wMMe

xML@) 2003

Code Lists




The huge need for codes
[

* A code is a character string that represents a
definitive value

» Code lists are valuable as unambiguous
taxonomies

* In many cases, such as product
classifications, code lists are big business

— Some code list owners charge for their use

ICountries
Pick one:

AW=Aruba CA=Canada
FR=France ...




Options for formally

representing code lists

« Often they are merely maintained in text
documents

» But formal encodings are extremely
useful, for example:

— RDF ontologies
— The ebXML Registry Information Model’s

<ClassificationScheme> markup
— XSD (such as enumerated simple types)

* You could develop different
representations for different purposes




The attractions of code lists

in XSD form

Schema validation can do code
checking “for free”

This step usually occurs early in the
processing pipeline

This encoding benefits from tool
availability

— And could even be generated from a more-
primary XML representation

These all support UBL’s “leverage XML
technology” goal



The downsides

* Many code lists are too large (~10K
codes) or dynamic (~daily) to take
advantage of XSD
— But one study showed more than one-third

of legacy code lists to be variants of
Yes/No!

 Validation through schemas will never
be complete for some applications
— Such as codes that become dynamically

invalid depending on previous code
choices




Each user of a code list could

reproduce it in a schema

» But re-coding a code list over and over
In different schemas is costly and prone

to error

 Better to help code list owners produce
their own code list schema modules

UBL elements... UBL elements...
UBL types... UBL types...

Colors

Pick one:

01=white 02=Dblue
03=red




UBL’s solution: code list

schema module rules

A code list owner can choose to conform to
the rules by producing a reusable schema
module that defines a code list datatype

The level of validation is entirely up to them
— Enumeration

— Regular expression

— No constraints

The “normative status” of the module is also
up to them

They just need to provide enough metadata
to uniquely identify the meaning of each code

We’'re working with a number of groups to
help them do this



UBL and others can bind the

type to their own elements

/ UBL elements would be bound to a foreign
type defined by a code list owner
— This would be done in the “code list adapter
module”
 The metadata attributes could be defaulted,
or even fixed

<ubl:CountryID
xsi:type="unece:IS03166CountryCodeType”
various metadata attributes...>

FR

</ubl:CountryID>




A global marketplace in XML-

based code lists?

|
S
A I f

N B

SN

* |f all goes well, we could see the
following benefits:

— Less duplication of work in XML vocabulary
development

— Wider application support for well-known
code lists

— Earlier validation of code values

— Standardization of more code lists, and
even formally described subsets and
extensions

— Greater “semantic clarity” through
identifying standard code list metadata



