
 Sessions and Web Services 1

International Journal of Web Services Research

The Session Concept and Web Services

Hal Hildebrand, Oracle Corporation

Mark Little, Arjuna Technologies Limited

Anish Karmarkar, Oracle Corporation

Greg Pavlik, Oracle Corporation

 Sessions and Web Services 2

Abstract

This paper describes the session concept as it relates to middleware systems in general

and Web services in particular. Common applications of the session concept are found in

distributed object systems, the Web, and messaging middleware systems. In the context of Web

services, explicit building blocks for session-oriented protocols and services have been proposed

in two specifications, WS-Addressing and WS-Context. The distinguishing characteristic of

these two proposals is the degree of coupling they introduce between session participants. We

compare the underlying models in these specifications, as it relates to the session concept in Web

services, and conclude that WS-Context is a superior model for supporting a viable Web services

architecture.

 Sessions and Web Services 3

Session Models in Distributed Systems

Agents in distributed systems communicate by sending messages between software

components. Middleware software provides plumbing and programming models for applications

in order to:

1) Ease the burden of (re)programming network-level message passing on a per

application basis.

2) Provide a conceptual framework to organize application logic.

3) Manage system protocols and their relationship to the execution environment.

As an example, distributed object systems like CORBA(Object Management Group,

March 2004) or Java RMI (Sun Microsystems, Java Remote Method Invocation Specification,

2003) provide a programming model for networked services based on the idea of distribution

transparency. When a client application works with a distributed object reference, the application

itself has no knowledge as to whether the object is collocated in the same address space and

available as a local object or distributed across the network. In the latter case, the use of the

networked service requires the middleware system to respond to object invocations by

marshalling the request to a protocol specific wire-level message and then to send the message

over the network. Similarly, the networked service is supported by middleware that decodes the

network message and in turn invokes a method on a local object implementation. These kinds of

systems provide a simple programming model that is already familiar to developers who have

used object-oriented programming languages. The effect is to make building distributed systems

relatively simple, at least by comparison to hand-rolling custom message-over-sockets code on a

per application basis. Support for system protocols like transactions is layered on top of the basic

distributed object model.

 Sessions and Web Services 4

One of the common features of all middleware systems is support for the session concept.

For the purposes of this paper, a session is a mechanism for correlating multiple messages in

order to achieve some application-visible semantic. This is typically done on behalf of a client

within a service endpoint. In general, middleware systems decouple session association from

specific communication channels to improve robustness. To achieve this, the session model is

layered on top of a communication channel that links the client to network-visible application

services. Many middleware systems advertise the session model explicitly as a mechanism for

client applications to manage stateful conversations or communicate with stateful “resources”. In

other cases, the session concept is maintained less explicitly to support system services that are

provided to applications.

In order to illustrate how the session concept is used in middleware systems, we review

several examples.

CORBA Sessions

In CORBA systems, the Interoperable Object Reference (IOR) is the primary

embodiment of the session concept. The IOR is an address-space distributable reference to an

object. The IOR itself is a CDR encoded byte array that contains information of the following

form (expressed in CORBA IDL):

module IIOP {
 struct Version {
 octet major;
 octet minor;
 };
 struct ProfileBody_1_ {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence<octet> object_key;

 Sessions and Web Services 5

 };
 struct ProfileBody_1_1 {
 Version iiop_version;
 String host;
 unsigned short port;
 sequence<octet> object_key;
 sequence <IOP::TaggedComponent> components
 }
It’s important to note that the IOR is encoded not only with the information required to

establish a communication channel with a networked service, but also with an opaque token

called an Object Key. The Object Key is the foundational session mechanism in CORBA. It is

used to demultiplex requests to a specific processing component of the networked service

endpoint in CORBA systems. In many cases, the IOR is used to associate requests with

individual objects instances that may maintain conversational state on behalf of a client. The

Object Key can be supplied by application logic within the service or auto-generated by the

infrastructure, and is composed of an arbitrary sequence of bytes: in either case, the IOR

originates with the network service.

The structure of the IOR itself is based explicitly on the design of the Object Request

Broker infrastructure and reflects the intended implementation model for the system. While often

used in support of distributed object systems, the IOR is an example of a service reference

session model, where the network communication channel and the session identifier are

combined into a single data structure that must be dereferenced by clients in combination to

access a network service.

A typical application implementation pattern that exploits these features relies on a

factory to generate IORs and clients to “garbage collect” resources when they are no longer

needed; services may also implement autonomous cleanup in response to inactivity as well.

These policies are developed on an ad hoc basis because session expiry is not a part of the basic

 Sessions and Web Services 6

model. A representative example of this pattern is the stateful session Enterprise JavaBeans

(EJB) model (DeMichiel, 2003), where references to stateful session bean instances are used by

clients to maintain a stateful conversation with an EJB component. It’s worth noting that while

EJBs have proven to be highly popular as a mechanism for controlling transactions in J2EE

based systems, the stateful session bean model has not been widely deployed. Instead, basic

Cookie-based Web sessions have dominated J2EE deployments. Web sessions and stateful EJB

sessions are difficult to combine because of their independent session models.

Both EJB and CORBA are best used for tightly coupled systems and assume intimate

knowledge of the middleware infrastructure models. Note that in both cases, each objects or

components have unique references that must be maintained by clients for continued use of the

networked service. Each reference contains an identifier that is used to dispatch requests to

implementation artifacts. This is the hallmark characteristic of systems that build on service

reference sessions.

For this reason, the maintenance of distributed object references is typically complicated.

Because sessions and endpoint information is intertwined, broken references must be

reconstituted in order to reconnect to existing sessions. In fact, commercial CORBA systems

never fully developed an interoperable mechanism that was adopted in practice to provide fault

tolerant systems with recoverable session association.

Distributed object systems often support an additional session model, where information

that influences the execution semantic of a service is communicated via context information

derived from the client execution environment. Distributed transaction processing facilities like

the CORBA Object Transaction Service rely on this model to maintain ACID properties across a

number of service invocations that involve state changes to shared resources. The generalized

 Sessions and Web Services 7

view of this execution context-derived session is often referred to as an activity model. The

activity model is equivalent in computational expressiveness to the session model used in

distributed object references. However, activity sessions have several distinguishing

characteristics that make them different than reference sessions. Activity sessions are:

1) Dynamically bound to the communication channel.

2) Activity sessions may be initiated by clients, by third parties, or by services

themselves.

3) Activity sessions incorporate a lifecycle model that assumes a temporal limit.

Typically, APIs to support activity sessions assume a timeout exists and often

allow clients to manage or specify timeouts.

HTTP Sessions

Distributed object systems are only one class of middleware frameworks. The ubiquitous

HTTP protocol (Fielding et al, 1999) may be extended to provide sessions for managing

application state on behalf of a user agent by the Cookie model (Kristol et al, 2000). HTTP itself

is defined to be a “generic, stateless” protocol capable of acting as a carrier for many domains.

This has been particularly useful for supporting information exchange in a massively scalable

system like the Web. However, a purely “stateless” protocol has limited application. The Cookie

model was introduced to allow Web-content applications to flexibly manage state. When a user

accesses a Web site’s origin server, the session is communicated back to the user agent via a

Cookie, which contains information necessary to reestablish the session state on a per-request

basis. The content of the Cookie is completely dependent on the origin server. In addition, the

origin server is responsible for indicating lifecycle semantics for the cookie: for example, it may

communicate a max-age value for the Cookie or explicitly timeout the cookie by supplying a

 Sessions and Web Services 8

max-age value equal to zero on a response message to the user agent. Subsequent access to the

Web resources with which the Cookie is linked require the user agent to piggyback the Cookie

on the HTTP request headers based on domain name and path information associated with the

HTTP request in order to maintain the session semantic.

When application server middleware is used to provide dynamic Web

content/applications, middleware infrastructure usually provides built in HTTP Cookie based

state management: application developers may store live data in a session cache and the

infrastructure handles request correlation with the session data. In this case, the origin server

typically ensures that the sessions are bounded by an inactivity time limit. This model is also

familiar to developers that are accustomed to working with the Web programming models, for

example, the Java Servlet APIs.

In either case, the HTTP session has no predefined structural relationship with the origin

server’s Web address or resources. The URL to a web resource represents the resource qua

resource and is independent of the Cookie. The server always controls the session and its

lifecycle. This model sharply reduces the coupling between user agents and web servers. For

example, a Web browser need have no a priori knowledge of Amazon.com in order to purchase a

book or CD. In general, the flexibility in the HTTP session model exploits the fact that user

agents are most often acting on behalf of human users. Recovery from session invalidation is an

ad hoc process. While HTTP sessions have been enormously successful, it is not clear that this

model may transfer directly to domains concerned with automated machine-to-machine

communications.

 Sessions and Web Services 9

Sessions in Message Oriented Middleware

The session model is present in other kinds of middleware systems in less obvious ways.

For example, at first blush it appears that message-oriented middleware (MOM) systems only

use channels to relay messages to queues or consumers – that any correlation semantic to

backend state must be encoded in the message itself by applications. However, MOM systems

offer message-grouping facilities can be applied to ordering and delivery assurance semantics.

For example, in many MOM systems, a session is created to demarcate and manage the start of

an ordered group. To end delivery of ordered messages within a group, the session is closed. As

an example, the Web services standard WS-Reliability (Iwasa, 2004) provides explicit protocol

instructions to support this paradigm. Sessions are demarcated during application-level message

exchange by implicit headers. Message acknowledgements may be communicated on

independent communication channels, but messages are correlated with a group identifier that

correlates messages with the session. While sessions in MOM systems are not necessarily

explicitly accessed by message producers or consumers, the session concept is still very powerful

and useful – including in systems that emphasize nominally decoupled message producers and

consumers.

Web Services Sessions

So what about Web services? First, when we talk about Web services we are making the

narrowing assumption that we are talking about services that are described in WSDL

(Christensen et al, 2001) and accessed via SOAP (Box et al, SOAP 1.1, 2001). We can further

make the following observations about the intended design paradigm for the Web services

model:

1) Web services emphasize loosely coupled systems.

 Sessions and Web Services 10

2) Web services do not expose artifacts of the implementation details or component

model used to implement the service; Web services emphasize self-encapsulated

messages and data transparency.

3) The WSDL definition for a service endpoint is agnostic about session models

utilized by the service: specifically, the service element is exposed identically to

all clients.

There has been some argument that Web services are in general “stateless”. Except for

reducibly trivial services (eg, algorithmically calculate some value based on the input data), this

is in general false. The distinguishing hallmark of the Web service paradigm is that services

minimize the projection of state into the protocol layers: they favor full encapsulation of the

information required to correlate messages with resources and state information within the

messages that are included in an Message Exchange Pattern.

In many, perhaps the majority, of today’s use cases for web services technologies, no

explicit protocol session model is required. As a general rule, application messages can maintain

sufficient information for service operations to perform the work expressed in the WSDL

contract. The emphasis in Web services is on self-contained messages. For example, a Purchase

Order message would contain data including a customer id and the purchase order number that

are necessary to process the order completely.

However, there are cases in which the session concept is necessary to interject into the

execution environment; two examples include the reliable and ordered delivery of a set of

messages and the requirement to scope the execution of multiple service operation invocations

within a single unit of work. For our purposes, the mechanism for achieving a session in the Web

services environment is of fundamental interest. Any use of the session concept increases the

 Sessions and Web Services 11

coupling between the message producer and the message consumer, so how sessions are

represented in the system will have serious implications for the Web services model itself.

In its own way, a standardized session model is as fundamental to the evolution of the

Web Services architecture as the standardized adoption of the Cookie model was to the World

Wide Web. When the Web was first developed, all server interactions were stateless; sessions

between clients and servers are maintained only long enough to transfer an HTML page and are

dropped immediately afterward. This means that costly resources, such as operating system

network connections and threads, are not maintained for long durations. This per request session

model is essential for supporting popular Web sites, where hundred or thousands of users may be

interacting with the pages/services it provides.

However, if a site required a client to provide logon credentials before retrieving Web

pages, then they would have to be provided on each visit to the site. Fairly obviously this

“memory-less” interaction pattern did not scale beyond a few such sites and the cookie was

added to the architecture. As we have noted, a cookie can be used to maintain session-like

information between visits to a particular Web site. In fact, session oriented Web services often

leverage HTTP Cookies to provide ad hoc session capabilities to support storing application state

over multiple message exchanges by exploiting the fact that most Web services are accessed via

HTTP today. However, Web services are intended to be accessed via many transport protocols,

so this solution is not generally useable.

Currently, there are two proposed mechanisms for modeling the session concept in the

Web services community, the EndpointReference in WS-Addressing (Box et al, WS-Addressing,

2004) and the activity concept in WS-Context (Little et al, 2004). As with most aspects of

standardization, the value is derived from the potential for its features and functions to be

 Sessions and Web Services 12

provided by Web Services vendors, therefore helping application developers solve state

management and protocol requirements more easily. Once adopted and implemented, the

functionality will not only be available as part of the platform but also it will be available in a

standard way across platforms, allowing Web Services from multiple environments to

interoperate more easily, efficiently, and effectively than if the developers had to code all of the

equivalent features and functionality themselves in a non-standard way. The fact that both WS-

Addressing and WS-Context are undergoing standardization is a net positive, but we maintain

that the session model in WS-Context is a superior building block for the architecture of Web

services. We next consider the session embodiment contained in both specifications.

Web service sessions using WS-Addressing

WS-Addressing is a specification that was jointly developed by Microsoft, IBM and

others to provide a mechanism for referencing Web services developed on their platforms. In

August 2004 the specification was published as a Member Submission to the W3C (a W3C

Member Submission called WS-MessageDelivery (Karmarkar et al 2004) was also published in

April 2004, offering similar functionality). A W3C Working Group was formed in October 2004

to standardize a Web services addressing specification and is using the WS-Addressing Member

Submission as the starting point for its work.

WS-Addressing defines two extensible constructs: EndpointReference and Message

Information Headers. Message Information Headers provide information on the characteristics of

a message that are useful for directing messages to network endpoints and for correlating reply

messages. EndpointReferences are used to identify and describe service endpoints and instances.

For this paper we will discuss only EndpointReferences, as they are most relevant to the session

 Sessions and Web Services 13

model in WS-Addressing. EndpointReferences logically extend the WSDL description model.

An Endpoint reference contains the following information:

1. A address URI that identifies the endpoint

2. Primary WSDL 1.1 portType of the endpoint

3. WSDL 1.1 service QName/port that contains the definition of the endpoint

4. ReferenceProperties that identify the resource/entity addressed by the

EndpointReference. ReferenceProperties are created by the issuer of the

EndpointReference and are opaque to the consumer of the EndpointReference.

5. ReferenceParameters that are very similar to ReferenceParameter except that

ReferenceParameters are not relevant when comparing two EndpointReference,

but ReferenceProperties are. From the point of view of the session model

ReferenceParameters do not alter the model and will not be discussed

independently in this paper.

The relevant XML schema description for the WS-Addressing EndpointReference

looks like:

 Sessions and Web Services 14

<xs:complexType name="EndpointReferenceType">
 <xs:sequence>
 <xs:element name="Address" type="wsa:AttributedURI"/>
 <xs:element name="ReferenceProperties"

type="wsa:ReferencePropertiesType" minOccurs="0"/>
 <xs:element name="ReferenceParameters"

type="wsa:ReferenceParametersType" minOccurs="0"/>
 <xs:element name="PortType" type="wsa:AttributedQName"

minOccurs="0"/>
 <xs:element name="ServiceName" type="wsa:ServiceNameType"

minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 If "Policy" elements from namespace

"http://schemas.xmlsoap.org/ws/2002/12/policy#policy" are used, they must appear first
(before any extensibility elements).

 </xs:documentation>
 </xs:annotation>
 </xs:any>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
In order to better understand the schema description, we provide an example

EndpointReference for discussion:

<wsa:EndpointReference

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”
 xmlns:myns=”http://example.com/ref-props-params”>
 <wsa:Address>http://myurl.com/myservice</wsa:Address>
 <wsa:ReferenceProperties>
 <myns:SessionID>session$id:0123456789</myns:SessionID>
 </wsa:ReferenceProperties>
 <wsa:ReferenceParameters>
 <myns:CustomerID>Acme Inc.</myns:CustomerID>
 </wsa:ReferenceParameters>
 <wsa:ServiceName

PortName=”myPort”>myService</wsa:ServiceName>
</wsa:EndpointReference>
In the example above, the endpoint address is “http://myurl.com/myservice/”, has a

ReferenceProperty containing the session identifier, a ReferenceParameter containing the

customer identifier and the WSDL 1.1 service QName and port identifying the description of the

endpoint.

 Sessions and Web Services 15

The EndpointReference itself appears to be very similar to the IOR structure discussed

earlier. The EndpointReference contains network information required to reach a service

endpoint in the form of a URL. In addition (and like the IOR), the EndpointReference also

contains a set of ReferenceProperties/ReferenceParameters, which are opaque tokens embedded

in the reference and propagated back to the service during message dispatch.

SOAP message invocations to the service include each ReferenceProperty and

ReferenceParameter bound as a separate SOAP header block. A SOAP request sent to the entity

identified by the EndpointReference above looks like:

<soap:Envelope

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”
 xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:myns=”http://example.com/ref-props-params”>
 <soap:Header>
 ...
 <wsa:To>http://myurl.com/myservice</wsa:To>
 <myns:CustomerID>Acme Inc.</myns:CustomerID>
 <myns:SessionID>session$id:0123456789</myns:SessionID>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</wsa:EndpointReference>
WS-Addressing is intended to provide a building block for higher level abstractions. In

the specification itself, what exactly an EndpointReference including

ReferenceProperties/ReferenceParameters refers to is not defined. It could be an entity modeled

by the service, or alternatively, a resource managed by the service. The specification also refers

to Web service “instances”; since there is no such entity in the vocabulary of Web services, it’s

possible the authors of the WS-Addressing specification intend to release another specification

that provides an appropriate definition. The WS-Resource Framework (RF) as submitted to

OASIS was a retrograde set of specifications that built on WS-Addressing to use the base

EndpointReference as a building block to structure a model that resembles distributed object

 Sessions and Web Services 16

systems like CORBA. The WS-RF specifications provided an elaborate framework that attempts

to cope with the brittleness problems created by the reference session model. The design

intention of WS-RF was to provide a general model for stateful Web services (Foster et al,

2004).

Because WS-Addressing is clearly based on the session reference model, a natural way to

think about the ReferenceProperties/ReferenceParameters is to compare them to the Object Key

in the IOR found in CORBA systems. The ReferenceProperties/ReferenceParameters provide a

mechanism for reestablishing the execution context for the request message once it reaches the

service network endpoint. Because WS-Addressing is a “building block” specification for

protocols and product features, it is positioned to provide a fundamental session model for the

Web services architecture moving forward.

Web services sessions using WS-Context

Since December of 2003, the Web services community has been developing a standard

called WS-Context in the OASIS consortium to provide an explicit session model for Web

services. WS-Context provides a session construct that is decoupled from application-domain

service representations. The specification defines a basic context structure, explains how it can

be linked explicitly to the activity concept, and provides WSDL bindings for services that

manage activity-sessions. The specification is decomposable, so that session models that don’t

map precisely to the activity concept can use the context structure as well; currently proposed

specifications that use the activity session model include WS-Reliability and WS-

ReliableMessaging, Ws-Coordination and WS-CoordinationFramework, WS-

AtomicTransaction, WS-BusinessActivity, WS-TXM, SOAPConversations and WS-

 Sessions and Web Services 17

Enumeration, suggesting that the model is particularly robust for building session based

protocols.

The WS-Context context structure looks like:

<xsd:complexType name="ContextType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="context-identifier" type="
tns:contextIdentifierType xsd:"/>
 <xsd:element name="context-service" type="ref:ServiceRefType"
minOccurs="0"/>
 <xsd:element name="type" type="xsd:anyURI"/>
 <xsd:element name=”context-manager” type=”ref:ServiceRefType”
minOccurs=”0”/>
 <xsd:element name="parent-context" type=”tns:ContextType”
minOccurs="0">
 </xsd:sequence>
 <xsd:attribute name="timeout" type="xsd:int" use="optional"/>
 <xsd:attribute ref=”wsu:Id” use=”optional”/>
</xsd:complexType>

There are several important aspects of the Context structure:

1. The context provides a required type attribute to identify the type of session

model that is being represented as the intended interaction semantic. This allows

processors to unambiguously understand the “meaning” of the contextualization

header.

2. Contexts contain explicit lifecycle semantics. A time to live is normally

associated with sessions. This provides a normal framework for understanding the

validity and invalidation rules for a session.

3. The context can contain arbitrary data elements. Depending on the rules

governing the system and protocols in use, these data elements may be arbitrarily

augmented by the clients and service endpoints. This allows for sessions to be

 Sessions and Web Services 18

shared across multiple services and for the shared session content to be change

over time.

4. Contexts may be passed by-value or by-reference. By-value contexts support

familiar use cases like distributed transaction processing. By-reference contexts

are particularly useful for business protocols that require large amounts of data to

be included with messages, for example, legal restrictions related to a sales

process.

5. The Context structure acts as a wrapper for information related to the session

protocol. The SOAP binding for WS-Context includes the Context itself as a

SOAP header, maintaining clear encapsulation rules for contextualized messages.

These characteristics allow the Context to be used for a variety of protocols, including the

direct management of application state. Most importantly, the session concept is loosely coupled

with respect to communication channels and service endpoints: the session may be used in

conjunction with a service for a short period or even shared across multiple services. Late

binding also means that protocols may use WS-Context to support either ephemeral or long-lived

sessions in associated with a fixed service endpoint definition as appropriate within an

application.

As mentioned, the context is bound to SOAP messages as a header. An example SOAP

message including a context header would appear on the wire as:

 Sessions and Web Services 19

<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope">
 <soap:Header>
 <context xmlns="http://docs.oasis-open.org/wscaf/2004/09/wsctx"
timeout="100"
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
 xmlns:soapbind=http://schemas.xmlsoap.org/wsdl/soap/
 soap:mustUnderstand="1">
 <context-identifier>
 http://docs.oasis-open.org/wscaf/2004/09/wsctx/abcdef:012345
 </context-identifier>
 <type>
 http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
 </type>
 </context>
 </soap:Header>
 <soap:Body>
 <!-- Application Payload -->
 </soap:Body>
</soap:Envelope>

The WS-Context specification also provides two (optional) service endpoint interfaces

for managing the lifecycle and contents of by-reference contexts, the ContextService and the

ContextManager. The ContextService provides the ability to begin activities and terminate

(complete) activities. It’s important to note that this interface is optional: services could create,

use and manage Contexts like HTTP Cookies. The ContextManager allows agents to dereference

Contexts for up-to-date data content and is used in conjunction with by-reference Contexts.

The target use cases for WS-Context include support for transaction models in the Web

services environment, reliable messaging sessions, structured/global interaction models like

choreographies and conversational state management in temporally coupled service interactions.

It is intended to be used as a building block by other specifications that require session constructs

– in fact, several specifications related to transaction protocols in OASIS are already building on

WS-Context -- and to supply execution contexts for application level state correlation. In the

latter case, instead of adopting a reference-based session model like CORBA, the application

 Sessions and Web Services 20

session model can be used in ways that are largely analogous to HTTP sessions that are

represented by a Cookie.

WS-Context provides a more generalized session model than what is present in WS-

Addressing and is focused on session support with minimal coupling between services. The WS-

Context model is also consistent with the model of Web services provided by WSDL: all clients

have an equivalent view of the service, references to which are based on the wsdl:service

element.

Observations

Right now, there are two primary models for the session concept that are being defined

by companies participating in defining Web services: the WS-Addressing EndpointReference

with ReferenceProperties/ReferenceParameters and the WS-Context explicit context structure.

The WS-Addressing session model provides coupling between the web service endpoint

information and the session data, which is analogous to object references in distributed object

systems. WS-Context provides a session model that is an evolution of the session models found

in HTTP servers, transaction, and MOM systems.

As we observed, the fundamental, widely-accepted characteristics of Web services are

that they can be described in WSDL and are accessed via SOAP. WS-Addressing

EndpointReferences plus ReferenceProperties/ReferenceParameters do not map to any concepts

described in WSDL. WS-Context allows the session requirements to be described in the WSDL

SOAP bindings, by specifying the necessary headers. Capabilities related to sessions can also be

described in some kind of policy description for the service.

 Sessions and Web Services 21

We also considered three other characteristics that made web services attractive for

integrating computing systems. Let’s consider how both session models affect these

characteristics:

1) Web services emphasize loosely coupled systems.

WS-Addressing EndpointReferences with

ReferenceProperties/ReferenceParameters tightly couple the session to the reference.

Clients cannot switch or alter the interaction semantic with respect to the service. Clients

must maintain a special reference on a per-relationship basis with each service, further

coupling the service client and the service itself. This has two important consequences: it

creates a brittle relationship between the client and the network service in which the

client’s understanding of the service is limited to a particular session. Termination of that

session invalidates the client’s communication channel to the service. Secondly, this

results in a scalablility problem. Clients must contain special reference-pointers to

services for each relationship that is linked by the session. Often this results in the

unnecessary management and storage of redundant data.

On the other hand, WS-Context allows a service client to more naturally bind the

relationship to the service dynamically and temporarily. The client’s communication

channel to the service is not impacted by a specific session relationship.

This has special implications as we consider scaling Web services from intra-

domain deployments to general services offered on the Internet. The current interaction

pattern for Web Services is based on coarse-grained services or components. The

architecture is deliberately not prescriptive about what happens behind service endpoints:

Web Services are ultimately only concerned with the transfer of structured data between

 Sessions and Web Services 22

parties, plus any meta-level information to safeguard such transfers (e.g., by encrypting

or digitally signing messages). This gives flexibility of implementation, allowing systems

to adapt to changes in requirements, technology etc. without directly affecting users. It

also means that issues such as whether or not a service maintains state on behalf of users

or their (temporally bounded) interactions, has been an implementation choice not

typically exposed to users.

If a session-like model based on WS-Addressing were to be used when interacting

with stateful services, then the tight coupling between state and service would impact on

clients. As in other distribution environments where this model is used (e.g., CORBA or

J2EE), the remote reference (address) that the client has to the service endpoint must be

remembered by the client for subsequent invocations. If the client application interacts

with multiple services within the same logical session, then it is often the case that the

state of a service has relevance to the client only when used in conjunction with the

associated states of the other services. This necessarily means that the client must

remember each service reference and somehow associate them with a specific interaction;

multiple interactions will obviously result in different reference sets that may be

combined to represent each sessions.

For example, if there are N services used within the same application session,

each maintaining m different states, the client application will have to maintain N*m

reference endpoints. It is worth remembering that the initial service endpoint references

will often be obtained from some bootstrap process such as UDDI. But in this model,

these references are stateless and of no use beyond starting the application interactions.

 Sessions and Web Services 23

Subsequent visits to these sites that require access to specific states must use different

references in the WS-Addressing model.

This obviously does not scale to an environment the size of the Web. However, an

alternative approach is to use WS-Context and continue to embrace the inherently

loosely-coupled nature of Web Services. As we have shown, each interaction with a set

of services can be modeled as a session, and this in turn can be modeled as a WS-Context

activity with an associated context. Whenever a client application interacts with a set of

services within the same session, the context is propagated to the services and they map

this context to the necessary states that the client interaction requires.

How this mapping occurs is an implementation specific choice that need not be

exposed to the client. Furthermore, since each service within a specific session gets the

same context, upon later revisiting these services and providing the same context again,

the client application can be sure to return to a consistent set of states. So for the N

services and m states in our previous example, the client need only maintain N endpoint

references and as we mentioned earlier, typically these will be obtained from the

bootstrap process anyway. Thus, this model scales much better.

2) Web services do not expose artifacts of the implementation details or component
model used to implement the service.

WS-Addressing EndpointReferences with

ReferenceProperties/ReferenceParameters naturally encourage modeling components

and/or resources behind the service façade by focusing attention on pointers to something

other than the service itself.

 Sessions and Web Services 24

The utility of this design is the ability to export references to abstractions with

memory across invocations, rather than services themselves. This shifts the design center

from self-contained messages and toward operations that offer functionality based on the

identity encoded in the session reference. Consider a purchase order. A message-centric

system might accept a purchase order as a self-contained document. In this case, WSDL

operations would require purchase orders as input messages for a few coarse grained

functions. Using the session reference model, a purchase order might be exposed to users

as an EndpointReference to a purchase order managed by the system. Operations would

tend to be fine-grained modifications to the properties of the purchase order identified by

the reference that induce state changes on an internal representation of a purchase order

abstraction.

WS-Context focuses on the expression of a session semantic only for the duration

of the active session. It bears no relationship to the backend resources or implementation

strategy employed by the service. Even if used to manage conversational state explicitly,

there is no built-in relationship between WS-Context and any domain-specific modeling

artifacts: the session mechanism and domain models are considered to be orthogonal.

3) WSDL itself is agnostic about session models

Nothing about the semantic of the session model contained in EndpointReferences

plus ReferenceProperties/ReferenceParameters can be expressed in WSDL. At best, a

factory pattern can be used to return object-reference-like structures to clients. From this

perspective, WS-Addressing is broadly misaligned with the normal models provided for

developing Web services.

 Sessions and Web Services 25

Requirements for WS-Context headers can be expressed directly in WSDL and

map naturally to other proposed mechanisms for expressions about the capabilities and

requirements of services like WS-Policy.

Conclusions

Design decisions for service implementers are strongly influenced by how session

concepts are expressed in the Web services environment. Of the currently proposed models

available to capture the session concept, WS-Context focuses on loosely coupled, message-

oriented systems design. We believe this is the appropriate model to ensure that Web services

successfully fulfill their role as a technology for integrating heterogeneous computing

environments with minimal coupling between systems.

References

Booth, David et al (11 February 2004) Web Service Architecture, retrieved from

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Box, Don et al (8 May 2000) Simple Object Access Protocol (SOAP) 1.1, retrieved from

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

Box , Don et al (10 August 2004) Web Services Addressing (WS-Addressing), retrieved from

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

Christensen, Erik et al (15 March 2001) Web Services Description Language (WSDL) 1.1,

retrieved from http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

Czajkowski, Karl, et al (5 March 2004) WS-Resource Framework, retrieved from http://www-

fp.globus.org/wsrf/specs/ws-wsrf.pdf

DeMichiel, Linda G. (12 November 2003) Enterprise JavaBeans Specification, Version 2.1. (See

http://java.sun.com/products/ejb/)

 Sessions and Web Services 26

Fielding, R. et al (June 1999) IETF Network Working Group Request for Comments: 2616

“Hypertext Transfer Protocol – HTTP/1.1”, retrieved from

http://www.ietf.org/rfc/rfc2616.txt.

Foster, Ian et al (5 March 2004) “Modeling Stateful Resources with Web Services”, retrieved

from http://www-106.ibm.com/developerworks/library/ws-resource/ws-

modelingresources.pdf

Gudgin, Martin et al (24 June 2003) SOAP Version 1.2 Part 1: Messaging Framework, retrieved

from http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.

Iwasa, Kazunori (24 August 2004) WS-Reliability 1.1, retrieved from http://www.oasis-

open.org/committees/download.php/9330/.

Karmarkar, Anish et al (26 April 2004) WS-MessageDelivery Version 1.0, retrieved from

http://www.w3.org/Submission/2004/SUBM-ws-messagedelivery-20040426/.

Kristol, D. et al (October 2000) IETF Network Working Group Request for Comments: 2965

"HTTP State Management Mechanism", retrieved from ftp://ftp.rfc-editor.org/in-

notes/rfc2965.txt.

Little, Mark et al (8 October 2004) WS-Context, retrieved from http://www.oasis-

open.org/committees/download.php/9806/.

OASIS Web Services Composite Application Framework (WS-CAF) TC (2003), retrieved from

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf.

OASIS Web Service Resource Framework (WSRF) TC (2004) retrieved from http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf

Object Management Group (March 2004) Common Object Request Broker Architecture: Core

Specification. (See http://www.omg.org/docs/formal/04-03-01.pdf)

 Sessions and Web Services 27

Sun Microsystems (2003) Java Remote Method Invocation Specification, retrieved from

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html.

W3C Web Services Addressing Working Group (7 November 2004) retrieved from

http://www.w3.org/2002/ws/addr/

