
 1

Services in DoDAF V2.0:

A Methodology for Making Services Modelable and Relevant in DoDAF V2.0

Submitted to the a|EA Journal for Publication
© 2010, WBB and a|EA Journal

Lawrence P. McCaskill

Sr. Manager / Chief Enterprise Architect
 WBB Consulting

11790 Sunrise Valley Drive
Reston, VA 20191

703-448-6081 x127 Fax: 703-821-6955
lmccaskill@wbbinc.com

Andy D. Rogers
Manager, Enterprise Solutions

WBB Consulting
 11790 Sunrise Valley Drive

Reston, VA 20191
703-448-6081 x313

arogers@wbbinc.com

 2

Services in DoDAF V2.0:
A Methodology for Making Services Modelable and Relevant in DoDAF V2.0

ABSTRACT

This white paper advocates for a complete restructuring of the Services Viewpoint and Views
within the DoDAF V2.0. It introduces the concept of overloading of the term “Service” within
DoDAF V2.0, and provides a means of clarifying what is meant in the DoDAF regarding
Services via the introduction of the term “Commoditized Service” into the DoDAF vernacular.
The Commoditized Service is a manifestation of Service Oriented Architectures (SOA) at a
higher level of abstraction than Web Services; it is not in-and-of-itself a Performer - the
definition of Service in DoDAF V2.0 states a Service requires a Performer [as a Mechanism] to
execute. The Commoditized Service (as well as the Web Service), requires a Service Level
Agreement to declare available functionality for the Service. This paper introduces the concept
of the SLA as a means of “information hiding” for the Commoditized Service, which allows for
the manifestation of 3 concepts: 1) Capabilities as Systems that are bought or developed
outright that are internal or functionally specific applications, with no intention of offering
underlying capabilities as a Service 2) Outsourcing Capability (or parts of a Capability) to
Commoditized Services 3) Building the Service “in house” with the intention of offering it as a
Commoditized Service. Each has different requirements regarding development of DoDAF
artifacts; each case is discussed in detail as to the artifacts required for their manifestation.
Finally, the paper proposes a means of management of the underlying data associated with
Commoditized Services. As such, what is presented is a logical construct for accommodating
and modeling Commoditized Services, Web Services, Systems, Organizations, and People,
providing value added to the architect and the organizations they support.

 3

Services in DoDAF V2.0:
A Framework for Making Services Modelable and Relevant in DoDAF V2.0

SERVICES AND DODAF V2.0 – OVERLOADING OF SERVICE AS A TERM

In its attempt to address Service Oriented Architecture concepts, the DoDAF V2.0 has adopted
the OASIS definition for use within DoDAF V2.0:

SOA is a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations (http://docs.oasis-
open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf).

In attempting to utilize the SOA paradigm, the DoD Architecture Framework V2.0 defines
service in the following manner:

Service: A mechanism to enable access to a set of one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description. The mechanism is a
Performer. The capabilities accessed are Resources -- Information, Data, Materiel,
Performers, and Geopolitical Extents.

As “Jedi Knight practitioners” of DoDAF, with over 100 Solutions and several Enterprise
architectures on the books, as well as an excellent understanding of Services and Service
Oriented Concepts, upon reading this definition of Service, we collectively said to ourselves:
“What in the heck does that mean…?” However, upon re-reading the definition in the context of
the overall DoDAF V2.0, we came to the conclusion that the DoDAF V2.0 and its related
DoDAF metamodel (DM2) are out of synchronization regarding their respective definitions of
Service; the DM2 defines Service as a subtype of Performer. Via the definition above, one can
see a Service is not a Performer. Utilizing DoDAF terminology, it is a standardized means for
providing access (i.e., a mechanism) to invoke a Performer (which must be a real person,
organization or system located somewhere with access to resources) to conduct one or more
Activities. Defining a Service includes describing standardized inputs and expected, measurable
outputs and results that must be included as part of invoking the performer to action and
obtaining a “reusable” capability.

Delving deeper, it became clear that the authors of the DoDAF were overloading1 the term
“Service.” How did we come to this conclusion? In the introduction to DoDAF V2.0 in Volume
1, it states:

1Note: “overloading” is a software engineering term; it means that one is allowed to use the same name for two
different pieces of code (called “methods” in object oriented languages), and have the program choose the code to
execute based on the method’s input/output parameters. Stated differently: it allows one to use the same term to
infer different things, based on the context associated with the term’s use.

 4

DoDAF V2.0 expands previous framework development efforts to capture
architecture information about net-centricity, support Departmental net-centric
strategies, and describe service-oriented… (emphasis ours) …solutions that facilitate
the creation and maintenance of a net-centric environment… Over time, the
Department’s emphasis on Service Oriented Environment and Cloud Computing
may result in the elimination of the Systems Viewpoint... (emphasis theirs; cooler heads
have prevailed, and this last bit verbiage has been removed from subsequent versions of the DoDAF
V2.0 on the wiki as well as the public site).

So… Service = Web Service… the current accepted means of implementing Service Oriented
Architecture, right? Not so fast… when they describe Service in Volume 2, they describe it as:

… A Service, from a software service to a business service such as Search and
Rescue…

Hmm… they’ve used this quite often during discussions of presentations of DoDAF V2.0…
Combat Search and Rescue (CSAR) as a “Service.” OK, that’s a stretch (where’s my service
level agreement [SLA] for that?) but we’ll play along to see where this leads. One could state
that there is an implied SLA that the DoD executes with aircrews (if the aircraft is downed, we’ll
make every attempt to get you out of harm’s way, and have assets allocated to do so), but it isn’t
normally identified as a “Service” in the SOA sense. Nonetheless, via the definition, as well as
the descriptions of the Viewpoints describing them, DoDAF V2.0 infers that Services include
people, systems, software-as-a-service (SaaS), hardware-as-a-service (e.g., Cloud Computing),
and storage-as-a-service (various continuity of operations vendors offer offsite
backup/replication of data). So, “Service” in this section of the DoDAF V2.0 isn’t addressing
Web Services – it’s a higher level of abstraction, and includes just about anything for which one
can write a contract, enumerated in the contract via contractor line item numbers (CLINs).
Lacking a better term, one could call this concept a “Commoditized Service” – we'll use this
term throughout the rest of this document to address this concept. Further evidence of DoDAF
V2.0’s use of “Service” to mean “Commoditized Service” is the overarching diagram often
referred to as the “wedding cake:”

 5

By placing the Services Viewpoint between the Operational Viewpoint and the Systems
Viewpoint, the implication is that the Operational Viewpoint defines the relevant business
processes that make up the Capability. As we move layers downward in the “Wedding Cake,”
one functionally allocates everything in the DM2 categorized as “Performer” (Organization,
Person Type, System, and Service) to the Activities that define one’s Capability in the
Operational View. Moving through the layers, here’s the implication of allocation in the various
Viewpoints:

• The Capability Viewpoint enumerates associated Operational Activities. Using CSAR as
the example, example activities might include Report Downed Airman, Assign Recovery
Team, Locate Downed Airman, and Extract Downed Airman.

• The Operational Viewpoint allocates Activities to Organizations, defines their
orchestration, captures business rules about the orchestration (i.e., doctrine,
tactics/techniques/procedures, etc.) and information required to be exchanged to
implement the Capability. Using CSAR as the example, this elaborates on the processes
associated with CSAR, and information exchanged during the execution of this
capability. Further allocation shows that the organization receiving the report of the
downed airman is the Joint Personnel Recovery Center (JPRC), who will task CSAR
assets (Assign Recovery Team) to make the attempt to Locate and Extract a Downed
Airman. Such doctrine as the “word of the day” is also captured during the rules
associated with the activities

• The Services Viewpoint was designed to be able to functionally allocate higher-level
Operational Activities to lower level Service Functions (i.e., types of Services that could
then eventually be allocated to actual Services that accomplish them). The implication is
the Services Viewpoint is a “contracting viewpoint” – and details how organizations
could build services that were useable across the enterprise, including the paradigm of
allowing multiple similar Service Functions to be assigned to Services that implement
them. It allows the organization to allocate the activities to the systems, sub-
organizations, Web and other Services contracted for, and people to run the systems.

 6

• The Systems Viewpoint was left in as ostensibly a “legacy” viewpoint, and thus, it was
left largely unchanged from DoDAF V1.5. The implication in several places in the text
was that the Systems Viewpoint would eventually “go away.” Since the original release,
the authors have backed off on this assertion, but the original language in the DoDAF
V2.0 stated the Systems Views were legacy views, and that their use would diminish to
the point where they would no longer be used.

THE NEED FOR A NEW DEFINITION: THE COMMODITIZED SERVICE

OK… with that explained, we might have been willing to hit the Staples
Easy Button, and say “we believe” – it’s a viable story. But, if one looks
closer at the underlying DoDAF V2.0 Views associated with the
Viewpoints, the argument breaks down completely, because Systems and
Services Viewpoints have almost exactly the same views, and call for you to
capture almost exactly the same data. As taxpayers, we were appalled – as
consultants we were intrigued. This creates an entirely unneeded level of
complexity for the architect, via the creation of yet another set of artifacts to

relate via matrix-based views (SvcV-5’s, SvcV-6, which oh-by-the-way one needs to align with
the SV-5’s and the SV-6’s in addition to the OV-3 and OV-5. Add to that matrices for the CV’s
and PV’s too…).

 7

SV-1 Systems Interface
Description

The identification of systems, system
items, and their interconnections.

SvcV-1 Services Context
Description

The identification of services, service
items, and their interconnections.

SV-2 Systems Resource
Flow Description

A description of Resource Flows
exchanged between systems.

SvcV-2 Services
Resource Flow
Description

A description of Resource Flows
exchanged between services.

SvcV-3a Systems-
Services Matrix

The relationships among or between
systems and services in a given
Architectural Description.

SvcV-3b Services-
Services Matrix

The relationships among services in a
given Architectural Description. It can be
designed to show relationships of interest,
(e.g., service-type interfaces, planned vs.
existing interfaces).

SV-4 Systems
Functionality Description

The functions (activities) performed by
systems and the system data flows among
system functions (activities).

SvcV-4 Services
Functionality Description

The functions performed by services and
the service data flows among service
functions (activities).

SV-6 Systems Resource
Flow Matrix

Provides details of system resource flow
elements being exchanged between
systems and the attributes of that
exchange.

SvcV-6 Services
Resource Flow Matrix

It provides details of service Resource
Flow elements being exchanged between
services and the attributes of that
exchange.

SV-7 Systems Measures
Matrix

The measures (metrics) of Systems Model
elements for the appropriate timeframe(s).

SvcV-7 Services
Measures Matrix

The measures (metrics) of Services Model
elements for the appropriate timeframe(s).

SV-8 Systems Evolution
Description

The planned incremental steps toward
migrating a suite of systems to a more
efficient suite, or toward evolving a current
system to a future implementation.

SvcV-8 Services
Evolution Description

The planned incremental steps toward
migrating a suite of services to a more
efficient suite or toward evolving current
services to a future implementation.

SV-9 Systems
Technology & Skills
Forecast

The emerging technologies,
software/hardware products, and skills that
are expected to be available in a given set
of time frames and that will affect future
system development.

SvcV-9 Services
Technology & Skills
Forecast

The emerging technologies,
software/hardware products, and skills that
are expected to be available in a given set
of time frames and that will affect future
service development.

SV-10a Systems Rules
Model

One of three models used to describe
system functionality. It identifies constraints
that are imposed on systems functionality
due to some aspect of system design or
implementation.

SvcV-10a Services Rules
Model

One of three models used to describe
service functionality. It identifies constraints
that are imposed on systems functionality
due to some aspect of system design or
implementation.

SV-10b Systems State
Transition Description

One of three models used to describe
system functionality. It identifies responses
of systems to events.

SvcV-10b
One of three models used to describe
service functionality. It identifies responses
of services to events.

SV-10c Systems Event-
Trace Description

One of three models used to describe
system functionality. It identifies system-
specific refinements of critical sequences
of events described in the Operational
Viewpoint.

SvcV-10c Services Event-
Trace Description

One of three models used to describe
service functionality. It identifies service-
specific refinements of critical sequences
of events described in the Operational
Viewpoint.

Systems Views Services Views

SV-3 Systems-Systems
Matrix

The relationships among systems in a
given Architectural Description. It can be
designed to show relationships of interest,
(e.g., system-type interfaces, planned vs.
existing interfaces).

SvcV-5 Operational
Activity to Services
Traceability Matrix

A mapping of services (activities) back to
operational activities (activities).SV-5b Operational Activity

to Systems Traceability
Matrix

A mapping of systems back to capabilities
or operational activities (activities).

SV-5a Operational Activity
to Systems Function
Traceability Matrix

A mapping of system functions (activities)
back to operational activities (activities).

This also tells the architect there’s no difference between the Systems and the Services
Viewpoint – which is not necessarily true if one uses the explanation outlined above – the
original Views that make up the Services Viewpoint were just poorly elaborated. Additionally,
the authors consistently refer to “Service” meaning “Web service” in support of Net-Centricity
throughout the document, which is a different concept than the “Commoditized Service” concept
implied earlier in the documentation.

Thus, we’re proposing that the DoDAF V2.0 differentiate between the two types of services via
the following explanation of the definition for Commoditized Service in DoDAF:

 8

Commoditized Service: a service is the result of one or more Activities forming a
Capability providing something of potential intrinsic value when instantiated by a
Performer*. A Commoditized Service is not in-and-of-itself a Performer; it is a commodity
item that is not realized until it is invoked or instantiated by an organization performing at
one or more locations and requires Performers for invocation/instantiation. The expectations
for what the service does, the resources it consumes and/or provides, and how well it should
perform (including security and management considerations) are controlled via a contract or
SLA, whether this contract/SLA is implicit or explicit.

* Note: the subtype PersonType under Performer needs to be expanded to include all

biological systems – concrete examples: bomb/drug/assistance dogs, monkeys assisting the
disabled, dolphins performing mine hunting, etc. Each of these is indeed a Performer.

This is distinctly different than a Web Service, which is defined by the W3C as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards
(http://www.w3.org/TR/ws-arch/#id2260892).

This paradigm would enable the definition of the allocation and contracting for Commoditized
Services, while allowing for those services to be composed of, in whole or part, Web Services.
While both Commoditized Services and Web Services generally share the following SOA
paradigms, the Commoditized Service is a “supertype,” which encompasses Web Services,
Systems, and Organizations (down to PersonType at its most granular instance) performing the
service. The SOA paradigms shared by Commoditized Services and Web Services are:

• Abstraction: beyond what is described in the service contract, services hide logic from
the outside world

• Autonomy: services have control over the logic they encapsulate
• Composability: collections of services can be coordinated and assembled to form

composite services
• Discoverability: services are designed to be outwardly descriptive so that they can be

found and accessed via available discovery mechanisms
• Formal Contract: services adhere to a communications agreement, as defined collectively

by one or more service description documents
• Loose Coupling: module interacts with another module through a stable interface and

does not need to be concerned with the other module's internal implementation
• Reusability: logic is divided into services with the intention of promoting reuse

 9

“WEDDING CAKE” CHANGES DRIVEN BY THE COMMODITIZED SERVICE
(INFORMATION HIDING AS PART OF THE COMMODITIZED SERVICE SLA)

This effectively changes the “wedding cake” diagram as follows:

This representation makes Commoditized Services co-equal to Systems. This makes sense,
because of the following 3 conditions:

1. All Activities Can Be Functionally Allocated to Systems: There are cases where all
Activities as part of a Capability are functionally allocated to Systems Functionality (i.e.,
Systems Functions) that will be bought outright or built internally, with no intention of
offering any of the functions for consumption as a “Commoditized Service.” Real time
systems and systems that are internal to other platforms fit this niche. In this case, all
Activities are allocated to System Functions and subsequently Systems in the Systems
Viewpoint. When fully allocated, the System Functions are allocated to the System
types, Organization Types, and Person-Types (i.e., Roles), to perform the Activities
(these can be further realized by identifying locations, actual organizations, and actual
systems nomenclature; this allows one to move from what the DoDAF V2.0 calls “Role
Based” to “Actual”). The implication is the systems being built or utilized are not

 10

foreseen to be made available via service contracts to outside organizations. This
obviously can change over time – system functions in the future can be outsourced via re-
allocation to Commoditized Services and/or offered as a service to others via building of
the appropriate interfaces to be discussed in the Commoditized Services Views.

2. Some or all Activities Functionally Outsourced: Some or all Activities (or sub-
Activities), as part of a Capability, are allocated to external Commoditized Services. In
this case, the Activity allocated to the Commoditized Service is modeled as an external
Function, and all that one needs to know about it is the Function name, its Inputs, and its
expected Outputs. These are expressed in the contract for the Commoditized Service
(i.e., the SLA). No further modeling of the service is required in this case, as the
information isn’t required; one has a contract for provided Capability via the SLA. Key
implication: Activities are either implicitly or explicitly “contracted for” at this point
from an Organization that performs the Commoditized Services; this further implies
there’s a known portfolio of Organizations and their related services, including service
levels, to choose from. This implies a level of governance of services made available by
organizations – “a means” by which to accomplish this will be covered in subsequent
paragraphs in this paper. However, this also implies that a Commoditized Services View
for this portfolio of available services is required.

If an Activity is outsourced, the Commoditized Services Viewpoint describes needs to
describe the mechanisms by which the Commoditized Services are contracted for, using
only information that is “exposed to the world” which provides information hiding of
how the “service industry services” implement their contracts (i.e., functionally allocate
Performers within their service), allowing for the commoditized service to have control
over, and potentially change the allocation of underlying Performers, as long as the
contract (i.e., the Service Level Agreement [SLA]) is met (thus meeting the tenets of
performance-based contracting). This implies another Commoditized Services View that
is required.

3. Some or All Activities Functionally Allocated to Services Owned or to be Built by
the Organization: Some or all Activities (or sub-Activities), as part of a Capability, are
functionally allocated to Commoditized Services that are going to be made available
internal to the enterprise, or both internal to the enterprise as well as external to the
enterprise. In this case, a “Service Contract” or SLA is required for development in the
Commoditized Services Viewpoint, as well as the underlying Systems Views in the
Systems Viewpoint.

Note: we didn’t say Services Views intentionally – we’re developing Systems that
instantiate a Service at this point. DoDAF V2.0 states Systems (and Services, for that
matter… the descriptions in the text are a “block copy” of one another) consist of
hardware, software, and Organizations/PersonType that run them.

Thus, in addition to defining the interfaces to the Commoditized Service in the
Commoditized Service Viewpoint, there is a need to elaborate on the high-level design of
the Commoditized Service. The Systems Views handle this lower-level allocation of

 11

Activity to system functionality perfectly fine, without having to create an entirely
separate set of Views to accommodate the relationships depicted. Thus, the Systems
Viewpoint will describe the lowest level of functional allocation – the full
implementation of organizations, people, systems (hardware and software), and “Web
Services” that are interconnected in order to provide each performer’s respective parts of
the overarching system-of-systems providing a capability.

All of these Views are managed via the Project Viewpoint, which manages and maintains
all the functional allocations, and gets the system-of-systems built and into the field. This
construct allows one to describe the allocation of functionality to a Commoditized
Service, as well as its underlying “hidden” functionality, which are required to be
elaborated on as part of a program office’s duties. In this case, one develops the
Commoditized Service Views that will be exposed to the world, allowing for the service
to be contracted for, as well as Systems Views that provide the requirements for
development. But… one is reminded we’re documenting functional allocation rather
than actual implementation – we’re allowing for the Commoditized Service to be
manifested in many ways and evolve over time. As long as the SLA is met and the
interfaces remain stable, the underlying technology can, and will, change based on
market forces without affecting the users of the service.

Thus, the Commoditized Services Viewpoint is effectively an “outsourcing viewpoint,” and only
required in the case of Commoditized Services being functionally allocated to Operational
Activities, and outsourced (or “insourced”) as part of the system-of-systems solution. The
Commoditized Services Viewpoint requires its own set of Views that are missing from DoDAF
V2.0. These are elaborated on in the following section.

VIEWPOINTS REQUIRED FOR IMPLEMENTATION OF COMMODITIZED
SERVICES

The current Services Viewpoint in DoDAF V2.0 is nearly an exact word-for-word copy of what
is called for to be collected for the Systems Views. However, if you ascribe to the dogma of
Commoditized Services being between the Operational View and the Systems View, the
Viewpoints called for by DoDAF are redundant and do not “answer the mail,” and thus, we are
advocating for the complete removal of the existing Services Views. What is needed for the
Commoditized Service Viewpoint are Views that describe the interface to the service provider,
govern the services, allow the service provider to hide information related to the service
implementation, and thereby allow performance-based contracts for services to be established.
The Views required to implement this properly include the following:

• Commoditized Service Discovery View (Who and Where): a description of the means
by which a Commoditized Service is discovered. It provides the means for capture of the
Service Types available for contract, the Organizations providing them, and where the
Commoditized Services can be obtained (physical location or Uniform Resource Locator
[URL]). This allows for Organizations to enumerate services available for contract, and
other Organizations to contract for the services via a standardized mechanism.

 12

• Commoditized Service Description (What and Why): describes what the
Commoditized Service accomplishes; includes expected inputs, expected outputs, and
options available for delivery of the outputs, including such things as latency and means
of delivery. Describes intended use of the Commoditized Service (why); this does not
preclude the service from being used for other applications, but allows the organization
contracting for the service to be more informed in selecting the service. For a
publish/subscribe environment, this would also discuss the means of developing the user
profile for systems, humans, and Web Services, and the expected results of subscription
to the Commoditized Service.

• Commoditized Service Contract View (How): this is the Service Level Agreement,

and allows the customer and the service provider to establish a shared agreement
managing the expectations of the service delivery contract. The parallel paradigm for the
SLA methodology related to Commoditized Services is the exposed header code in C++
or any other object oriented language. This header is a performance-based contract “in
the small” – it doesn’t tell one how the underlying code does something; it merely states
what the functions and sub-functions do, expected inputs and their respective data types,
and outputs and their respective data types. Here, the Commoditized Service has taken
this information hiding construct and applied it to a performance-based contract, using
the SLA as the contract’s binding agreement. It includes a description of the available
means of contracting for the service, delivery options, and clauses regarding metrics-
based delivery of the service; includes, but not limited to:

– Scope of Work
– Fee structure; examples include:

• Free with advertising (think Weatherbug or Google Maps “free” editions)
• Fee for service: describes different funding options, including, but not

limited to: fee for one-time use, fee for single user (a Performer: person,
system, or service can all be “users”) use over time period, fee per
multiple user concurrent use over time period, fee per resources used
(Cloud Computing, offsite backup, continuity of operations invocation and
use), etc.

– Clauses describing metrics-based expectations regarding delivery of service. This
includes such items as: expected service latency, metrics-based quality-of-service
expectation, service availability, and service scalability

– Clauses describing metrics-based expectations regarding the quality of user inputs
and/or availability of the user if user input is required during the delivery of
service

– Funding vehicles available and means of accessing these (if applicable)
– Primary and Secondary Points of Contact (POC) for both the User and the

Commoditized Service. The Commoditized Service POC is provided in order to
facilitate the User to contact the service provider in the event of service
unavailability or improper execution as contracted in the SLA, or in the extreme
case, service contract termination. Conversely, if the service provider cannot
provide the service, it allows for the service provider to contact the User to let him
know the service will be temporarily unavailable, or in the extreme case, the
service is to be terminated.

 13

– Expected User Inputs, including format, and locations where the formats are
prescribed

– Outputs of the Commoditized Service including format, and locations where the
formats are prescribed

• Commoditized Service Security View: describes security measures adopted as part of

applying the service to the target architecture and/or the requirements for security that
will be incorporated by the service provider within their Commoditized Service.

• Commoditized Service to System Matrix: links Commoditized Services to the Systems
that enable the Commoditized Service. This matrix is only required in the case of a new
service being created, maintained, and/or offered by the enterprise that is being described
in the architecture; i.e., it is not required for architectures that are outsourcing one or
more Commoditized Services.

• Commoditized Service to Operational Activity Matrix: details the functional

allocation of Operational Activities.

This paradigm also allows for Web Service models (software-as-a-service, storage-as-a-service,
computing-as-a-service, etc.) to be used to implement a reusable system being procured or
developed as part of a project. These concepts were all readily expressible in the existing
DoDAF V1.0 and V1.5 Products, which have been carried forward to DoDAF V2.0 in the
Systems Viewpoint and Views. Composablity (a key tenet of SOA) was already “in there” – we
don’t need to reinvent the wheel to model these constructs. In the case where the Program Office
is building the Commoditized Service (rather than contracting for the Commoditized Service),
the Systems Views can also be used to express the constructs “hidden” behind the Commoditized
Services Viewpoint.

Reviewing the concept “in a nutshell:”

 Capability is the result of
 One or more Activities provided by
 Functional allocation of Activity to a combination of
 System Types and/or Service Types, invoking
 Performers (Organizations, PersonTypes, and Systems
 ([including Systems invoking Web Services]) producing
 Something of potential intrinsic value (a Desired Result or Resource)

A MEANS OF GOVERNANCE OF COMMODITIZED SERVICES

To simplify the means by which we create and use architectures, as part of the Architecture
Federation construct suggested by DoD guidance, we need to do with architectures exactly what
the above Commoditized Service construct suggests: Organizations providing Commoditized
Services must have a stable interface to the provision of those services (one of the key tenets of

 14

SOA). These key interfaces (described as touch points in the Federal Segment Architecture
Methodology) must be explicitly defined, searchable, etc. to realize their full potential.

This in inferred in the DoD Net Centric Data Strategy; the DoDAF V2.0 calls this out as follows:

Tiered Accountability (TA) is the distribution of authority and responsibility to a DoD
organization for an element of the DoD EA. Under TA, DoD is defining and building
enterprise wide capabilities that include data standards, business rules, enabling
systems, and an associated layer of interfaces for Department, specified segments
of the enterprise (e.g., JCA, DoD Components), and Programmatic solutions. Each
tier has specific goals, as well as responsibilities to the tiers above or below them.
Architectural Descriptions are categorized when developed to facilitate alignment
(mapping and linking), cataloging, navigating, and searching disparate
architecture information in a DoD registry of holdings. All Architectural Descriptions
developed by the tiers should be federated, as described in the DoD Federation
Strategy.

The guidance seems reasonable, but in practice, it’s too vague, isn’t explicitly funded, and as
such there’s no “clearinghouse” for the SLAs that define the DoD Organization’s capabilities in
order to accomplish the functional allocation of the things organizations accomplish in the
doctrine that define what they do. Without the contracts and the specifically defined interfaces to
access the services provided by the organizations within the DoD, these mandates for “Tiered
Accountability” and “Segmented Architectures” are merely “good ideas.” Stated differently,
without explicit guidance and funding for the creation of the standard interfaces to our
Commoditized Services, we effectively have “unfunded mandates” regarding their use.
Therefore, the Commoditized Services model must be implemented as part of DoD Federation
Strategy in order to facilitate the federation of lower level architectures (i.e., mission- and
platform-level capabilities) with higher level architectures (i.e., strategic capabilities).

One could argue that some of this is being done via the Communities of Interest (COI) model;
however, the COIs identified for the Global Information Grid (GIG) Enterprise Services do not
match the COIs identified on the DoD Architecture Registry System (DARS), which do not
match the COIs being used for the DoD MetaData Registry (MDR), etc. Without formalized
COIs providing the standardized interfaces and performance characteristics of their respective
Commoditized Services, this cannot work. Sun Tzu stated “…there is nothing new under the
sun…” – this is the Data Administration concept brought forward into the current time. In both
cases, the strategies are failing in large part due to lack of formal staffing and funding; to be
successful, the strategy implementation piece needs to be formally funded, and adequately staffed
by personnel that are up to the task. Prior attempts to do the “data part” of this have fallen into
the “additional duty” category. If it’s an “additional duty” for personnel already putting in
upwards of 50 hours a week, it simply won’t get done.

Thus, the requirement for administration of Commoditized Services requires the DoD to
formalize and adequately staff data administration for the COIs. This will enable the
management of data requirements associated with the COI, including (but not limited to) the
documenting and exposing the Commoditized Services available from and within the COI.

 15

RECOMMENDATIONS/CONCLUSION

All of this leads to the following recommendations regarding the implementation of Services in
DoDAF V2.0 and beyond:

1) Replace the Services Viewpoint with the Commoditized Services Viewpoint, including
the complete replacement of the underlying Services Views with the following Views:

a. Commoditized Service Discovery View
b. Commoditized Service Description View
c. Commoditized Service Contract View
d. Commoditized Service Security View
e. Commoditized Service to System Matrix
f. Commoditized Service to Operational Activity Matrix

2) Within the DoDAF Meta Model (DM2), expand PersonType to include all biologic

systems. This is needed to describe service animals such as bomb and drug dogs,
monkeys trained to aid the disabled, dolphins trained in mine and intruder detection, etc.

3) Assuming this hasn’t already been accomplished; explicitly subtype Activity into

Operational Activity, System Function, and Service Function in the DM2. However,
assuming the Commoditized Service View construct is adopted, Service Function can be
removed in its entirety; System Functions suffice for modeling Service Functions.

4) OASD/NII advocate formal codification standardization of Communities of Interest

(COIs) within the DoD in order to facilitate the DoD Enterprise Architecture Federation
Strategy. It also needs to advocate funding for building, manning, and maintenance of a
clearinghouse of available services in the DoD managed by the respective COIs.

These constructs are required for the DoDAF practitioner to make best use of DoDAF constructs,
and allow for management of the Commoditized Services within the DoD. In the absence of
these constructs, the means by which one models Services (both Commoditized Services and
Web Services) in DoDAF are manifold, and creates an unneeded level of complexity in
documenting requirements for functional allocation of Capability through Activity through the
means of implementation. Stated differently: the goal of the DoDAF is to make active use of
the underlying data created as one builds models describing the respective Views. Unless these
recommendations are adopted, we foresee a high degree of non-standardized “shelfware” being
created to answer guidance that “looks good on paper,” but in practice, is untenable. Adoption
of these constructs streamlines the DoDAF, and makes it more useable by architecture
practitioners in a standardized fashion; this will allow for data to be collected, maintained, and
administered standardized fashion for use in actual analyses, providing value to the DoD and
taxpayer alike.

 16

Appendix A - References

David Booth, et al., ''Web Services Architecture'', W3C Working Group Note, World Wide Web
Consortium (W3C), February, 2004. http://www.w3.org/TR/ws-arch/#id2260892

DoD Architecture Framework, V2.0, https://www.us.army.mil/suite/page/454707

DoD Architecture Registry System: https://dars1.army.mil/IER2/

DoD Metadata Registry: https://metadata.dod.mil/mdr/homepage.htm

Department of Defense Net-Centric Data Strategy, 9 May, 2003. Office of the Assistant
Secretary of Defense (Networks & Information Integration) (NII)/DoD Chief Information
Officer (DoD CIO).

Federal Segment Architecture Methodology: http://www.fsam.gov/

Global Information Grid Enterprise Services (GIG ES): http://www.disa.mil/peoges/

Google Maps: http://maps.google.com/maps?hl=en&tab=wl

IEEE-Std-1471-2000 Recommended Practice for Architectural Descriptions for Software-
Intensive Systems, Institute for Electrical and Electronics Engineering, New York, NY, 2000.

Service Level Agreement (SLA) description:
 Wikipedia: http://en.wikipedia.org/wiki/Service_level_agreement

SOA Description:

• Organization for the Advancement of Structured Information Standards (OASIS):
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

• The Open Group: http://www.opengroup.org/projects/soa/
• Wikipedia: http://en.wikipedia.org/wiki/Service-oriented_architecture

Staples “Easy Button”
http://www.staples.com/office/supplies/moreviews?catentryId=130700&langId=-
1&storeId=10001&catalogId=10051&imageClickSequence=0

Sun Tzu, The Art of War, 2007, BN Publishing, ISBN 9562910946

Weatherbug: http://weather.weatherbug.com/

