Translation Web Service Draft Specification

Translation Web Service

Draft committee specification of standard for using web services for translation.
Draft record

	stage
	Person responsible

	Initial draft
	Bill Looby

	WSDL Specification
	Stephen Flinter

	Initial draft committee specification
	Peter Renolds

	
	

Contents

4Introduction

5Service Support

6Security

7Translation and Request Quote

10Status, Notification and Delivery

13Reference files

14Appendix 1 : WSDL

15Appendix 2 : Service Offerings

18Appendix 3 : File upload/download

Introduction TC "Introduction" \f C \l "1"
<peter> This needs to be rewritten following completion of the document.</peter>

This draft attempts to update the original proposed specification with the discussions and conclusions reached as part of the OASIS meetings that have taken place to date.
The methods are grouped into four main categories in order to simplify the breakdown of discussions. These four main categories loosely described are as follows -
Service Support

· Describing the features and limits of a particular implementation of the Web Service

Translation & Request Quote
· The means of requesting and receiving quotes for a particular localization task

· The means of requesting completion of a particular localization task

· Excluding delivery/notification (to be discussed in the next section)
Status, Notification & Delivery

· Querying translation availability

· The means of notifying a customer of this automatically
· The means of providing completed translations (where translations refer to any result of a localization task)
Other
· Querying multiple job status

· Cancel/Suspending jobs

· Translation memory

Service Support TC "Service - Support" \f C \l "1"
<peter> This needs to include reference to tModels and UDDI and how this will work</peter>

This section covers a single method only, and that is the “Query Support” method, however the decisions made as to the means of service specification, will impact most if not all other method definitions.

QuerySupport

Purpose

1. Allow a user to query range of support offered by a particular service implementation.

2. Provide definitions that can be further referenced when requesting quotes/translations (e.g. Service offerings)

Support specification

Note : For the following we should decide whether we wish to include it, and if so, whether its Explicit (and restricted), Free Format or Extensible (i.e. some definitions provided only).

	Support
	Comment
	Include, Format

	Language support
	Language support (defined by language pair ?)
	Yes, Explicit

	Service Types
	[see Appendix 1]
	Yes, Combination

	File Types
	Types of file supported
	Yes, Extensible (mime-types?)

	Publish Type
	Web, Printed doc etc.
	

	Content Domain
	Use existing taxonomies ?
	

	Bandwidth
	Bandwidth of available connectivity
	

	Translation Memory
	TM Supported ? Format ?
	

	Terminology
	Terminology Supported ? Format ?
	

	Approx per word cost
	Cost per word per language (approx.)
	No ?

Return Structure/Format

· Should this be a single XML file containing all support ?

· Should it be on a query basis ?

· If so on what granularity ?
· What query’s are supported ?

· What return formats are used ?

Security
<peter>- There needs to be the following in this section
· a description of the security model we are using

· WSS and how this work relates to the trans-ws

· What we propose doing as a minimum.
We will also need in the rest of the document to identify which call need to use security. This will be all calls except in service support.
 </peter>

Translation and Request Quote TC "Translation and Request Quote" \f C \l "1"
<peter> Needs review</peter>

This section covers the request for a quote and the request for translations, as by and large, they require the same information to be submitted.

Reject quote has been removed from the previous specification draft as this is probably not core to requirements (and quotes will eventually go out of date regardless)
Suspend/Cancel has been moved to the last section as again more a useful than core requirement.

	Job Identifiers (Job Tickets)
One definition shared across all methods in this section and in fact in future sections, is job identifiers, so we should discuss this first. The current thinking is as follows –

1) A unique identifier will be allocated to each individual atomic file/language entity. The granularity of the entity will be defined at the "file/language" pair level as submitted by the customer.
2) The file itself may be an archive file that contains more than one translatable file. No further granularity in identifying the job will be allocated over and above the containing archive file level.

3) The standard will not concern itself with any grouping of the identifiers into any form of ontological entities or otherwise. It is up to the customer and/or supplier to implement any desired grouping of the unique identifiers for their own purposes (i.e. overall deliverable

tracking or billing).

The remaining questions that require clarification on this topic are:

1) Who should generate the unique identifier - the supplier or the customer.

2) Should any defined formalism be attributed to the unique identifier.

RequestQuote
Purpose

This is the point at which meaningful information about the job is needed by the system in order to estimate costs and return them to the user.

Format

Two formats (i.e. two methods) should be available, however the first format may not produce a binding quote.
A. Request based on wordcount and filetype

Passed In

· Project Information/Ticket ? Or does session handle company info ?

· Total Word Count

· Job Meta information
· Service

· Language

· Urgency

· Content information

· Readme as meta or a submitted file ?

· Mime-type submitted separately as of most general use ?

Returned

· Job-ticket

· Whether or not it’s binding

· Estimated cost (including appropriate currency information)

· Expiration date of quote

B. Request based on file

Passed In

· Project Information/Ticket ? Session handles Company info ?

· Job Meta information ?
· Service

· Language

· Urgency

· Content information

· Readme as meta or a submitted file ?

· File (see File upload/download appendix)

· Mime-type submitted separately as of most general use ?

Returned

· Job-ticket

· Estimated cost (including appropriate currency information)

· Expiration date of quote

Note : in the case of an uploaded XLIFF job, there may be a case for including per-item information

AcceptQuote

Using the Job ticket a quote may be accepted, thereby initiating translation of the job. Payment details in the form of either Purchase Order or Credit Card Info should be supplied.

Passed In

· Project Information/Ticket ? Session handles Company info ?

· Job-ticket

· Job Meta information ?

· Service

· Language

· Urgency

· Content information

· Readme as meta or a submitted file ?

· Financial information. One of -

· Purchase Order (from recognised supplier)

· Credit Card Information

· Other . . . ?

· Notification information (see Notification section)

· File (see File upload/download appendix - may be required if 2.A is used rather than 2.B above)

Returned

· Acknowledgement of job initiation

Note : Should this simply be implemented as a DoTranslate with a non-empty job ticket
DoTranslate

As an alternative to RequestQuote & AcceptQuote, where a relationship already exists, or the cost is prepaid for all required translations, or perhaps the translation service is deployed in-house and is a MT engine, there may be a case to simply call translate as the quote/accept mechanism isn't required.

Passed In

· Project Information/Ticket ? Session handles Company info ?

· Job-ticket

· Job Meta information ?

· Service

· Language

· Urgency

· Content information

· Readme as meta or a submitted file ?

· Financial information. One of -

· Purchase Order (from recognised supplier)

· Credit Card Information

· Other . . . ?

· Notification information (see Notification section)

· File (see File upload/download appendix)

Returned

· Acknowledgement of translation initiation

Status, Notification and Delivery TC "Status, Notification and Delivery" \f C \l "1"
<peter>This will need review and more emphasis on the fact we are not supporting a return web service or BPEL4WS </peter>

Once translation is complete there are two requirements for the Web Service
1. Notify the submitter that the translation service is complete

2. Allow for the delivery of these translations to the customer

The impact of these is to fundamentally affect the potential for integrating this Web Service into any workflow. The two ‘extremes’ of customer that this Web Service may have to facilitate are.

1. A ‘basic’ client. One that has no ability to present a server for return information, such as ftp, http or a web server, or possibly not even an email address (though this is unlikely).

2. Another Web Service that expects to be able to interact via BPEL4WS or WSCI type mechanisms

What follows is a description of some of the issues/discussions encountered so far, and a description of the proposed ‘basic’ support.
	Notification

Essentially what notification amounts to, is dealing with the fact that a Web Service is a client initiated interface, so there's no obvious way for the server to "push" information back without expecting more from the client . There are at least four options in this regard -

1. Polling for completion
Not really a ‘notification’ mechanism in the strictest sense, but the easiest way to connect systems without placing any requirements on the client. Regardless of other mechanisms available, there should generally be a QueryStatus mechanism to facilitate this as the most basic fallback.
2. Email notification

A return email address could be presented by the client, when accepting the quote. There would then be a standard notification message sent (we would have to define the format, which would include the job ticket) to this address on job completion (or on job error ? query ?)

3. Presentation of a return Web Service

We would have to define another standard service that could be offered by a client for return notification. The idea is that the client would simply have to supply the URL at which this service is available. This is more flexible, but many users may not be in a position to supply it. There are three reasons for this -

1. Smaller users may not be hosting their own sites, or may not even have a fixed URL

2. Corporate users may have a large security overhead in presenting an external web service.
3. Users in general may not want to have to present a specific service, just so they can use this one.
4. BPEL4WS notification messages
Needs more detail, but BPEL4WS mechanisms exist for just such notification

Most workflows should be able to work off email notification, but it's low-tech and can be awkward. Probably a requirement to support this for lower tech users however, even if we do the return service in addition.

	Delivery

Closely related to the issue of notification is delivery of translated content (Note : not all localization services will necessarily require this, however it is likely for most). So, dealing with is according to the options above –
1. Notification : Polling for completion
A download method similar to that defined below will be required.
2. Notification : Email notification

In addition to the download method, the translated content could optionally be attached to the notification email

3. Notification : Presentation of a return Web Service

In this case it would make most sense to define the return service as including an upload method.

4. Notification : BPEL4WS notification messages
Essentially any of the above may apply. Again, needs more detail.

QueryStatus
At any stage the status of any job should be viewable. This should have clearly pre-defined status information (i.e. that any client can process/understand) and free format (eg. HTML page).

Passed In

· Job-ticket

Returned

· Current Stage (TM, MT, HT, Verification, QE, Graphics Review etc.)

· Current Status (eg. Error, ok, unknown)

· Free format HTML (or possibly URL for retrieval) ?

DownloadTranslation
Regardless of the notification & delivery mechanisms chosen it is likely that a basic translation download mechanism will be required as a fallback.

Passed In

· Job-ticket

Returned

· The downloaded file. see the File Upload/Download appendix for details.

· The timeout for rejection ?

RejectTranslation
If a translation is incomplete or requires correction we may need a mechanism whereby this feedback can be submitted
Passed In

· Job-ticket

· Rejection reason (from a predefined list ?)

· Rejection details

Returned

· ?

Note : Do we need this method at this stage ?
ViewJobs [by company/project/other/completed/open etc.]

Although a client will probably keep a local list of outstanding jobs sent to a translation vendor, they may still want to be able to view outstanding or completed jobs by company/project/state etc. at a given vendors site This would need to be flexible enough to handle new categories. But the basic views could be as described below

Passed In

· View required - eg.
· For specified user

· For specified company

· For specified project

· All of the above by specified state

Returned

· A list of job tickets complying with the query

· Basic information about each job - possibly up to the level of that returned by 6. View Job Status

JobCancel/Suspend

The Client may request that any job being translated be cancelled/suspended. This is a request only as the service cannot guarantee to comply with this immediately, depending on job-state etc. and there may still be a cost incurred. Cancel/Suspend should fail if translation is complete. The current job status should be returned also.

Passed In

· Job-ticket

Returned

· Success/Failure

· Job Status

Reference files
<peter>Needs review </peter>

What follows is a list of lower priority methods/features that may or may not require inclusion in the first version
	Translation Memory
Ultimately a Translation customer owns translation memories derived from translation, and can choose to reuse them in whichever future translation they choose. In practice this is generally not the case, as Translation Vendors regularly hold on to memories for use in repeat business, to everyone’s satisfaction. However, given increased ‘cross-usage’ potential for translation memories (via TMX and to an extent XLIFF), it makes sense for customers to be able to submit translation memories.
There are a number of possible features that could be added to support TM
1. Query TM formats supported (Trados, TMX, CSV, proprietary)

2. Upload TM, returning TM ticket for use in multiple jobs ?
3. Download completed TM

4. Reference uploaded TM in submitted translation jobs

UploadPopulatedTM

If translations have already been done in house (or by another vendor), then you will need the ability to upload translation memory for a particular job/project. You should specify the type of Translation Memory and a name, (and receive a TM ticket for it for future reference?).

Passed In

· Project (or job-ticket ?)

· TM upload details (including type ?)
· TM name

Returned

· Acknowledgement

· A TM ticket ? (name could be used)

DownloadPopulatedTM

Given the ease of selecting a preferred translation vendor, Clients will want to re-use translations, so we will need to add the ability to download TM

Appendix 1 : WSDL TC "Appendix 1 : Service Offerings" \f C \l "1"
<peter> WSDL should be added here</peter>

Appendix 2 : Service Offerings TC "Appendix 1 : Service Offerings" \f C \l "1"
<peter> Need editing in the light of Andrzey’s work</peter>

The following high-level services have been identified.

· Engineering

· Admin

· Build

· Quality Assurance

· Translation

· Online Help

· Documentation

The following sections identify a set of sub-services for each of the high-level services identified above.

	Engineering Sub-Service
	Description

	L10n kit preparation
	Building a kit with leveraged & translatable content, instructional materials etc

	Software scope assessment
	Volumes, complexity, dependencies, leverage

	Pre-production I18n code review
	Code level review to assess “global readiness”

	Localizability review
	Including pseudo-translation and deployment, 3rd party dependencies etc

	Content conversion
	Specific tasks to convert target file types, encodings etc.

	Content management
	File Management and/or control (manually file system, systematic tool)

	Defect resolution
	Defect resolution in UI, Online Help, Installer control files

	Production i18n code review
	On going review of code updates from initial pre-production phase

	I18n code development
	Specific and targeted re-development of erroneous code for “global readiness”

	Install engineering
	Specific task to break out install engineering (InstallShield, ZeroG, Custom)

	Loc kit maintenance
	Change Management: Kit collaterals updated as in pre-production phase

	Online help
	WinHelp/HTML Help/Java Help/MAN pages/Custom Help

	Change management scope assessment
	Change Management: Scope reassessed as for pre-production phase

	Software UI
	Resizing, general layout, hotkeys, fonts, images

	Admin Sub-Service
	Description

	Artefact retrieval
	Gathering of all related and previous project collaterals

	Project support
	Project specific technical support of vendors, translators, internal teams

	Tracking/reporting
	File Handoff Tracking, metrics collection, status reporting

	Artefact archival
	Physical archival process

	Build Sub-Service
	Description

	File build
	Can build individual files

	Component build
	Can build components

	System build
	Can build entire systems

	GMC build
	Can produce for ultimate release (additional set of criteria)

	Quality Assurance Sub-Service
	Description

	Build acceptance testing
	

	Build Verification
	

	Smoke Testing
	

	Test Case Creation
	

	Source language functional testing
	

	Source language UI Testing
	

	Internationalisation (Double Byte Input / Output) testing
	

	Localisation Functional Testing
	

	Localisation UI Testing
	

	Stress Testing
	

	Third Part Application Compatibility Testing
	

	Interoperability Testing
	

	Regression Test Pass
	

	Final Checks
	

	Configuration of test environment
	

	Development of test plans
	

	Bug regression and validation
	

	QE metrics
	Report on volumes of bugs raised, etc.

	Product install
	Install the translated product in a test environment

	Defect raising
	Raise defects against the build

	Defect resolution
	Resolve defects raised during QA

	Translation Sub-Service
	Description

	Glossary creation
	Extraction of key terminology from source materials to create master glossaries for translation

	Style guide creation
	

	Glossary translation
	Translation of glossaries of terms

	Translate new words
	Offers translation of new words

	Translate fuzzy matches
	Translation of TM fuzzy matches

	Review 100% matches
	Review of translation of 100% matches from TM

	Linguistic review
	Linguistic review of translations

	Proof reading
	Proof reading of documentation

	TM management
	In-house management of TM

	Online Help Sub-Service
	Description

	Help engineering
	

	Help testing
	

	Localisation of help graphics / screenshots / segmented hyper graphics
	

	Documentation Sub-Service
	Description

	DTP
	

	Screen shooting
	

	Editing localisable artwork for docs and collateral
	

	Index creation for Asian and other non-alphabetically sortable languages
	

	PDF/PS
	

	Collateral/box/cover/cd sleeve localisation including DTP and graphic editing
	

	QA of documentation/collateral deliverables
	

	Repurposing of documentation to help (single source) using e.g. Quadralay Webworks pugin to FrameMaker
	

	Preparation and/or conversion of DTP formats
	FrameMaker which is the most widely used DTP format, does not support Arabic, so documentation must be converted to PageMaker format instead

	Fonts and character set troubleshooting
	

Appendix 3 : File upload/download TC "Appendix 2 : File upload/download" \f C \l "1"
<peter> Needs review</peter>

It is suggested that SwA (SOAP with Attachments) can be used in order to facilitate the upload and download of files.
The SwA specification is actually a note maintained by the World Wide Web Consortium (W3C). W3C uses "note" to distinguish suggestions and works in progress from official recommendations. Nevertheless, for all intents and purposes SwA is a standard used throughout the Web services industry.
J2EE
Java developers can use SAAJ (pronounced to rhyme with page) to create, read, or modify SOAP messages. The API includes classes and interfaces that model SOAP elements (Envelope, Body, Header, Fault, etc.), XML namespaces, attributes, text nodes, and MIME attachments. You can use SAAJ to manipulate simple SOAP messages (just the XML, without any attachments) or more complex SOAP messages, with MIME attachments. SAAJ can be used in combination with JAX-RPC, which is the J2EE standard API for sending and receiving SOAP messages, to represent literal XML document fragments. You can also use SAAJ independently of JAX-RPC; it has its own, optional facilities for basic messaging using request-reply style messaging with the HTTP 1.1 binding.
.NET

<TBC>
References

[soap11]

"SOAP: Simple Object Access Protocol (SOAP) 1.1," W3C Note, May 2000.

[soap12wd]

"SOAP Version 1.2," W3C Working Draft, July 2001.

[soap12cr]

"SOAP Version 1.2 Part 1: Messaging Framework," W3C Candidate Recommendation, December 2002.

[XInclude]

"XML Inclusions (XInclude) Version 1.0," W3C Candidate Recommendation, September 2002.

[XML]

"Extensible Markup Language (XML) 1.0 (Second Edition)," W3C Recommendation, October

