, rather 314
than relying on version information to do so, such as in [SOAP]. In such a case, while the message may 315
not be usable by the older implementation, it can be recognized as being invalid without any knowledge of 316
what the extension is. 317

Thus, adding an optional extension with optional semantics could be considered a minor revision, but 318
adding one with required semantics in which the version is used to communicate those semantics could 319
not be. 320

Consider as well, however, how implementations might react to such an extension. A validating 321
implementation of the older version would be likely to reject any message that contained such an 322
extension, unless the original schema permitted arbitrary extension via a wildcard. The newer message 323
could not be processed as if it were an older one, and would be in error. Thus, use of wildcards seems 324
essential to permit minor revisions to add optional extensions in a useful way. A non-validating 325

draft-cantor-versioning-02 11 3/5/2003

implementation is largely an unknown. It might be able to ignore the extension and still process the 326
message, or it might find an incongruity that would cause it to reject the message, particularly if the 327
extension were an element added in the middle of a content model. Adding optional attributes would 328
probably not break a non-validating implementation. 329

4.4 Removing an Element or Attribute 330

Any time an existing piece of information is removed from the schema, backward compatibility cannot be 331
maintained, since older messages would no longer be valid. Therefore this cannot be considered a 332
minor revision. 333

4.5 Extending an Existing Complex Type 334

[XSD] permits various kinds of extensibility when defining types so that a schema can relate newer types 335
to older types in a well-understood fashion, in part ostensibly as an aid to implementers. Extending a type 336
is a different kind of change from directly modifying the content of an existing type, so it deserves specific 337
examination. 338

In general, extending a complex type is not that different from defining a new stand-alone type. The 339
extended type may be defined in an existing namespace or by defining a new one. In either case, the 340
effect on versioning is based more on how the type is to be used. If the new type is a new top level 341
message, then the discussion in section 3.1 is relevant. If the new element type is to be referenced 342
specifically by the content model of an existing element, then this constitutes an addition, and sections 343
3.2 or 3.3 would apply, depending on the cardinality of the new element. 344

If the new type is intended to appear in place of an existing element of the base type, then the content 345
model containing the base type is left unchanged. Thus, backward compatibility is maintained. Forward 346
compatibility cannot be maintained, since the new type cannot be recognized by the older version; there 347
is no way to identify the relationship between the new type and the base type. 348

This could still be considered a minor revision, however, because even if the new element type has 349
mandatory semantics, it cannot be ignored by an older implementation, since it is not hidden inside a 350
wildcarded content model, as is the case in section 3.3. Specifically, the version information is not used to 351
communicate the element's mandatory semantics; the element itself does this job. As an example, see 352
the "Condition" element base type in [SAMLCore]. Further, if the new element type is intended for 353
use in profiles or interactions that are not in the scope of the older version, the impact on older 354
versions is likely to be minimal. 355

4.6 Changing a Simple Type 356

When changing a simple type, such as an attribute's value type, compatibility seems to depend on a 357
comparison of the value spaces of the old and new types. If the new type is a restriction of that value 358
space (such as restricting a string into a URI), then the change is forward compatible, but is not backward 359
compatible, and therefore is not a minor revision. 360

If the new type is an expansion or extension of that value space (such as adding to an enumeration or 361
expanding a URI into a string), then the change is backward compatible but not forward compatible and 362
could be considered a minor revision. However, such a minor revision would again lead to errors in older 363
implementations rather than useful processing of the message. More seriously, in a non-validating 364
implementation, one might imagine dangerous error conditions such as underflow or overflow leading to 365
significant problems that are best avoided. It seems prudent to avoid expansion of a simple type's 366
value space in a minor revision. 367

draft-cantor-versioning-02 12 3/5/2003

5 Security Considerations 368

Rather than a general security discussion, I would prefer to focus on an important consideration in the 369
context of schema evolution. Schemas form a contract that implementations can follow (whether manually 370
or using automated tools) to document assumptions about message syntax and semantics. The 371
interpretation of any XML vocabulary is subject to those assumptions. Certainly in the context of SAML, 372
for example, policy may well be enforced on the basis of the information in messages, and the audit trail 373
of those messages may be significant. 374

It does not seem reasonable to require that messages contain a detached signature over the schema 375
and/or specification documents on which they rely, nor has any use of XML schemas that I'm aware of 376
been predicated on such a step. Some degree of trust is implied in the body that governs a schema, and 377
it is certainly reasonable practice for an implementation to control and document the schema on which it 378
relies. 379

Yet, it does not seem necessary to therefore conclude that once published, such a schema forms an 380
unalterable contract. Just as contracts can be amended with the consent of the parties, so too should 381
schemas be permitted to evolve in ways that are useful to the schema's consumers. This does not mean 382
that all such changes are appropriate. The contract implied by the schema should be a two-way street. 383
Syntax changes should be accommodated in the design of the schema, and if the semantics or default 384
behaviors of the schema change, messages should be capable of signaling this explicitly through version 385
changes. 386

Short of errata (and possibly not even then), it seems a strong likelihood that any change to a schema 387
has to be reflected in some visible sign of evolution so that interoperability becomes a voluntary act, and 388
not a consequence of successful parsing through happenstance. Let the implementation rely on the 389
schema to the extent that it deems appropriate and let it react to changes as strictly as it wishes, without 390
using code breakage as the switch. 391

draft-cantor-versioning-02 13 3/5/2003

6 A Modest Proposal 392

I would suggest that this document lays out a fairly precise starting point for discussing what one could 393
and could not expect to change in a minor or major revision, provided a few basic guidelines are followed, 394
though I acknowledge the guidelines may themselves be contentious, given the assumptions made 395
previously in many areas. 396

My general thoughts: 397

? Message version information (in SAML, the MajorVersion and MinorVersion attributes) should be 398
revised independently of any other versioning mechanism, and in lockstep with the specification 399
version. 400

? Semantic-only changes should be reflected and documented by changes to the message version. 401

? Namespaces might contain version-oriented data in their names, but any change to a namespace 402
name should be considered a major revision. That is, moving definitions into a new namespace 403
from an old namespace would be reserved for major revisions. 404

? There should be no mandatory relationship between the namespace version and the message or 405
specification version. 406

? Care should be taken when modifying definitions in an existing namespace, but this should not be 407
uniformly outlawed. It is likely to be useful only in isolated cases, however, and requires a more 408
liberal use of wildcards than exists in SAML 1.0. 409

? Avoid needless namespace creation when adding relatively orthogonal or forward compatible 410
changes to the data model. 411

? Examine proposed schema changes in detail to understand their compatibility implications and 412
the best strategy for implementing them based on the type of revision under discussion. 413

I believe these guidelines lead to a reasonable process for defining scopes of work, making technical 414
decisions, and evolving schemas while minimizing code impact and maximizing the utility of any given 415
implementation across revisions of a specification. 416

draft-cantor-versioning-02 14 3/5/2003

7 References 417

The following are cited in the text of this document: 418

[SAMLCore] Phillip Hallam-Baker et al., Assertions and Protocol for the OASIS Security 419
Assertion Markup Language (SAML), http://www.oasis-420
open.org/committees/security/, OASIS, May 2002. 421

[SAMLBind] Prateek Mishra et al., Bindings and Profiles for the OASIS Security Assertion 422
Markup Language (SAML), http://www.oasis-open.org/committees/security/, 423
OASIS, May 2002. 424

[SOAP] Various., Simple Object Access Protocol (SOAP) 1.1, 425
http://www.w3.org/TR/SOAP/, W3C Note, May 2000. 426

[XSD] David C. Fallside et al., XML Schema, http://www.w3.org/XML/Schema#dev, 427
W3C Recommendation, May 2001. 428

