4 SAML Versioning

The SAML specification is versioned in several, independent ways. Each is discussed in the following sections, along with processing rules for detecting and handling version differences, when applicable. Also included are guidelines on when and why specific version information is expected to change in future revisions of the specification.
When version information is expressed as both a Major and Minor version, it may be expressed discretely, or in the form Major.Minor. The version number MajorB.MinorB is higher than the version number MajorA.MinorA if and only if:

MajorB > MajorA (((MajorB = MajorA) (MinorB > MinorA)

SAML Specification Version
Each release of the SAML specification will contain a major and minor version designation describing its relationship to earlier and later versions of the specification. The version will be expressed in the content and filenames of published materials, including the specification document(s), and XML schema instance(s), There are no normative processing rules surrounding specification versioning, since it merely encompasses the collective release of normative specification documents which themselves contain processing rules.
The overall size and scope of changes to the specification document(s) will dictate, informally, whether a set of changes constitutes a major or minor revision. If the specification is backward compatible with an earlier specification (that is, valid older messages, protocols, and semantics remain valid), then the new version will be a minor revision. Otherwise, the changes will constitute a major revision.
As a non-normative documentation mechanism, any XML schema instances published as part of the specification will contain a schema "version" attribute in the form Major.Minor, reflecting the specification version in which it has been published. Validating implementations MAY use the attribute as a means of distinguishing which version of a schema is being used to validate messages, or to support a multiplicity of versions of the same logical schema.
SAML Namespace Version
XML schema instances and "qualified names" (QNames) published as part of the specification contain one or more target namespaces into which the type, element, and attribute definitions are placed. Each namespace is distinct from the others, and represents, in shorthand, the structural and syntactical definitions that make up that part of the specification.
There is explicitly NO relationship between the namespace(s) in the specification and the other version mechanisms described in this section. This holds even if, as is common, version-identifying information (either numerically or in date format) is included in the namespace string.
As a general rule, implementers can expect the namespaces (and the associated schema definitions) defined by a major revision of the specification to remain valid and stable across minor revisions of the specification. New namespaces may be introduced, and when necessary, old namespaces replaced, but this is expected to be rare. In such cases, the older namespaces and their associated definitions should be expected to remain valid until a major specification revision.
Schema Evolution
In general, maintaining namespace stability while adding or changing the content of a schema are competing goals. While certain design strategies can facilitate such changes, it is complex to predict how older implementations will react to any given change, making forward compatibility difficult to achieve. Nevertheless, the right to make such changes in minor revisions is reserved, in the interest of namespace stability. Except in special circumstances (for example to correct major deficiencies or fix errors), implementations should expect forward compatible schema changes in minor revisions, allowing new messages to validate against older schemas.
Implementations SHOULD expect and be prepared to deal with new extensions and message types in accordance with the processing rules laid out for those types. Minor revisions MAY introduce new types that leverage the extension facilities described in section 6. Older implementations SHOULD reject such extensions gracefully when they are encountered in contexts that dictate mandatory semantics. Examples include new <Query>, <Statement>, or <Condition> types.

·
·
·

·
·
4.1 SAML Assertion Version

The SAML <Assertion> element contains attributes for expressing the major and minor version of the assertion using a pair of integers. Each version of the SAML specification will be construed so as to document the syntax, semantics, and processing rules of the assertions of the same version. That is, specification version 1.0 documents assertion version 1.0, and so on.
There is explicitly NO relationship between the assertion version and the SAML assertion XML namespace that contains the schema definitions for assertions.
The following processing rules apply:
A SAML authority MUST NOT issue any assertion whose version number is not supported.

A SAML relying party MUST reject any assertion whose major version number is not supported.

A SAML relying party MAY reject any assertion whose minor version number is higher than the highest supported version that it supports. However, all assertions that share a major version number MUST share the same general processing rules and semantics, and MAY be treated in a uniform way by an implementation. That is, if a 1.1 assertion shares the syntax of a 1.0 assertion, an implementation MAY treat the assertion as a 1.0 assertion without ill effect.
4.2 SAML Protocol Version

The SAML <Request> and <Response> elements contain attributes for expressing the major and minor version of the request or response using a pair of integers. Each version of the SAML specification will be construed so as to document the syntax, semantics, and processing rules of the protocol messages of the same version. That is, specification version 1.0 documents request and response version 1.0, and so on.

There is explicitly NO relationship between the protocol version and the SAML protocol XML namespace that contains the schema definitions for protocol messages.

The version numbers used in SAML protocol <Request> and <Response> elements will be the same for any particular revision of the SAML specification.

4.3 Request Version

The following processing rules apply to requests:

· A SAML requester SHOULD issue requests with the highest SAML version supported by both the SAML requester and the SAML responder.

· If the SAML requester does not know the capabilities of the SAML responder, then it should assume that it supports the highest SAML version supported by the requester.
· A SAML requester MUST NOT issue any request whose version number is not supported.

· A SAML responder MUST reject any request whose major version number is not supported, as described in section 4.4.2.

· A SAML responder MAY reject any request whose minor version number is higher than the highest supported version that it supports. However, all requests that share a major version number MUST share the same general processing rules and semantics, and MAY be treated in a uniform way by an implementation. That is, if a 1.1 request shares the syntax of a 1.0 request, a responder MAY treat the message as a 1.0 request without ill effect.
4.3.1 Response Version

The following processing rules apply to responses:
· A SAML responder MUST NOT issue responses of a higher SAML version number than the corresponding request.
· A SAML responder MUST NOT issue a response that has a major version number that is lower than the major version number of the corresponding request except to report the error RequestVersionTooHigh.
An error response resulting from incompatible SAML protocol versions MUST result in reporting a top-level StatusCode value of VersionMismatch, and MAY result in reporting one of the following second-level values:

RequestVersionTooHigh
The protocol version specified in the request is a major upgrade from the highest protocol version supported by the SAML responder.

RequestVersionTooLow
The SAML responder cannot respond to the particular request using the SAML version specified in the request because it is too low.

RequestVersionDeprecated
The SAML responder does not respond to any requests with the protocol version specified in the request.

