
wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 1 of 29

 1

Universal Business Language (UBL) 2

Code List Rules 3

Working Draft 01, 25 August 2002 4

Document identifier: 5
wd-ublndrsc-codelist-01 6

Location: 7
http://www.oasis-open.org/committees/ubl/ndrsc/archive/ 8

Editor: 9
Eve Maler, Sun Microsystems <eve.maler@sun.com> 10

Contributor: 11
Fabrice Desré, France Telecom 12

Abstract: 13
This specification provides rules for developing and using reusable code lists. This 14
specification was originally developed for the UBL Library and derivations thereof, but it 15
may also be used by other XML vocabularies as a mechanism for sharing code lists in 16
W3C XML Schema form. 17

Status: 18
This is a draft document. It may change at any time. 19
This document was developed by the OASIS UBL Naming and Design Rules 20
subcommittee [NDRSC]. Your comments are invited. Members of this subcommittee 21
should send comments on this specification to the ubl-ndrsc@lists.oasis-open.org list. 22
Others should subscribe to and send comments to the ubl-comment@lists.oasis-23
open.org list. To subscribe, send an email message to ubl-comment-request@lists.oasis-24
open.org with the word "subscribe" as the body of the message. 25
For information on whether any patents have been disclosed that may be essential to 26
implementing this specification, and any offers of patent licensing terms, please refer to 27
the Intellectual Property Rights section of the Security Services TC web page 28
(http://www.oasis-open.org/committees/security/). 29

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 2 of 29

Table of Contents 30

1 Introduction ... 3 31
1.1 Scope and Audience... 3 32
1.2 Terminology and Notation... 3 33

2 Guidance to the UBL Modeling Process... 4 34
3 Defining and Using Code Lists ... 5 35

3.1 Overview ... 5 36
3.2 XML Representations for ebXML-Based Codes... 6 37
3.3 Template and Rules for Code List Modules.. 8 38
3.4 Associating UBL Elements with Code List Types ... 10 39
3.5 Deriving New Code Lists from Old Ones .. 11 40

4 Rationale for the Selection of the Code List Mechanism (Non-Normative) 12 41
4.1 Requirements for a Schema Solution for Code Lists.. 12 42
4.2 Contenders.. 13 43

4.2.1 Enumerated List Method ... 14 44
4.2.2 QName in Content Method.. 15 45
4.2.3 Instance Extension Method ... 17 46
4.2.4 Single Type Method... 19 47
4.2.5 Multiple UBL Types Method .. 22 48
4.2.6 Multiple Namespaced Types Method .. 24 49

4.3 Analysis and Recommendation .. 27 50
5 References.. 28 51
Appendix A. Notices .. 29 52
 53

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 3 of 29

1 Introduction 54

This specification was developed by the OASIS UBL Naming and Design Rules subcommittee 55
[NDRSC] to provide rules for developing and using reusable code lists in W3C XML Schema 56
[XSD] form. It is organized as follows: 57

• Section 2 offers guidance to the OASIS UBL Technical Committee in incorporating 58
code lists into the UBL Library. 59

• Section 3 provides rules on how to define and use reuable code list schema 60
modules. 61

• Section 4 is non-normative. It provides the analysis that led to the recommendation of 62
the XSD datatype mechanism for creating reusable code lists. 63

1.1 Scope and Audience 64

The rules in this specification are designed to encourage the creation and maintenance of code 65
list modules by their proper owners as much as possible. It was originally developed for the UBL 66
Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used 67
with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-68
list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in 69
XML-encoded code lists will emerge for all XML vocabularies. 70
This specification assumes that the reader is familiar with the UBL Library and with the ebXML 71
Core Components concepts and ISO 11179 concepts that underlie it. 72

1.2 Terminology and Notation 73

The text in this specification is normative for UBL Library use unless otherwise indicated. The key 74
words must, must not, required, shall, shall not, should, should not, recommended, may, and 75
optional in this specification are to be interpreted as described in [RFC2119]. 76
Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for 77
additional definitions of terms. 78
Core Component names from ebXML are in italic. 79

Example code listings appear like this. 80

Note: Non-normative notes and explanations appear like this. 81

Conventional XML namespace prefixes are used throughout this specification to stand for their 82
respective namespaces as follows, whether or not a namespace declaration is present in the 83
example: 84

• The prefix xs: stands for the W3C XML Schema namespace [XSD]. 85

• The prefix xhtml: stands for the XHTML namespace. 86

• The prefix iso3166: stands for a namespace assigned by a fictitious code list module 87
for the ISO 3166-1 country code list. 88

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 4 of 29

2 Guidance to the UBL Modeling Process 89

Where possible, the UBL Library should identify and use external standardized code lists rather 90
than develop its own UBL-native code lists. Designing an internal code list is justified in cases 91
where, for example, an existing external code list needs to be extended, or where no suitable 92
external code list exists. The lack of “easy-to-read” or “easy-to-understand” codes in an 93
otherwise suitable code list is not sufficient reason to define a UBL-native code list. 94
Where the UBL Library does create its own native code lists, the lists should be globally scoped 95
(designed for reuse and sharing, using named types and namespaced schema modules) rather 96
than locally scoped (not designed for others to use and therefore hidden from their use). 97
Globally scoped code lists are much preferable because the additional work is negligible and the 98
benefits of reuse are great. 99
For each UBL construct containing a code, the UBL documentation must identify the zero or more 100
code lists that must be minimally supported when the construct is used. The rules in this 101
specification for how to represent code lists in UBL schema modules have the effect of 102
encapsulating this minimal-support information in schema form as well. It is assumed that whole 103
code lists, and not subsets of those code lists, will be identified; however, users of the UBL 104
Library may identify any subset they wish from an identified code list for their own trading 105
community conformance requirements. 106

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 5 of 29

3 Defining and Using Code Lists 107

This section provides rules for developing and using reusable code lists in XSD form. These rules 108
were developed for the UBL Library and derivations thereof, but they may also be used by other 109
code-list-maintaining agencies as guidelines for any XML vocabulary wishing to share code lists. 110

Note: The OASIS UBL Naming and Design Rules subcommittee is willing to help 111
any organization that wishes to apply these rules but does not have the requisite 112
XSD expertise. 113

3.1 Overview 114

This section introduces important terminology and concepts. 115
UBL uses codes in two ways: 116

• As first-order business information entities (BIEs) in their own right. For example, 117
one property of an address might be a code indicating the country. This information 118
appears in an element, according to the Naming and Design Rules specification 119
[NDR]. 120

• As second-order information that qualifies some other BIE. For example, any 121
information of the Amount core component type must have a supplementary 122
component (metadata) indicating the currency code. This information appears in an 123
attribute. 124

Every first-order code appearing in the UBL Library must be double-wrapped. The inner code 125
element is dedicated to holding codes only from a single list. For example, the 126
ISO3166CountryCode element below is designed to hold codes only from the ISO 3166-1 list of 127
two-letter country codes; here it happens to contain the code for Belgium. The inner code element 128
is wrapped in an outer code element, in this case a CountryIdentificationCode element 129
representing a BIE for the country portion of an address. 130

<Address> 131
 ... 132
 133
 <!-- outer code element --> 134
 <CountryIdentificationCode> 135
 136
 <!-- inner code element --> 137
 <ISO3166CountryCode>BE</ISO3166CountryCode> 138
 </CountryIdentificationCode> 139
 140
</Address> 141

The inner element is associated with two XSD datatypes that uniquely define the ISO 3166-1 142
code list in a way that allows for efficient reuse: 143

• A simple type (code content type) represents the string of characters supplying the 144
code inside the element’s start- and end-tags. It provides constraints that ensure, to 145
one degree or another, that the code supplied is a legitimate member of the list. 146

• A complex type (code list type) represents the code list as a whole. It provides 147
attributes that hold metadata about the code list. 148

The code content type is connected to the code type using the XSD “simple content” mechanism, 149
which allows the element to have both string content and attributes: 150

<xs:simpleType name=”...code content type name...”> 151
 ... 152
</xs:simpleType> 153
 154

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 6 of 29

<xs:complexType name=”...code type name...”> 155
 ... 156
 <xs:simpleContent> 157
 <xs:extension base="...code content type name reference..."> 158
 <xs:attribute name="..."> 159
 ... 160
 </xs:attribute> 161
 ... 162
 </xs:simpleContent> 163
</xs:complexType> 164

These two types should be defined in an XSD schema module dedicated to this purpose (a code 165
list module) and must have documentation embedded in them that identifies their adherence to 166
the rules in this specification. The code list module must have a proper target namespace for 167
reference by XML vocabularies that wish to use it. 168

Note: The XSD form prescribed by this specification is not intended to preclude 169
additional definitions of the same code list in other forms, such as other schema 170
languages or different XSD representations. The UBL Library requires an XSD 171
form because the library is itself in XSD. 172

Code-list-maintaining agencies are encouraged to create their own code list modules; these 173
modules are considered external as far as UBL is concerned.The UBL Library, where it has 174
occasion to define its own code lists, must create its own native code list modules. In some 175
cases, an external agency that owns a code list in which UBL has an interest might choose (for 176
the moment or forever) not to create a code list module for it. In these cases, UBL must define a 177
code list module on behalf of the agency. It is expected that these orphan code list modules will 178
not have the same validating power, nor be maintained with as much alacrity, as other code list 179
modules with proper owners. 180
To use a code list module, the UBL Library must associate the relevant type with a native 181
element. For example: 182

<xs:element 183
 name=”ISO3166CountryCode” 184
 type=”...code type name reference...”> 185
 ... 186
</xs:element> 187

3.2 XML Representations for ebXML-Based Codes 188

Since the UBL Library is based on the ebXML Core Components (currently at V1.8; see 189
[CCTS1.8]), the supplementary components identified for the Code. Type core component type 190
are used to identify a code as being from a particular list. According to the UBL Naming and 191
Design Rules [NDR], the content component is represented as an XML element and the 192
supplementary components are represented as XML attributes. [ISSUE: Note that the current 193
V1.85 work on CCTS may require changes to this specification.] 194
Following are the components associated with Code.Type and the required representation in the 195
code list module and XML instance. 196

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 7 of 29

 197

Component
Name

Component Definition XML Form Name

Code. Content A character string (letters,
figures or symbols) that for
brevity and/or language
independence may be used
to represent or replace a
definitive value or text of an
attribute

Simple content of an
element.

Not dictated by this
specification.
Where the element
is in the UBL
Library, the Naming
and Design Rules
specification [NDR]
provides rules.

Code List.
Identifier

The name of a list of codes Attribute. Required to
be supplied as either
a “live” value or a
default value.

ID

Code List. Agency.
Identifier

An agency that maintains
one or more code lists

Attribute. Required to
be supplied as either
a “live” value or a
default value.
[ISSUE: Usually the
agency ID is itself a
code. Does third-
order metadata need
to be provided
indicating the code
list?]

agencyID

Code List. Version.
Identifier

The version of the code list Attribute. Required to
be supplied as either
a “live” value or a
default value.

versionID

Code. Name The textual equivalent of
the code content

Attribute. Optional to
define and supply.

codeName

Language. Code The identifier of the
language used in the
corresponding text string (in
ISO 639 form)

Attribute. Optional to
supply if the attribute
containing the Code.
Name component
above is not defined
or supplied. Its value
is interpreted as
being in ISO 639
form.
[Issue: Need to
document the
appropriate code list
ID, agency ID, and
code list version ID
values for the choice
of ISO 639 here.]

languageCode

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 8 of 29

3.3 Template and Rules for Code List Modules 198

Following is a template to follow in creating a code list module. This hypothetical ISO 3166-1 199
code list for country codes is used merely as an example. A text version of this template is 200
available [CLTemplate]. 201

Note: The UN/ECE organization has made available an XSD representation of 202
the ISO 3166-1 code list [3166-XSD]. While that XSD representation serves a 203
purpose that is somewhat different from that targeted in this specification, it is 204
useful to use as a reference while studying this template. 205

[ISSUE: The embedded documentation shown in this template is not yet approved. The theory is 206
that the supplementary components describing the code list should be on the code content type, 207
as well as the code type, so that the code content type can be safely used for second-order code 208
attributes as well.] 209

<?xml version="1.0" encoding="UTF-8"?> 210
<xs:schema 211
 xmlns=”http://www.w3.org/2001/XMLSchema” 212
 xmlns:xs=”http://www.w3.org/2001/XMLSchema” 213
 xmlns:xhtml=”...http://www.w3.org/1999/xhtml...”> 214
 targetNamespace="...namespace for ISO 3166 code list module..." 215
 xmlns:iso3166="...namespace for ISO 3166 code list module..."> 216
 <xs:annotation> 217
 <xs:documentation> 218
This code list module template corresponds to draft 01 of the 219
OASIS UBL NDR code list rules document (wd-ublndrsc-codelist-01). 220
See that document for information on how to use this template: 221
http://www.oasis-open.org/committees/ubl/ndrsc/archive/. 222
 </xs:documentation> 223
 </xs:annotation> 224
 <xs:simpleType name=”iso3166:CodeContentType”> 225
 <xs:annotation> 226
 <xs:documentation> 227
 <xhtml:div class=”Core_Component_Type”> 228
 <xhtml:p>Code. Type</xhtml:p> 229
 </xhtml:div> 230
 </xs:documentation> 231
 <xs:documentation> 232
 <xhtml:div class=”Code_List._Identifier”> 233
 <xhtml:p>ISO 3166</xhtml:p> 234
 </xhtml:div> 235
 </xs:documentation> 236
 <xs:documentation> 237
 <xhtml:div class=”Code_List._Agency._Identifier”> 238
 <xhtml:p>6</xhtml:p> 239
 </xhtml:div> 240
 </xs:documentation> 241
 <xs:documentation> 242
 <xhtml:div class=”Code_List._Version._Identifier”> 243
 <xhtml:p>0.2</xhtml:p> 244
 </xhtml:div> 245
 </xs:documentation> 246
 </xs:annotation> 247
 <xs:extension base=”xs:token”> 248
 <xs:enumeration value=”AF”/> 249
 <xs:enumeration value=”AL”/> 250
 <xs:enumeration value=”DZ”/> 251
 . . . 252
 </xs:extension> 253
 </xs:simpleType> 254
 255
 <xs:complexType name=”iso3166:CodeType”> 256

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 9 of 29

 <xs:annotation> 257
 <xs:documentation> 258
 <xhtml:div class=”Core_Component_Type”> 259
 <xhtml:p>Code. Type</xhtml:p> 260
 </xhtml:div> 261
 </xs:documentation> 262
 <xs:documentation> 263
 <xhtml:div class=”Code_List._Identifier”> 264
 <xhtml:p>ISO 3166</xhtml:p> 265
 </xhtml:div> 266
 </xs:documentation> 267
 <xs:documentation> 268
 <xhtml:div class=”Code_List._Agency._Identifier”> 269
 <xhtml:p>6</xhtml:p> 270
 </xhtml:div> 271
 </xs:documentation> 272
 <xs:documentation> 273
 <xhtml:div class=”Code_List._Version._Identifier”> 274
 <xhtml:p>0.2</xhtml:p> 275
 </xhtml:div> 276
 </xs:documentation> 277
 </xs:annotation> 278
 <simpleContent> 279
 <xs:extension base="iso3166:CodeContentType"> 280
 <xs:attribute name="ID" 281
 type="xs:token" fixed=”ISO 3166”/> 282
 <xs:attribute name="agencyID" 283
 type="xs:token" fixed=”6”/> 284
 <xs:attribute name="versionID" 285
 type="string" fixed=”0.2”/> 286
 </simpleContent> 287
 </xs:complexType> 288
</xs:schema> 289

Following are the rules for defining a code list module: 290

1. All newly defined types must be named; they must not be anonymous. 291

Note: Only locally scoped code lists should use anonymous types, to prevent the 292
types from being associated with multiple elements or with elements in other 293
namespaces. 294

2. A properly named target namespace must be assigned to the code list schema module. It is 295
recommended that the types be defined in their own dedicated schema module, so that the 296
namespace unambiguously refers to a single code list. 297

3. In the code list type, attributes must be defined at least for the code list identifier (ID), code 298
list agency identifier (agencyID), and code list version identifier (versionID). Defining 299
attributes for the code name (codeName) and its language code (languageCode) is 300
optional. The attributes may be associated with any appropriate simple types. The attribute 301
values need not be fixed; a default could be provided, or the value could simply be required 302
to appear in the instance. 303

4. The XSD definitions should be made as reasonably constraining as possible, defining value 304
defaults or fixed values for supplementary components and circumscribing the valid values of 305
the code content without compromising the maintainability goals of the agency. It might make 306
sense not to use enumeration but rather to use pattern-matching regular expressions or to 307
avoid strict code validation entirely. 308

5. Embedded documentation must be provided as shown in the template above in order to 309
indicate the appropriate code list metadata. If the code list module serves for multiple 310
versions of the same code list, the documentation block for Code List. Version. Identifier is 311

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 10 of 29

optional. See the Naming and Design Rules specification [NDR] for more information on 312
embedded documentation rules. 313

6. A global element in the agency’s namespace may optionally be defined and associated with 314
the code list type. Note that the UBL Library currently does not plan to use such elements, 315
but it might be helpful for use in other XML vocabularies that import global elements from 316
other namespaces. 317

Note: Various features of XSD could be used for purposes not related to this 318
specification, such as attribute groups (to manage the attributes for 319
supplementary components) and the use of non-built-in XSD simple types for the 320
attribute values (for tighter management of constraints on these values). 321

3.4 Associating UBL Elements with Code List Types 322

No matter whether type pairs for code lists are defined by UBL or by an external agency, the UBL 323
Library must define its own elements for the provision of the actual codes in an instance. (This is 324
according to the rule regarding local unqualified elements in the Naming and Design Rules [NDR] 325
specification.) This definition is done in the following manner. 326
First, the relevant code list module must be imported into the relevant UBL Library module. 327

<xs:import 328
 namespace="...namespace for ISO 3166 code list module..." 329
 schemaLocation="...location of code list module..." /> 330

Then, an outer code element representing the code BIE must be set up to hold one or more inner 331
code elements. Here, a CountryIdentificationCode element is assumed to require a code 332
from the hypothetical ISO 3166 locale code list defined in Section 3.3. Thus, it needs to contain 333
an ISO3166LocaleCode element associated with the iso3166:LocaleCodeType type. 334
[ISSUE: We need some rules around the naming and construction of types such as 335
CountryIdentificationCodeType, with the types being generated based on the contents of 336
the “Code Lists/Standards” column of the spreadsheet. These rules should probably go in the 337
NDR document, not here.] 338

<xs:complexType name="Address"> 339
 ... 340
 <xs:sequence> 341
 ...other content... 342
 <xs:element 343
 name="CountryIdentificationCode" 344
 type="ubl:CountryIdentificationCodeType"/> 345
 </xs:sequence> 346
</xs:complexType> 347
 348
<xs:complexType name=”CountryIdentificationCodeType”> 349
 ... 350
 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/> 351
</xs:complexType> 352

In this case, only one code list is allowed to be used for country codes. However, it is possible for 353
the outer element to allow a choice of one or more inner elements, each containing a code from a 354
different list. For example, if a country code from Codes “R” Us were also allowed, the type 355
definition for CountryIdentificationCodeType would change as follows (assuming the 356
Codes “R” Us module were properly imported): 357

<xs:complexType name="Address"> 358
 ... 359
 <xs:sequence> 360
 ...other content... 361
 <xs:element 362
 name="CountryIdentificationCode" 363
 type="ubl:CountryIdentificationCodeType"/> 364

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 11 of 29

 </xs:sequence> 365
</xs:complexType> 366
 367
<xs:complexType name=”CountryIdentificationCodeType”> 368
 ... 369
 <xs:choice> 370
 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/> 371
 <xs:element name=”CodesRUsCode” type=”codesrus:CodeType”/> 372
 </xs:choice> 373
</xs:complexType> 374

In this way, minimal support for a selection of code lists can be indicated not just through 375
normative prose but through formal schema constraints as well. 376

3.5 Deriving New Code Lists from Old Ones 377

[ISSUE: This section is to be supplied. It needs to show the proper way to build new code lists, 378
e.g. by unioning multiple existing code lists and by subsetting existing code lists manually.] 379

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 12 of 29

4 Rationale for the Selection of the Code List 380

Mechanism (Non-Normative) 381

This non-normative section describes the analysis that was undertaken by the OASIS UBL 382
Naming and Design Rules subcommittee to recommend a particular XSD-based solution for the 383
encoding of code lists. 384
Note that some of the examples in this section may be incorrect or obsolete, without 385
compromising the results of the analysis. If you notice problems, please report them and we will 386
attempt to fix them. Otherwise, please consider this section historical. 387

4.1 Requirements for a Schema Solution for Code Lists 388

Following are our major requirements on potential code list schemes for use in the UBL library 389
and customizations of that library. For convenience, a weighted point system is used for scoring 390
the solutions against the requirements. 391

• Semantic clarity 392
The ability to “dereference” the ultimate normative definition of the code being used. 393
The supplementary components for “Code.Type” CCTs are the expected way of 394
providing this clarity, but there are many ways to supply values for these components 395
in XML, and it’s even possible to supply values in some non-XML form that can then 396
be referenced by the XML form. 397

Points: Low = 0, Medium = 2, High = 4 398

• Interoperability 399
The sharing of a common understanding of the limited set of codes that are expected 400
to be used. There is a continuum of possibilities here. For example, a schema 401
datatype that allows only a hard-coded enumerated list of code values provides 402
“hard” (but inflexible) interoperability. On the other hand, merely documenting the 403
intended shared values is more flexible but somewhat less interoperable, since there 404
are fewer penalties for private arrangements that go outside the standard 405
boundaries. This requirement is related to, but distinct from, validatability and context 406
rules friendliness. 407

Points: Low = 0, Medium = 2, High = 4 408

• External maintenance 409
The ability for non-UBL organizations to create XSD schema modules that define 410
code lists in a way that allows UBL to reuse them without modification on anyone’s 411
part. Some standards bodies are already starting to do this, though we recognize that 412
others may never choose to create such modules. 413

Points: Low = 0, Medium = 2, High = 4 414

• Validatability 415
The ability to use XSD to validate that a code appearing in an instance is legitimately 416
a member of the chosen code list. For the purposes of the analysis presented here, 417
“validatability” will not measure the ability for non-XSD applications (for example, 418
based on perl or Schematron) to do validation. 419

Points: Low = 0, Medium = 2, High = 4 420

• Context rules friendliness 421

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 13 of 29

The ability to use expected normal mechanisms of the context methodology for 422
allowing codes from additional lists to appear (extension) and for subsetting the 423
legitimate values of existing lists (subsetting), without adding custom features just for 424
code lists. This has lower point values because we expect it to be easy to design 425
custom features for code lists. For example, the following is a mock-up of one 426
approach that could be used: 427

<CodeList fromType="LocaleCodeType" toCode="MyCodeType"> 428
<Add>JP</Add> 429
<Remove>DE</Remove> 430
</CodeList> 431

Points: Low = 0, Medium = 1, High = 2 432

• Upgradability 433
The ability to begin using a new version of a code list without the need for upgrading, 434
modifying, or customizing the schema modules being used. This has lower point 435
values because requirements related to interoperability take precedence over a 436
“convenience requirement”. 437

Points: Low = 0, Medium = 1, High = 2 438

• Readability 439
A representation in the XML instance that provides code information in a clear, easily 440
readable form. This is a subjective measurement, and it has lower point values 441
because although we want to recognize readability when we find it, we don’t want it 442
to become more important than requirements related to interoperability. 443

Points: Low = 0, Medium = 1, High = 2 444

4.2 Contenders 445

The methods for handling code lists in schemas are as follows: 446
• The enumerated list method, using the classic method of statically enumerating the 447

valid codes corresponding to a code list in an XSD string-based type internally in UBL 448
• The QName in content method, involving the use of XML Namespaces-based “qualified 449

names” in the content of elements, where the namespace URI is associated with the 450
supplementary components 451

• The instance extension method, where a code is provided along with a cross-reference 452
to somewhere in the same instance to the necessary supplementary information 453

• The single type method, involving a single XSD type that sets up attributes for supplying 454
the supplementary components directly on all elements containing codes 455

• The multiple UBL types method, where each element dedicated to containing a code 456
from a particular code list is bound to a unique UBL type, which external organizations 457
must derive from 458

• The multiple namespaced types method, where each element dedicated to containing 459
a code from a particular code list is bound to a unique type that is qualified with a 460
(potentially external) namespace 461

Throughout, an element LocaleCode defined as part of the complex type LanguageType is 462
used as an example element in a sample instance, and UBL library schema definitions are 463
demonstrated along with potential opportunities for XSD-style derivation. Each method is 464
assessed to see which requirements it satisfies. 465

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 14 of 29

4.2.1 Enumerated List Method 466

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, 467
SGML. It involves creating a type in UBL that literally lists the allowed codes for each code list. 468

4.2.1.1 Instance 469

The enumerated list method results in instance documents with the following structure. 470
<LocaleCode>code</LocaleCode> 471

4.2.1.2 Schema Definitions 472

The schema definitions to support this might look as follows. 473
<xs:simpleType name="LocaleCodeType"> 474
 <xs:restriction base="xs:token"> 475
 <xs:enumeration value="DE"/> 476
 <xs:enumeration value="FR"/> 477
 <xs:enumeration value="US"/> 478
 . . . 479
 </xs:restriction> 480
</xs:simpleType> 481
 482
<xs:element name="LocaleCode" type="LocaleCodeType"/> 483

4.2.1.3 Derivation Opportunities 484

Using the XSD feature for creating unions of simple types, it is possible to extend the valid values 485
of such an enumeration. However, it seems that we can't restrict the list of valid values. This is 486
because <xs:enumeration> is not a type construction mechanism, but a facet. 487
The base schema shown above could be extended to support new codes as follows: 488

<xs:simpleType name="OtherCodeType"> 489
 <xs:restriction base="xs:token"> 490
 <xs:enumeration value="SP"/> 491
 <xs:enumeration value="DK"/> 492
 <xs:enumeration value="JP"/> 493
 . . . 494
 </xs:restriction> 495
</xs:simpleType> 496
 497
<xs:element name="MyLocalCode"> 498
 <xs:simpleType> 499
 <xs:union memberTypes="LocaleCodeType OtherCodeType"/> 500
 </xs:simpleType> 501
</xs:element> 502

4.2.1.4 Assessment 503

Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL 504
itself defeats our hope that code lists can be defined and maintained in a decentralized fashion. 505

Requirement Score Rank

Semantic clarity 0 Low
The supplementary components of the code
list could be provided as schema
annotations, but they are not directly
accessible as first-class information in the
instance or schema.

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 15 of 29

Requirement Score Rank

Interoperability 4 High
The allowed values are defined by a closed
list defined in the schema itself.

External maintenance 0 Low
We have to modify the type union in the
base schema to "import" the new codes.

Validatability 4 High
The allowed values are defined by a closed
list defined in the schema itself.

Context rules friendliness 0 Low
The allowed values are defined in the
middle of a simple type, whereas the
context methodology so far only knows
about elements and attributes.

Upgradability 0 Low
A schema extension would be needed to
add any new codes defined in a new
version.

Readability 2 High
The instance is as compact as it can be,
with no extraneous information hindering
the visibility of the code itself.

Total 11

4.2.2 QName in Content Method 506

The QName method was proposed in V04 of the code lists paper. 507

4.2.2.1 Instance 508

With the QName method, the code is an XML qualified name, or “QName”, consisting of a 509
namespace prefix and a local part separated by a colon. Following is an example of a QName 510
used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local 511
part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which 512
could have been on any ancestor element). 513

<LocaleCode 514
 xmlns:iso3166=”http://www.oasis-515
open.org/committees/ubl/ns/iso3166”> 516
iso3166:US 517
</LocaleCode> 518

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns 519
attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for 520
the code list from which the code comes. The local part identifies the actual code in the list that is 521
desired. 522

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 16 of 29

The namespace URI shown here is just an example. However, it is likely that the UBL library itself 523
would have to define a set of common namespace URIs in all cases where the owners of external 524
code lists have not provided a URI that could sensibly be used as a code list namespace name. 525

4.2.2.2 Schema Definitions 526

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL 527
should make reference to a UBL type based on QName wherever a code is allowed to appear, so 528
that this particular use of QNames in UBL can be isolated and documented. For example: 529

<xs:simpleType name=”CodeType”> 530
 <xs:restriction base=”QName”/> 531
</xs:simpleType> 532
 533
<xs:complexType name="LanguageType" id="UBL000013"> 534
 <xs:sequence> 535
 <xs:element name="IdentificationCode" . . .></xs:element> 536
 <xs:element name="Name" . . .></xs:element> 537
 <xs:element name="LocaleCode" 538
 type="cct:CodeType" id="UBL000016" minOccurs="0"> 539
 </xs:element> 540
 </xs:sequence> 541
</xs:complexType> 542

The documentation for the LocaleCode element should indicate the minimum set of code lists 543
that are expected to be used in this attribute. However, the attribute can contain codes from any 544
other code lists, as long as they are in the form of a QName. 545
Applications that produce and consume UBL documents are responsible for validating and 546
interpreting the codes contained in the documents. 547

4.2.2.3 Derivation Opportunities 548

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, 549
and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on 550
the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in 551
nature) are not a sure bet for controlling values. 552

4.2.2.4 Assessment 553

The idea of using XML namespaces to identify code lists is potentially useful, but because this 554
method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both 555
semantic clarity and validatability suffer. 556

Requirement Score Rank

Semantic clarity 1.5 Low to medium
You have to go through a level of indirection, and a
complicated one at that (because QNames in content
are pseudo-illegitimate and are not supported properly
in many XML tools), in order to refer back to the
namespace URI. Further, the namespace URI might not
resolve to any useful information. However, in cases
where the URI is meaningful or sufficient documentation
of the code list exists (something we could dictate by
fiat), clarity can be achieved.

Interoperability 0 Low
The shared understanding of minimally supported code

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 17 of 29

Requirement Score Rank
lists would have to be conveyed only in prose.

External maintenance 0 Low
There is no good way to define a schema module that
controls QNames in content.

Validatability 0 Low
All validation is pushed off to the application.

Context rules friendliness 0 Low
This method is similar to the single type method in this
respect. If extensions and subsets are to be managed
by means of a context rules document at all, there would
need to be a code list-specific mechanism added to
reflect this method. If extensions and subsets don’t need
to be managed by means of context rules because
everything happens in the downstream application,
there is no need to do anything at all.

Upgradability 2 High
You need to have a different URI for each version of a
code list, but if you do this, using a new version is easy:
You just use a prefix that is bound to the URI for the
version you want. However, there is no magic in
namespace URIs that allows version information to be
recognized as such; the whole URI is just an
undifferentiated string.

Readability 1 Medium
The representation is very compact because the
supplementary component details are deferred to
another place (and format) entirely, but the QName
format and the need for the xmlns: attribute make the
information a little obscure.

Total 4.5

4.2.3 Instance Extension Method 557

In the instance extension method, a code is provided along with a cross-reference to the ID of an 558
element in the same instance that provides the necessary code list supplementary information. 559
One XML instance might contain many code list declarations. 560

4.2.3.1 Instance 561

The instance extension method results in instance documents with something like the following 562
structure. The CodeListDecl element sets up the supplementary information for a code list, and 563
then an element provides a code (here, LocaleCode) also refers to the ID of the relevant 564
declaration. 565

<CodeListDecl ID=”ID-LocaleCode” 566
 CodeListIdentifier=”ISO3166” 567
 CodeListAgencyIdentifier=”ISO” 568
 CodeListVersionIdentifier=”1.0”/> 569
. . . 570

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 18 of 29

<LocaleCode IDRef=”ID-LocaleCode”> 571
US 572
</LocaleCode> 573

4.2.3.2 Schema Definitions 574

The schema definitions to support this might look as follows. 575
<xs:element name=”CodeListDeclaration” type=”CodeListDeclType”/> 576
<xs:complexType name=”CodeListDeclType”> 577
 <xs:attribute name="CodeListIdentifier" type="xs:token"/> 578
 <xs:attribute name="CodeListAgencyIdentifier" type="xs:token"/> 579
 <xs:attribute name="CodeListVersionIdentifier" type="xs:token"> 580
</xs:complexType> 581
. . . 582
<xs:element name=LocaleCode” type=”LocaleCodeType”/> 583
<xs:complexType name=”LocaleCodeType”> 584
 <xs:simpleContent> 585
 <xs:extension base="xs:token"> 586
 <xs:attribute name="IDRef" type="xs:IDREF"/> 587
 </xs:extension> 588
 </xs:simpleContent> 589
</xs:complexType> 590

 591

4.2.3.3 Derivation Opportunities 592

Since code lists are declared in the instance document, there are not many opportunities for 593
schema type derivation. Additional attributes for supplementary components could be added by 594
this means, though this is unlikely to be needed. 595

4.2.3.4 Assessment 596

This method allows for great flexibility, but leaves validatability and interoperability nearly out of 597
the picture. 598
 599

Requirement Score Rank

Semantic clarity 3 Medium to high
All of the necessary information is present in the
code list declaration, but retrieving it must be done
somewhat indirectly.

Interoperability 1 Low to medium
Standard XML entities could be provided that define
the desired code lists, but there is no a machine-
processable way to ensure that they get associated
with the right code-usage elements.

External maintenance 2 Medium
Using XML entities, external organizations could
create and maintain their own code list declarations.

Validatability 0 Low
Using XSD, there is no way to validate that the
usage of a code matches the valid codes in the
referenced code list.

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 19 of 29

Requirement Score Rank

Context rules friendliness 0 Low
Since this method resides primarily in the instance
and not the schema, the context rules have little
opportunity to operate on code list definitions.

Upgradability 2 High
It is easy to declare a code list with a higher version
directly in the instance.

Readability 1.5 Medium to high
The instance looks fairly clean, but the code list
choice is a bit opaque.

Total 9.5

4.2.4 Single Type Method 600

The single type method is currently being used in UBL, as a result of a perl script running over the 601
Library Content SC’s modeling spreadsheet. The script makes use of our decision to use 602
attributes for supplementary components of a CCT and elements for everything else. 603

4.2.4.1 Instance 604

The single type method results in instance documents with the following structure. 605
<LocaleCode 606
 CodeListIdentifier=”ISO3166” 607
 CodeListAgencyIdentifier=”ISO” 608
 CodeListVersionIdentifier=”1.0”> 609
US 610
</LocaleCode> 611

4.2.4.2 Schema Definitions 612

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation 613
elements). Notice that CodeType is a complex type that sets up a series of attributes (the 614
supplementary components for a code) on an element that has simple content of 615
CodeContentType (the code itself). Also note that, although a CodeName attribute is defined 616
along with its corresponding type, this is a duplicate component for the code itself, and need not 617
be used in the instance. 618

<xs:simpleType name="CodeContentType" id="000091"> 619
 <xs:restriction base="token"/> 620
</xs:simpleType> 621
 622
<xs:simpleType name="CodeListAgencyIdentifierType" id="000093"> 623
 <xs:restriction base="token"/> 624
</xs:simpleType> 625
 626
<xs:simpleType name="CodeListIdentifierType" id="000092"> 627
 <xs:restriction base="token"/> 628
</xs:simpleType> 629
 630
<xs:simpleType name="CodeListVersionIdentifierType" id="000099"> 631
 <xs:restriction base="token"/> 632
</xs:simpleType> 633
 634

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 20 of 29

<xs:simpleType name="CodeNameType" id="000100"> 635
 <xs:restriction base="string"/> 636
</xs:simpleType> 637
 638
<xs:simpleType name="LanguageCodeType" id="000075"> 639
 <xs:restriction base="language"/> 640
</xs:simpleType> 641
 642
<xs:complexType name="CodeType" id="000089"> 643
 <xs:simpleContent> 644
 <xs:extension base="cct:CodeContentType"> 645
 <xs:attribute name="CodeListIdentifier" 646
 type="cct:CodeListIdentifierType"> 647
 </xs:attribute> 648
 <xs:attribute name="CodeListAgencyIdentifier" 649
 type="cct:CodeListAgencyIdentifierType"> 650
 </xs:attribute> 651
 <xs:attribute name="CodeListVersionIdentifier" 652
 type="cct:CodeListVersionIdentifierType"> 653
 </xs:attribute> 654
 <xs:attribute name="CodeName" type="cct:CodeNameType"> 655
 </xs:attribute> 656
 <xs:attribute name="LanguageCode" 657
 type="cct:LanguageCodeType"> 658
 </xs:attribute> 659
 </xs:extension> 660
 </xs:simpleContent> 661
</xs:complexType> 662
 663
<xs:complexType name="LanguageType" id="UBL000013"> 664
 <xs:sequence> 665
 <xs:element name="IdentificationCode" . . .></xs:element> 666
 <xs:element name="Name" . . .></xs:element> 667
 <xs:element name="LocaleCode" type="cct:CodeType" 668
 id="UBL000016" 669
 minOccurs="0"> 670
 </xs:element> 671
 </xs:sequence> 672
</xs:complexType> 673

4.2.4.3 Derivation Opportunities 674

While it is possible to derive new simple types that restrict other simple types (including built-in 675
types such as xs:token, used here for the actual code and other components), it is not possible 676
to use such derived simple types directly in a UBL attribute such as 677
CodeListVersionIdentifier without defining a whole new element structure. This is 678
because you need to use the XSD xsi:type attribute to “swap in” the derived type for the 679
ancestor, and you can’t put an attribute on an attribute in XML. 680

4.2.4.4 Assessment 681

This method is strong on semantic clarity because of the attributes for supplementary 682
components, but it loses interoperability and schema flexibility because it is using a single type for 683
everything. 684

Requirement Score Rank

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 21 of 29

Requirement Score Rank

Semantic clarity 4 High
The various supplementary components for the
code are provided directly on the element that
holds the code, allowing the code to be uniquely
identified and looked up.

Interoperability 0 Low
The shared understanding of minimally supported
code lists would have to be conveyed only in
prose.

External maintenance 0 Low
There is no particular XSD formalism provided for
encoding the details of a code list; thus, there is
no way for external organizations to create a
schema module that works smoothly with the UBL
library. However, there are no barriers to creating
a code list (in some other form) for use in any
code-based UBL element.

Validatability 0 Low
There is no XSD structure for testing the
legitimacy of any particular codes. All validation
would have to happen at the application level
(where the application uses the attribute values to
find some code list in which it can do a lookup of
the code provided).

Context rules friendliness 0 Low
If extensions and subsets are to be managed by
means of a context rules document at all, there
would need to be a code list-specific mechanism
added to reflect this method. If extensions and
subsets don’t need to be managed by means of
context rules because everything happens in the
application, there is no need to do anything at all.

Upgradability 2 High
A document creator could merely change the
CodeListVersionIdentifier value and
supply a code available only in the new version.

Readability 1.5 Medium to high
The code is accompanied by “live” supplementary
components in the instance, which swells the size
of instance. However, the latter are only in
attributes, and it is nonetheless very clear what
information is being provided.

Total 7.5

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 22 of 29

4.2.5 Multiple UBL Types Method 685

In this method, each list is associated with a unique element, whose content is a code from that 686
list. The element is bound to a type that is declared in the UBL library; the type ensures that the 687
Code.Type supplementary components are documented. 688

4.2.5.1 Instance 689

The multiple UBL types method results in instance documents with the following structure. 690
<LocaleCode> 691
<ISO3166Code>code</ISO3166Code> 692
</LocaleCode> 693

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement 694
that is dedicated to codes from a particular list. If codes from multiple lists are allowed here, the 695
element could contain any one of a choice of subelements, each dedicated to a different code list. 696

4.2.5.2 Schema Definitions 697

There are many different ways that UBL can define the ISO3166Code element, but it probably 698
makes sense to base it on something like the single type method (for the supplementary 699
component attributes) and to use the enumerated type method where practical (for the primary 700
component). Thus, the optimal form of the multiple UBL types method is really a hybrid method. 701
The schema definition of the types governing the ISO3166Code element might look like this: 702

<xs:simpleType name=”ISO3166CodeContentType”> 703
 <xs:extension base=”token”> 704
 <xs:enumeration value=”DE”/> 705
 <xs:enumeration value=”FR”/> 706
 <xs:enumeration value=”US”/> 707
 . . . 708
 </xs:extension> 709
</xs:simpleType> 710
 711
<xs:complexType name=”ISO3166CodeType”> 712
 <simpleContent> 713
 <xs:extension base=" ISO3166CodeContentType"> 714
 <xs:attribute name="CodeListIdentifier" 715
 type="cct:CodeListIdentifierType" fixed=”ISO3166”/> 716
 <xs:attribute name="CodeListAgencyIdentifier" 717
 type="cct:CodeListAgencyIdentifierType" 718
 fixed=”ISO”/> 719
 <xs:attribute name="CodeListVersionIdentifier" 720
 type="cct:CodeListVersionIdentifierType" 721
 default=”1.0”/> 722
 <xs:attribute name="LanguageCode" 723
 type="cct:LanguageCodeType" 724
 use=”optional”/> 725
 </simpleContent> 726
</xs:complexType> 727

Such a definition does several things: 728
• It enumerates the possible values of the code itself. An alternative would be just to 729

allow the code to be a string or token, or to specify a regular expression pattern that 730
the code needs to match. 731

• It provides a default value for the version of the code list being used, with the 732
possiblity that the default could be overridden in an instance of a UBL message to 733
provide a different version (though, since the codes are enumerated statically, if new 734
codes were added to a new version they could not be used with this element as 735

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 23 of 29

currently defined). Some alternatives would be to fix the version and to require the 736
instance to set the version value. 737

• It fixes the values of the code list identifier and code list agency identifier for the code 738
list, such that they could not be changed in an instance of a UBL message. Some 739
alternatives would be to provide changeable defaults and to require that the instance 740
set these values. 741

• It makes the language code optional to provide in the instance. 742

4.2.5.3 Derivation Opportunities 743

Because a whole element is dedicated to the code for each code list, the derivation opportunities 744
are more plentiful. A derived type could be created that does any of the following: 745

• Adds to the enumerated list of values by means of the XSD union technique 746
• Adds defaults where there were none before 747
• Adds fixed values where there were none before 748

In addition, the element containing the dedicated code list subelement can be modified to allow 749
the appearance of additional code list subelements. 750

4.2.5.4 Assessment 751

This method is quite strong on most requirements; it falls down only on external maintenance. 752

Requirement Score Rank

Semantic clarity 4 High
The supplementary components are always
accessible, either through the instance or (through
defaulting or fixing of values) the schema.

Interoperability 4 High
Each code-containing construct in UBL can indicate,
through schema constraints, exactly what is expected
to appear there.

External maintenance 0 Low
In order to work with the UBL library, the code lists
maintained by external organizations would have to
derive from the UBL type, which creates a circular
dependency (UBL needs to include an external
schema module, but the external module needs to
derive from UBL). Alternatively, the UBL library has to
do all the work of setting up all the desired code list
types.

Validatability 4 High
The constraint rules can range from very tight to very
loose, and anyone who wants to subset or extend the
valid values can express this in XSD terms fairly
easily. The limitations are only due to XSD’s
capabilities.

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 24 of 29

Requirement Score Rank

Context rules friendliness 2 High
Since there is a dedicated element for a code, it can
be added or subtracted like a regular element –
something that is already assumed to be part of the
power of the context rules language.

Upgradability 1.5 Medium to high
Depending on how the constraint rules have been set
up, it might be required to define a new (possibly
derived) type to allow for a new version of a code list.
However, in many cases, it will be desirable to design
the schema module to avoid the need for this.

Readability 1.5 Medium to high
Because there is an element dedicated to the list
“source” for the code, the code itself is relatively
readable. However, the supplementary components
are likely to be hidden away from the instance, which
makes their values a bit obscure.

Total 17

4.2.6 Multiple Namespaced Types Method 753

This method is very similar to the multiple UBL types method, with one important change: The 754
UBL elements that each represent a code from a particular list are bound to types that may have 755
come from an external organization’s schema module. 756

4.2.6.1 Instance 757

The namespaced type method results in instance documents with the following structure. This is 758
identical to the multiple UBL types method, because the element dedicated to a single code list is 759
still a UBL-native element. 760

<LocaleCode> 761
<ISO3166Code>code</ISO3166Code> 762
</LocaleCode> 763

4.2.6.2 Schema Definitions 764

The schema definitions to support the content of LocaleCode might look as follows. Here, three 765
code list options are offered for a locale code. The xmlns: attributes that provide the namespace 766
declarations for the iso3166:, xxx:, and yyy: prefixes are not shown here. It is assumed that 767
an external organization (presumably ISO) has created a schema module that defines the 768
iso3166:CodeType complex type and that this module has been imported into UBL. 769

<xs:complexType name="LanguageType"> 770
 <xs:sequence> 771
 <xs:element name="IdentificationCode" . . .></xs:element> 772
 <xs:element name="Name" . . .></xs:element> 773
 <xs:element name="LocaleCode" 774
 type="cct:LocaleCodeType" minOccurs="0"> 775
 </xs:element> 776
 </xs:sequence> 777
</xs:complexType> 778
 779

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 25 of 29

<xs:complexType name=”LocaleCodeType” id=”. . .”> 780
 <xs:choice> 781
 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/> 782
 <xs:element name=”XXXCode” type=”xxx:CodeType”/> 783
 <xs:element name=”YYYCode” type=”yyy:CodeType”/> 784
 </xs:choice> 785
</xs:complexType> 786

Just as for the multiple UBL types method, there are many different ways that the 787
iso3166:CodeType complex type can be defined, but it probably makes sense to base it on 788
something like the single type method (for the supplementary component attributes) and to use 789
the enumerated type method where practical (for the primary component). Thus, the optimal form 790
of the multiple namespaced types method is really a hybrid method. For example, the definition 791
might look like this: 792

<xs:simpleType name=”iso3166:CodeContentType”> 793
 <xs:extension base=”token”> 794
 <xs:enumeration value=”DE”/> 795
 <xs:enumeration value=”FR”/> 796
 <xs:enumeration value=”US”/> 797
 . . . 798
 </xs:extension> 799
</xs:simpleType> 800
 801
<xs:complexType name=”iso3166:CodeType”> 802
 <simpleContent > 803
 <xs:extension base="iso3166:CodeContentType"> 804
 <xs:attribute name="CodeListIdentifier" 805
 type="cct:CodeListIdentifierType" 806
 fixed=”xxx”/> 807
 <xs:attribute name="CodeListAgencyIdentifier" 808
 type=" iso3166:CodeListAgencyIdentifierType" 809
 fixed=”yyy”/> 810
 <xs:attribute name="CodeListVersionIdentifier" 811
 type=" iso3166:CodeListVersionIdentifierType" 812
 default=”1.0”/> 813
 <xs:attribute name="LanguageCode" 814
 type=" iso3166:LanguageCodeType" 815
 use=”optional”/> 816
 </simpleContent> 817
</xs:complexType> 818

Because the UBL library would not have direct control over the quality and semantic clarity of the 819
datatypes defined by external organizations, it would be important to document UBL’s 820
expectations on these external code list datatypes. 821

4.2.6.3 Derivation Opportunities 822

Just as for multiple UBL types, because a whole element is dedicated to the code for each code 823
list, the derivation opportunities are more plentiful. 824
Also, if the external organization failed to meet our expectations about semantic clarity and didn’t 825
add the supplementary component attributes, we could add them ourselves by defining our own 826
complex type whose primary component (the element content) is bound to their type, or by 827
deriving a UBL type from their external type. 828

4.2.6.4 Assessment 829

This is a strong contender in every area. 830

Requirement Score Rank

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 26 of 29

Requirement Score Rank

Semantic clarity 4 High
The supplementary components are always
accessible to the parser, either through the instance
or (through defaulting or fixing of values) the schema.
This assumes that UBL’s high expectations on
external types are met, but this is a reasonable
assumption.

Interoperability 4 High
Each code-containing construct in UBL can indicate,
through schema constraints, exactly what is expected
to appear there.

External maintenance 4 High
External organizations can freely create schema
modules that define elements dedicated to their
particular code lists, and can even make the
constraint rules as flexible or as draconian as they
want.

Validatability 4 High
The constraint rules can range from very tight to very
loose, and anyone who wants to subset or extend the
valid values can express this in XSD terms fairly
easily. The limitations are only due to XSD’s
capabilities.

Context rules friendliness 2 High 2
Since there is a dedicated element for a code, it can
be added or subtracted like a regular element –
something that is already assumed to be part of the
power of the context rules language.

Upgradability 1.5 Medium to high
Depending on how the constraint rules have been set
up, it might be required to define a new (possibly
derived) type to allow for a new version of a code list.
However, in many cases, the organization maintaining
the code list might design the schema module in such
a way as to avoid the need for this.

Readability 1.5 Medium to high
Because there is an element dedicated to the list
“source” for the code, the code itself is relatively
readable. However, the supplementary components
are likely to be hidden away from the instance, which
makes their values a bit obscure.

Total 21

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 27 of 29

 831

4.3 Analysis and Recommendation 832

Following is a summary of the scores of the different methods. 833

Method Score Comments

Enumerated list 11 Spelling out the valid values assures validatability, but
defining all the necessary code lists in UBL itself defeats
our hope that code lists can be defined and maintained
in a decentralized fashion.

QName in content 4.5 The idea of using XML namespaces to identify code lists
is potentially useful, but because this method uses
namespaces in a hard-to-process (and somewhat non-
standard) manner, both semantic clarity and
validatability suffer.

Instance extension 9.5 This method allows for great flexibility, but leaves
validatability and interoperability nearly out of the
picture.

Single type 7.5 This method is strong on semantic clarity because of the
attributes for supplementary components, but it loses
interoperability and schema flexibility because it is using
a single type for everything.

Multiple UBL types 17 This method is quite strong on most requirements; it
falls down only on external maintenance.

Multiple namespaced
types

21 This is a strong contender in every area.

We recommend the multiple namespaced types method, with the addition of strong documented 834
expectations on the external organizations that define schema modules for code lists in order to 835
ensure maximum semantic clarity and validatability. 836
Note that is is possible that the UBL library will not have many external schema modules to 837
choose from initially, and some external organizations may choose never to create schema 838
modules for their code lists. Thus, UBL might be in the position of having to create dummy 839
datatypes for some of the code lists it uses. In these cases, at least UBL will achieve most of the 840
benefits, while having to balance the costs of maintenance against these benefits. It may be that 841
UBL can even “kick-start” the interest of some external organizations in producing such a 842
deliverable by supplying a starter schema module. 843

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 28 of 29

5 References 844

[CCTS1.8] UN/CEFACT Draft Core Components Specification, Part 1, 8 February, 845
2002, Version 1.8. 846

[CLTemplate] OASIS UBL Naming and Design Rules code list module template, 847
http://www.oasis-open.org/committees/ubl/ndrsc/archive/. 848

[NDR] M. Cournane et al., Universal Business Language (UBL) Naming and 849
Design Rules, OASIS, 2002, http://www.oasis-850
open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/. 851

[NDRSC] OASIS UBL Naming and Design Rules subcommittee. Portal: 852
http://www.oasis-open.org/committees/ubl/ndrsc/. Email archive: 853
http://lists.oasis-open.org/archives/ubl-ndrsc/. 854

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 855
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 856

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. 857
[3166-XSD] UN/ECE XSD code list module for ISO 3166-1, 858

http://www.unece.org/etrades/unedocs/repository/codelist.htm. 859

wd-ublndrsc-codelist-01 25 August 2002
Copyright © OASIS Open 2002. All rights reserved. Page 29 of 29

Appendix A. Notices 860

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 861
that might be claimed to pertain to the implementation or use of the technology described in this 862
document or the extent to which any license under such rights might or might not be available; 863
neither does it represent that it has made any effort to identify any such rights. Information on 864
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 865
website. Copies of claims of rights made available for publication and any assurances of licenses 866
to be made available, or the result of an attempt made to obtain a general license or permission 867
for the use of such proprietary rights by implementors or users of this specification, can be 868
obtained from the OASIS Executive Director. 869
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 870
applications, or other proprietary rights which may cover technology that may be required to 871
implement this specification. Please address the information to the OASIS Executive Director. 872
Copyright © OASIS Open 2002. All Rights Reserved. 873
This document and translations of it may be copied and furnished to others, and derivative works 874
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 875
published and distributed, in whole or in part, without restriction of any kind, provided that the 876
above copyright notice and this paragraph are included on all such copies and derivative works. 877
However, this document itself does not be modified in any way, such as by removing the 878
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 879
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 880
Property Rights document must be followed, or as required to translate it into languages other 881
than English. 882
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 883
successors or assigns. 884
This document and the information contained herein is provided on an “AS IS” basis and OASIS 885
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 886
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 887
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 888
PARTICULAR PURPOSE. 889

