
OData Extension for Temporal Data

A Directional White Paper

Introduction
This paper documents some use cases, initial requirements, examples and design
principles for an OData extension for temporal data. It is non-normative and is intended
to seed discussion in the OASIS OData TC for the development of an OASIS standard
OData extension defining representation and semantics of temporal data.

Both application time period tables and system time period tables were added to
SQL/Foundation:2011.

Tables specified with an application time period have start and end columns that identify
the period of time for which rows apply. A salary table with application time period can
indicate an employee’s salary in the past, in the present, or projected for the future. The
rows of such a table can be changed at any time.

Tables specified with system time period have start and end columns that indicate the
period of time for which the row existed. Historic rows are created automatically when
current rows are deleted or updated. Historic rows cannot be changed once they have
been created.

The representation of temporal data is not currently supported in OData. We suggest that
an OData extension be defined to add this support. Entity types that represent temporal
data will be identified as such, and additional operations will be made available on such
entities and entity sets.

Status
Version 1.0 (May 18, 2012)

Authors
Andrew Eisenberg, IBM
Ralf Handl, SAP
Michael Pizzo, Microsoft

OData Extension for Temporal Data – Direction Document

Background
SQL:2011 allows tables to be defined with application time periods. In this example,
“business_time” is the name of the application time period:
CREATE TABLE emp_a
 (emp_id VARCHAR(30),
 dept_id VARCHAR(30),
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 PERIOD FOR business_time (bus_start, bus_end),
 PRIMARY KEY (emp_id, business_time WITHOUT OVERLAPS)
 FOREIGN KEY (dept_id, PERIOD business_time)
 REFERENCES dept_a (dept_id, PERIOD business_time)
);

CREATE TABLE dept_a
 (dept_id VARCHAR(30),
 budget DECIMAL(7,2),
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 PERIOD FOR business_time (bus_start, bus_end),
 PRIMARY KEY (dept_id, business_time WITHOUT OVERLAPS)
);

The emp_a table could be populated with the following row:
INSERT INTO emp_a
VALUES ('McDevitt', 'Help Desk', DATE '2011-01-01', DATE '2015-01-01')

emp_a would now have the following rows:
emp_id dept_id bus_start bus_end
McDevitt Help Desk 2011-01-01 2015-01-01

Changes can be made to employee rows that apply to a specific period of time:
UPDATE emp_a
 FOR PORTION OF business_time
 FROM DATE '2012-07-01' TO DATE '2013-01-01'
SET dept_id = 'Business Services'
WHERE emp_id = 'McDevitt'

emp_a would now have the following rows:
emp_id dept_id bus_start bus_end
McDevitt Help Desk 2011-01-01 2012-07-01
McDevitt Business Services 2012-07-01 2013-01-01
McDevitt Help Desk 2013-01-01 2015-01-01

Deletes made to employee rows can also apply to a specific period of time:
DELETE FROM emp_a
 FOR PORTION OF business_time
 FROM DATE '2012-01-01' TO DATE '2012-04-01'
WHERE emp_id = 'McDevitt'

 2

OData Extension for Temporal Data – Direction Document

emp_a would now have the following rows:
emp_id dept_id bus_start bus_end
McDevitt Help Desk 2011-01-01 2012-01-01
McDevitt Help Desk 2012-04-01 2012-07-01
McDevitt Business Services 2012-07-01 2013-01-01
McDevitt Help Desk 2013-01-01 2015-01-01

Employee rows that apply to all dates can be retrieved:
SELECT *
FROM emp_a

Employee rows that apply to the current date can be retrieved:
SELECT *
FROM emp_a FOR BUSINESS_TIME AS OF CURRENT_DATE()

or:
SELECT *
FROM emp_a
WHERE bus_start <= CURRENT_DATE()
 AND bus_end > CURRENT_DATE()

Employee rows that apply to a specific time period can be retrieved:
SELECT *
FROM emp_a FOR BUSINESS_TIME
 FROM DATE('2010-01-01') TO DATE('2011-01-01')

or:
SELECT *
FROM emp_a
WHERE bus_end > DATE('2010-01-01')
 AND bus_start < DATE('2011-01-01')

or:
SELECT *
FROM emp_a FOR BUSINESS_TIME
 BETWEEN DATE('2010-01-01') AND DATE('2011-01-01')

or:
SELECT *
FROM emp_a
WHERE bus_end > DATE('2010-01-01')
 AND bus_start <= DATE('2011-01-01')

“BUSINESS_TIME AS OF …”, “BUSINESS_TIME BETWEEN … AND …”,
“BUSINESS_TIME FROM … TO …” are not part of SQL/2011. They are extensions
supported by some SQL implementations.

 3

OData Extension for Temporal Data – Direction Document

“FROM value1 TO value2” returns rows where bus_start < value2 and bus_end > value1.
“BETWEEN value1 AND value2” returns rows where bus_start <= value2 and bus_end
> value1.

SQL:2011 allows tables to be defined with system time periods.
CREATE TABLE emp_s
 (emp_id VARCHAR(30),
 dept_id VARCHAR(30),
 system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
 system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,
 PERIOD FOR SYSTEM_TIME (system_start, system_end),
 PRIMARY KEY (emp_id),
 FOREIGN KEY (dept_id) REFERENCES dept_s (dept_id)
) WITH SYSTEM VERSIONING;

CREATE TABLE dept_s
 (dept_id VARCHAR(30),
 budget DECIMAL(7,2),
 system_start DATE NOT NULL,
 system_end DATE NOT NULL,
 PERIOD FOR SYSTEM_TIME (system_start, system_end),
 PRIMARY KEY (dept_id)
) WITH SYSTEM VERSIONING;

In order to simplify the examples that follow, the system_start and system_end columns
that are specified as TIMESTAMP will be treated as if they were of type DATE.

On Jan. 1, 2012 the following insert might be issued on an empty emp_s table:
INSERT INTO emp_s (emp_id, dept_id)
VALUES ('McDevitt', 'Landcsaping')

emp_a would then have the following rows:
emp_id dept_id system_start system_end
McDevitt Landscaping 2012-01-01 9999-12-31

On Feb. 1, 2012 the following update might be issued on emp_s:
UPDATE emp_s
SET dept_id = 'Strategic Planning'
WHERE emp_id = 'McDevitt'

emp_a would then have the following rows:
emp_id dept_id system_start system_end
McDevitt Strategic Planning 2012-02-01 9999-12-31
McDevitt Landscaping 2012-01-01 2012-02-01

On March 1, 2012 the following delete might be issued on emp_s:
DELETE emp_s
WHERE emp_id = 'McDevitt'

 4

OData Extension for Temporal Data – Direction Document

emp_a would then have the following rows:
emp_id dept_id system_start system_end
McDevitt Strategic Planning 2012-02-01 2012-03-01
McDevitt Landscaping 2012-01-01 2012-02-01

Current employee rows can be retrieved:
SELECT *
FROM emp_s

Employee rows from a specific time period can be retrieved:
SELECT *
FROM emp_s FOR SYSTEM_TIME
 FROM DATE('2010-01-01') TO DATE('2011-01-01')

or:
SELECT *
FROM emp_s FOR SYSTEM_TIME
 BETWEEN DATE('2010-01-01') AND DATE('2011-01-01')

A database designer could choose to create an emp table that specifies an application time
period, a system time period, or both types of time periods (this is known as a bitemporal
table).

Motivation
An OData service might publish an Employees_a entity set that reflects the emp_a table:
<Schema
 xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <Using Namespace="org.odata.temporal" Alias="Temp" />
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees_a" EntityType="Employee_a"/>
 </EntityContainer>
 <EntityType Name="Employee_a">
 <Key>
 <PropertyRef Name="emp_id"/>
 </Key>
 <Property Name="emp_id" Type="Edm.String" />
 <Property Name="dept_id" Type="Edm.String" />
 <Property Name="bus_start" Type="Edm.DateTime" />
 <Property Name="bus_end" Type="Edm.DateTime" />
 </EntityType>
</Schema>

 5

OData Extension for Temporal Data – Direction Document

An OData service might publish an Employees_s entity set that reflects the emp_s table:
<Schema
 xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <Using Namespace="org.odata.temporal" Alias="Temp" />
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees_s" EntityType="Employee_s"/>
 </EntityContainer>
 <EntityType Name="Employee_s">
 <Key>
 <PropertyRef Name="emp_id"/>
 </Key>
 <Property Name="emp_id" Type="Edm.String" />
 <Property Name="dept_id" Type="Edm.String" />
 <Property Name="system_start" Type="Edm.DateTime" />
 <Property Name="system_end" Type="Edm.DateTime" />
 </EntityType>
</Schema>

Edm.DateTime has been used to represent the start and end values for these time periods.
Edm.DateTimeOffset could also have been used. The reflection in OData of date/time
values without explicit time zones needs further investigation.

The addition of Edm.Date to the OData primitive data types might be considered.

A client might wish to query theses entity sets in a number of ways.

1. Retrieve a current employee, showing the value of an employee’s department.

2. Retrieve employees that worked for the “Performance Analysis” department in
2010.

3. Retrieve an employee as of a particular moment, including the employee’s
department as of that same moment.

4. Retrieve all versions of an entity that represents an employee in the past, present,
and future.

5. Retrieve all versions of the department that a specific version of an employee
works for, within the validity period of that employee version.

6. Retrieve all versions of an employee for a given time period, including all
versions of the related departments within the validity period of each employee
version that occurred within that time period.

7. Retrieve all versions of an employee, including all versions of the department
related to each version of the employee within the validity period of that
employee version.

8. Change an employee’s department during an application time period already in
existence.

9. Change an employee’s department for a new application time period.

 6

OData Extension for Temporal Data – Direction Document

10. Change an employee’s department in the current value of a system time employee
entity.

Requirements
The following capabilities must be supported in this extension to OData:

• Annotate OData entity types that expose temporal data

• Support both application time periods and system time periods

• The result of queries on temporal data must be represented in OData

• For system time periods, allow only current entities to be returned

• Support AS OF, FROM, and BETWEEN operations on these entities

• Allow entities reflecting application time temporal data to be updated

• Allow entities reflecting current entities of system time temporal data to be
updated

Examples
The following examples describe possible annotations and extensions to OData to
support temporal data. Although concrete annotations, functions, and behavior are
described, they are intended to be purely illustrative and not prescriptive.

The Employees_a entity set might now be published as:
<Schema
 xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <Using Namespace="org.odata.temporal" Alias="Temporal" />
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees_a" EntityType="Employee_a"/>
 </EntityContainer>
 <EntityType Name="Employee_a">
 <Key>
 <PropertyRef Name="emp_id"/>
 </Key>
 <Property Name="emp_id" Type="Edm.String" />
 <Property Name="dept_id" Type="Edm.String" />
 <Property Name="bus_start" Type="Edm.DateTime" />
 <Property Name="bus_end" Type="Edm.DateTime" />
 <TypeAnnotation Term="Temporal.ApplicationPeriod">
 <PropertyValue Name="StartPeriod" String="bus_start" />
 <PropertyValue Name="EndPeriod" String="bus_end" />
 </TypeAnnotation>
 </EntityType>
</Schema>

 7

OData Extension for Temporal Data – Direction Document

The Temporal.ApplicationPeriod annotation identifies this entity type as representing an
application time period and specifies the names of the start and end properties.

The Employees_s entity set might now be published as:
<Schema
 xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <Using Namespace="org.odata.temporal" Alias="Temporal" />
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees_s" EntityType="Employee_s"/>
 </EntityContainer>
 <EntityType Name="Employee_s">
 <Key>
 <PropertyRef Name="emp_id"/>
 </Key>
 <Property Name="emp_id" Type="Edm.String" />
 <Property Name="dept_id" Type="Edm.String" />
 <Property Name="system_start" Type="Edm.DateTime" />
 <Property Name="system_end" Type="Edm.DateTime" />
 <TypeAnnotation Term="Temporal.SystemPeriod">
 <PropertyValue Name="StartPeriod" String="system_start" />
 <PropertyValue Name="EndPeriod" String="system_end" />
 </TypeAnnotation>
 </EntityType>
</Schema>

The Temporal.SystemPeriod annotation identifies this entity type as representing a
system time period and specifies the names of the start and end properties.

To retrieve a current employee, showing the value of an employee’s department, one
might submit the standard OData request:
http://www.ibm.com/temporal/Employees_a(emp_id = 'McDevitt')

This query might return:
<entry ...>
 <id>
 Employees_a('McDevitt';2012-01-01T00:00:00;2013-01-01T00:00:00)
 </id>
 <link
 rel="edit"
 title="Employees_a"
 href="http://www.ibm.com/temporal
 /application_time_as_of(datetime'2012-05-18T12:00:00')
 /Employees_a('McDevitt')" />
 <m:properties>
 <d:emp_id>McDevitt</d:emp_id>
 <d:dept_id>Standards</d:dept_id>
 <d:bus_start>2012-01-01T00:00:00</d:bus_start>
 <d:bus_end>2013-01-01T00:00:00</d:bus_end>
 </m:properties>
</entry>

 8

OData Extension for Temporal Data – Direction Document

The “edit” link that has been returned can be used to request changes to this entity. In the
interest of brevity, these “edit” links will not be shown in subsequent examples.

This query is equivalent to:
http://www.ibm.com/temporal
 /application_time_as_of(current_date_time())
 /Employees_a('McDevitt')

To retrieve employees that worked for the “Performance Analysis” department in 2010,
one might submit:
http://www.ibm.com/temporal/application_time_between
 (datetime'2010-01-01T00:00:00',
 datetime'2011-01-01T00:00:00')
 /Employees_a
?$filter=dept_id eq 'Performance Analysis'

To retrieve all versions of an entity that represents an employee in the past, present, and
future, one might submit:
http://www.ibm.com/temporal/application_time_between
 (datetime'0000-01-01T00:00:00',
 datetime'9999-12-31T00:00:00')
 /Employees_a('McDevitt')

This query has used the system function application_time_between() to request
employees for a specific application time period. This query might return:
<feed>
 <entry ...>
 <id>
 Employees_a('McDevitt';2012-01-01T00:00:00
 ;2013-01-01T00:00:00)
 </id>
 <m:properties>
 <d:emp_id>McDevitt</d:emp_id>
 <d:dept_id>Standards</d:dept_id>
 <d:bus_start>2012-01-01T00:00:00</d:bus_start>
 <d:bus_end>2013-01-01T00:00:00</d:bus_end>
 </m:properties>
 </entry>
 <entry ... >
 <id>
 Employees_a('McDevitt';2011-01-01T00:00:00
 ;2012-01-01T00:00:00)
 </id>
 <m:properties>
 <d:emp_id>McDevitt</d:emp_id>
 <d:dept_id>Software Engineering</d:dept_id>
 <d:bus_start>2011-01-01T00:00:00</d:bus_start>
 <d:bus_end>2012-01-01T00:00:00</d:bus_end>
 </m:properties>
 </entry>
</feed>

 9

OData Extension for Temporal Data – Direction Document

The context of queries on temporal data can be set by the functions:
application_time_as_of()
application_time_from()
application_time_between()
system_time_as_of()
system_time_from()
system_time_between()

Function such as application_time_all() and system_time_all() could be defined to
simplify asking for entities in all time periods.

Functions such as min_date_time() and max_date_time() could be defined. These would
isolate OData queries from the limits supported by each OData server.

The application_time_between() function establishes an application time period context
that is used to retrieve employees. This context is also used for subsequent items in the
navigation path.

The relationship between employees and departments might be reflected by the following
navigation property and by the associations for Employee_a:
<Schema ...>
 <EntityType Name="Employee_a">
 .
 .
 .
 <NavigationProperty
 Name="departments"
 Relationship="E_D"
 FromRole="E_D_Source"
 ToRole="E_D_Target" />
 </EntityType>
 <Association Name="E_D">
 <End Role="E_D_Source" Type="Employee_a" Multiplicity="*" />
 <End Role="E_D_Target" Type="Department_a" Multiplicity="*" />
 </Association>
 <AssociationSet Name="E_D" Association="E_D">
 <End Role="E_D_Source" EntitySet="Employees_a" />
 <End Role="E_D_Target" EntitySet="Departments_a" />
 </AssociationSet>
</Schema>

Note that since navigation properties may return multiple versions for the same entity, all
associations to temporal entity types must have a Multiplicity of many ("*").

To retrieve departments that an employee works for, one might submit:
http://www.ibm.com/temporal/Employees_a('McDevitt')
/departments

 10

OData Extension for Temporal Data – Direction Document

This query would return a single Department_a entity. Both the employee entity and its
department entity are applicable for the current date and time:
<feed>
 <entry ...>
 <id>
 Department_a('Standards';'2012-01-01T00:00:00'
 ;'2012-07-01T00:00:00')
 </id>
 <m:properties>
 <d:dept_id>Standards</d:dept_id>
 <d:budget>80000.00</d:budget>
 <d:bus_start>2012-01-01T00:00:00</d:bus_start>
 <d:bus_end>2012-07-01T00:00:00</d:bus_end>
 </m:properties>
 </entry>
</feed>

Another query that retrieves departments that an employee works for is:
http://www.ibm.com/temporal
 /application_time_between(datetime'2012-01-01T00:00:00',
 datetime'2013-01-01T00:00:00')
 /Employees_a('McDevitt')
 /departments

This query might return several Department_a entities, as the department’s budget may
have changed during the application period that has been specified:
<feed>
 <entry ...>
 <id>
 Department_a('Standards';'2012-01-01T00:00:00'
 ;'2012-07-01T00:00:00')
 </id>
 <m:properties>
 <d:dept_id>Standards</d:dept_id>
 <d:budget>80000.00</d:budget>
 <d:bus_start>2012-01-01T00:00:00</d:bus_start>
 <d:bus_end>2012-07-01T00:00:00</d:bus_end>
 </m:properties>
 </entry>
 <entry ...>
 <id>
 Department_a('Standards';'2012-07-01T00:00:00'
 ;'2013-01-01T00:00:00')
 </id>
 <m:properties>
 <d:dept_id>Standards</d:dept_id>
 <d:budget>90000.00</d:budget>
 <d:bus_start>2012-07-01T00:00:00</d:bus_start>
 <d:bus_end>2013-01-01T00:00:00</d:bus_end>
 </m:properties>
 </entry>
</feed>

 11

OData Extension for Temporal Data – Direction Document

The query above reflects an employee that has worked for a department, where the values
of some of the department’s properties have changed. If an employee worked for
different departments over time, then this would be reflected in multiple employee
entities.

Navigations, either in the request (i.e., through $expand) or in the results (i.e., through
links associated with navigation properties) preserve the temporal nature of the request.
Conceptually, navigation links for each version of an entity must encode the overlap of
the time specified in the request with the validity time for the version of the entity that
contains the navigation property.

For example, a request for an employee as of a particular moment in time:
http://www.ibm.com/temporal
 /application_time_as_of('2012-06-01T00:00:00')
 /Employees_a('McDevitt')

Would return a relationship link for Departments that encoded the moment in time of the
request, such as:
<link rel="http://org.oasis.odata/related/Department"
 type="application/atom+xml;type=feed"
 title="Department"
 href="application_time_as_of('2012-06-01T00:00:00')
 /Employees_a('McDevitt')/departments" />

A request for an employee as of a time period:
http://www.ibm.com/temporal
 /application_time_between(datetime'2012-01-01T00:00:00',
 datetime'2013-01-01T00:00:00')
 /Employees_a('McDevitt')
 /departments

Would return a relationship link for Departments that encoded the overlap of the time
period specified in the request with the valid time of that employee, such as:
<link rel="http://org.oasis.odata/related/Department"
 type="application/atom+xml;type=feed"
 title="Department"
 href="application_time_between(datetime'2012-01-01T00:00:00',
 datetime'2013-01-01T00:00:00')
 /Employees_a('McDevitt')/departments" />

 12

OData Extension for Temporal Data – Direction Document

A second navigation property or function such as “overlapping_departments” might be
defined to return all department entities that have an application time period that overlaps
with the application time period of the employee. This navigation might return more
department entities than “departments”, as the application time period for an employee
might extend before or after the application time period that was set as the context for the
query.

To change an employee’s department during an application time period already in
existence, one might submit:
PUT/temporal/application_time_as_of(datetime'2012-05-18T12:00:00')
 /Employees_a('McDevitt')/dept_id/$value HTTP/1.1
Host: www.ibm.com
DataServiceVersion: 1.0
MaxDataServiceVersion: 2.0
accept: application/xml
content-type: text/plain
Content-Length: 6
SW Eng

This request uses the edit link that was retrieved earlier.

To change an employee’s department for a new application time period, one might
submit:
PUT/temporal/application_time_as_of(datetime'2012-05-18T12:00:00')
 /Employees_a('McDevitt')/dept_id/$value
 ?start='2012-07-01T00:00:00' & end='2012-10-01T00:00:00' HTTP/1.1
Host: www.ibm.com
DataServiceVersion: 1.0
MaxDataServiceVersion: 2.0
accept: application/xml
content-type: text/plain
Content-Length: 11
Landscaping

To change an employee’s department in the current value of a system time employee
entity, one might submit:
PUT/temporal/Employees_s('McDevitt')/dept_id/$value HTTP/1.1
Host: www.ibm.com
DataServiceVersion: 1.0
MaxDataServiceVersion: 2.0
accept: application/xml
content-type: text/plain
Content-Length: 7
Finance

 13

OData Extension for Temporal Data – Direction Document

Design Principles
OData is an application-level protocol for interacting with data via RESTful web services.
An OData Service’s contract is defined by simple, well-defined conventions and
semantics applied to the data model exposed by the service, providing a high level of
semantic interoperability between loosely coupled clients and services.

The design principles of OData are to:

• Make it easy to implement and consume a basic OData service over a variety of
data sources. Rather than try and expose the full functionality of all stores, define
common features for core data retrieval and update scenarios and incremental,
optional features for more advanced scenarios.

• Leverage Data Models to guide clients through common interaction patterns
rather than force clients to write complex queries against raw data

• Define consistency across the protocol and a single way to express each piece of
functionality

The design principles of OData extensions are to:

• Ensure extensions do not violate the core semantics of OData

• Avoid defining different representations for common concepts across extensions

• Ensure independent extensions compose well

• Ensure clients can ignore extended functionality and still query and consume data
correctly

Design Principles for Temporal Extensions

• The entire result of a request has a consistent temporal value (either "current", or a
specified moment or time period)

• Navigating relationships on entities returned from a temporal query should have
the same behavior as expressing $expand within a temporal query

Technical Direction
The design of this extension to OData should take the following direction:

• An OData vocabulary for Temporal Data shall be defined.

• An annotation from the Temporal Data vocabulary should be applied to entity
types that reflect data from an application time period table, a system time period
table, or a bitemporal table that contains both periods.

• Functions will be defined that allow entities to be retrieved “as of” a certain time,
or “between” or “from” a certain period of time.

• These functions will be based on functions found in SQL/Foundation:2011.

 14

OData Extension for Temporal Data – Direction Document

Open questions, issues and work items
• The reflection in OData of date/time values without explicit time zones needs

further investigation.

• The Edm.String data type can be used to define a type annotation property when
the property will hold the name of some other property. A more specific data type
could be added to OData for this purpose.

• It may be desirable to allow a query to apply “as of”, “from”, and “between” to an
entire request, an entity set, or possibly at some finer level of granularity.

• OData might be extended to allow functions to apply to entity sets of any entity
type. This could greatly reduce the number of functions that need to be defined.

• A function that returns the current date and time is needed.

• The addition of Edm.Date to the OData primitive data types might be considered.

• It is unclear what value of precision should be used for functions that have
Edm.DateTime or Edm.DateTimeOffset parameters. Some databases support
precisions as high as 12 digits.

• How do we differentiate between POST and PUT/PATCH for temporal entities?
If we say that PUT may create a new entity for the specified time if one does not
already exist for that time, do I use POST only for a new key value? Can I use
PUT for new key values and say it always does an upsert?

• The current approach requires that any relationship to a temporal type be many in
order to handle cases where navigating the relationship could return different
versions of the entity (for example, if an employee was requested using a time
range, rather than a point in time, it may have multiple departments during that
time).

An alternative design would be to define relationships as always being tied to a
moment in time. This would allow more natural navigations, both in query (i.e.,
Employee('McDevitt')/Department/City eq 'London') and in generating strongly
typed results (String city = employee.Department.City).

Fixing the relationships at a moment in time is not an issue for "current" or "as of"
queries, which anchor navigation to the moment in time specified in the initial
request (in fact, it is what we propose), but it is an issue for navigating
relationships from entities retrieved using "from" and "between" requests. One
proposal was to define relationships for entities requested with a time span as
returning the related version as of the last valid time for the parent entity within
that queried timespan (i.e., the most recent department version for the given
employee version within the specified timespan).

 15

OData Extension for Temporal Data – Direction Document

• This document suggests that the edit link and id for the entity returned without
specifying a temporal context encodes the current time as the temporal context.
That is, /Employees('McDevitt') is the same as
application_time_as_of(currenttime())/Employees('McDevitt'). An alternate
design that would be closer to existing OData semantics for the default case
would be that queries with no temporal context specified would return ids and edit
links that also had no temporal context. That is, the edit link would always update
the current entity.

Additional Notes
• We considered making application start/end time part of the key so that versions

of each entity were unique. In this case we could have more comfortably exposed
all versions in an application time entity set and uniquely identified each.
However, clients may want to update the start and end times and OData does not
allow updating keys.

• We considered the following options for specifying a temporal period in the
request:

1. Use new system query option(s). The primary issue with this approach
was composability. We wanted the entry to be able to return a self/edit
link that the client could compose on top of, which favors the temporal
modifier to be in the path portion of the request

2. Use top-level Functions. We could have separate top level entry points
(functions?) for each temporal entity set (i.e.,
EmployeesByApplicationTime(…), EmployeesBySystemTime(…), etc.)
Once we made the simplification that a temporal period applied to an
entire request, this implied that any temporal request would have to be
rooted in one of these functions. This doesn't work well for composing
temporal aspects to an existing URL (i.e., if I wanted to see all
departments related to a particular employee for a specified period of time
independent of how that employee was retrieved, or if I wanted to
navigate from a non-temporal entity to a particular version of a temporal
entity).

3. Use Functions. We discussed applying functions to collections in order to
apply temporal aspects to the set. This made for an elegant composable
navigation model syntactically, but it seemed a little weird to define a
function on a collection which changed the membership of that collection.
Also, once we made the simplifying assumption that the entire request was
as of a particular temporal period, exposing as composable functions
provided more flexibility than we wanted.

 16

OData Extension for Temporal Data – Direction Document

4. Path Modifiers. We discussed including system-defined “function-like”
operators in the path that would mean “interpret the path from the
preceding collection on as being of this time”. The semantics of the
method affecting the membership of the collection identified by the
previous segment was a little strange as it wasn't a filter over the
membership but rather changed the version of the entities exposed by that
collection.

References
1. ISO/IEC 9075-2:2011 Information technology - Database languages - SQL - Part

2: Foundation (SQL/Foundation).

2. Temporal Features in SQL standard, Krishna Kulkarni, May 13, 2011,
http://metadata-standards.org/Document-library/Documents-by-number/WG2-
N1501-N1550/WG2_N1536_koa046-Temporal-features-in-SQL-standard.pdf.

3. Go Back in Time, IBM DM Magazine, Sasirekha Rameshkumar, July 15, 2011,
http://ibmdatamag.com/2011/07/go-back-in-time/.

4. A matter of time: Temporal data management in DB2 10, IBM developerWorks,
Cynthia M. Saracco, Matthias Nicola, Lenisha Gandhi, April 3, 2012,
http://www.ibm.com/developerworks/data/library/techarticle/dm-
1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf.

 17

http://metadata-standards.org/Document-library/Documents-by-number/WG2-N1501-N1550/WG2_N1536_koa046-Temporal-features-in-SQL-standard.pdf
http://metadata-standards.org/Document-library/Documents-by-number/WG2-N1501-N1550/WG2_N1536_koa046-Temporal-features-in-SQL-standard.pdf
http://ibmdatamag.com/2011/07/go-back-in-time/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf

	OData Extension for Temporal Data
	A Directional White Paper
	Introduction
	Status
	Authors
	Background
	Motivation
	Requirements
	Examples
	Design Principles
	Technical Direction
	Open questions, issues and work items
	Additional Notes
	References

