

Recommendations for placement of CPSIN IJI
Data Dictionary Data Elements into an ebXML /

ISO-IEC 11179 Metadata Facility.

Oct 29, 2003

Prepared for Public Works and Government Services Canada

DISCLAIMER:

The contents of this document are considered confidential and classified as such.
No member of the public should have access to this document. Readers are

hereby cautioned not to leave copies of this document in un-secure
environments.

Authors: Duane Nickull, duane@yellowdragonsoft.com
C. Mathew Mackenzie, matt@yellowdragonsoft.com

 1

mailto:duane@yellowdragonsoft.com
mailto:matt@yellowdragonsoft.com

Table of Contents
Table of Contents.. 2
1.0 Statement of Work .. 4

1.1 Background... 4
1.2 Customer Requirement ... 4
1.3 Work Components .. 5

2.0 Assumptions.. 6
3.0 Nickull & Mackenzie’s approach and solution... 6
3.1 Requirements for Data Element Metadata serialization 7
4.0 Analyzing the Data Element Models .. 9

4.1 UN/CEFACT Core Component and Business Information Entity model 9
4.1 CPSIN IJI Data Element model .. 10
4.3 ISO/IEC 11179 - 2002 .. 12
4.4 ebXML Registry Information Model.. 14

5.0 Model Reconciliation Issues and Proposed Solutions .. 15
5.1 Element Name... 17
5.2 Definition .. 18
5.3 Version.. 18
5.4 Domain.. 19
5.5 Minimum Size... 19
5.6 Maximum Size .. 20
5.7 Layout of Representation.. 20
5.8 Context.. 20
5.9 Permissible values... 23
5.10 Element Identifier ... 23
5.11 Registration Authority .. 25
5.12 Registration Status .. 25
5.13 Entity Name .. 27
5.14 Topic ... 27
5.15 Comment... 27
5.16 Synonymous name.. 28
5.17 Familiar Name .. 28

6.0 Context Declaration Mechanism... 28
7.0 Assembly of Metadata at Design Time (Assembly Document) 30
8.0 Methodology for Extraction of Data Element Metadata... 31

8.1 Binding between instance data and metadata ... 33
9.0 XML Expression for IJI Data Elements as CC’s/BIE’s.. 33
10.0 – Recommended Future Work .. 36

10.1 Complete the XML Schema for the Data Element ... 36
10.2 Complete an XML schema for a Context Declaration...................................... 36
10.3 Complete an XML schema for the Assembly Guide .. 37
10.4 IJI Data Dictionary placed into Registry .. 37
10.5 Build a prototype application.. 37
10.6 Reconcile this work with the CCRIM work ... 37
10.7 Reconcile this work with the UN/CEFACT ATG Core Components work..... 37
10.8 Circulate this work to standards groups to seek additional input. 37

 2

10.9 Harmonize the CPSIN IJI data dictionary with at least one other Data
dictionary .. 37

Appendix “A” – XSD Schema.. 38
Appendix “B” – IJI Object Model for “Person” ... 38
Appendix “C” – Java Code for Extracting BIE’s from Data Elements. 44

 3

1.0 Statement of Work

1.1 Background

In support of Government Online (GOL) strategy, the second phase of the Business
Transformation Enablement Program (BTEP) is focused on achieving business and information
inter-operability between government information systems. The BTEP’s IM e-Enabler objective is
to provide automated information management services to support delivery of Government of
Canada services. The IM e-Enabler first timeline initiatives are focused on developing the means
to test, demonstrate and establish procedures that would enable government projects to create
and share “defined” processes for creating “shareable” information. The ebXML framework being
the preferred source of logical and physical component designs and specifications, an ebXML
registry/repository is required to provide the mechanism for registering, discovering and sharing
design specifications for information and business processes.

Version 1.0 of ebXML specified a methodology for creating and managing a set of reusable data
elements called Core Components. The Core Components work continued under the auspices of
the United Nations CEFACT committee and is guided by the United Nations Unified Modelling
Methodology (UMM).

The initial stage of this project will work with placing the Canadian Public Safety Information
Network (CPSIN) Integrated Justice Initiative (IJI) data model into an instance of the ebXML
version 2.1 Registry/Repository. The work involves placing all 353 identified data elements of
that dictionary into the registry in alignment with the principle methodology in the ebXML
Technical Architecture as a set of Reusable Data Elements for a specific domain. In Core
Components methodology terms, these would be called “Business Information Entities” or BIE’s,
being data elements to be used within a specific context (see later sections for more explanation
of “Context”).

The goal/objective of establishing a registry repository is to facilitate the further development and
use of a core justice dictionary for both national and international audiences, if deemed
appropriate following the proof-of-concept project. The Registry will eventually facilitate
integration of instance data with many other key systems and enable system/applications inter-
operability.

This is the third and final of a series of reports generated as part of this project. At the end of this
report is a set of recommendations for continuing the work.

1.2 Customer Requirement

PWGSC as a participant in the IM e-Enabler project requires that individual data elements of the
IJI data dictionary be represented in a Registry/Repository to facilitate several use cases. The
data elements in the registry/repository shall facilitate several use cases including, but not limited
to the following:

1. Enable data modelers to use the data elements to build transaction sets in multiple
syntaxes and representations.

2. Enable business or domain analysts to maintain a complete data dictionary and share it

with multiple stakeholders.

 4

3. Facilitate harmonization of data models across multiple domains within the government
and international justice spaces.

4. Serve as a pathfinder, pilot project to proof the concept of a registry centric infrastructure.

5. Enable key stakeholders to analyze the benefits of a registry centric concept of

operations.

6. Enable reuse of data elements across multiple domains.

7. Expressing the current IJI data dictionary in one or more ontology’s within the registry.

8. Enable programmers ad systems analysts to build applications against the functionality
prescribed by the registry/repository system.

9. Validate the Core Components technical specification methodology and provide feedback

into that teams work.

1.3 Work Components

This report outlines various work items done in order to facilitate storing the CPSIN IJI data
dictionary in an ebXML metadata Registry/Repository.

Before finding a serialization (a format for expression) for the individual Data Elements, a study of
the current work within various standards bodies was necessary to determine which standards
solutions are available and relevant to this project. The findings are that several major standards
were not specialized enough to be a complete solution, yet a solution is directly attributable to
utilizing key components of many of these standards. While some overlap exists between some
of the standards, there are also some gaps. The feeling is that the work described hereinafter is
highly relevant to completion of several of these standards and may provide valuable input.

Reliance on work done in these standards was indispensable as an asset while building a
solution. After examining the OASIS Content Assembly Mechanism (CAM) and Business
Collaboration Mechanism (BCM) initiatives, it was deemed that they are relevant, yet not currently
able to be implemented as a complete solution. Many concepts of CAM are used within this
document.

Accordingly, a recommendation to the PWGSC contract authority is that the project should define
its own storage format for placing the data dictionary within a registry. That will also take into
account several other initiatives in this project and determine a format that may subsequently be
transformed into a standard for Data Element Metadata (DEM) representation internationally and
within the Government of Canada context. The DEM format will be built by harmonizing data
models from the UN/CEFACT CCTS and UMM, ISO/IEC 11179, ISO TC 154, ebXML Registry
Information Model (RIM) and xml.

 5

The CPSIN IJI data dictionary v 1.0, establishes custom data element standardization rules. To
quote:

“The common unit for transferring information (data plus understanding) between
organizations is the data element (ISO/IEC FDIS 11179-1:1999). Data elements exist as
fields and columns in the databases files of CPSIN partners. They are documented as
elements and attributes in the CPSIN partner organizations dictionaries, data models,
object models and XML schemas.”

The Data Element component of the model is the ideal starting point for CPSIN-related data
design exercises. Once the data elements are stored in a registry/repository, the CPSIN logical
model will serve as a classification ontology.

2.0 Assumptions

Given the IJI data model as a starting point, it is recommended that the IM e-Enabler Proof of
Concept project should build an XML representation of a meta-metadata object for each “Data
Element” object in the model. There are currently 353 data elements in the CPSIN IJI data
dictionary as of version 1.0. This recommendation is based on several key assumptions:

1. That instance data will likely be expressed in an XML format, yet must be able to render
in UML, HTML, PDF, XML Schema, XML DTD and other formats.

2. That the set of requirements expressed in section 3.2 (below) is accurate. Assuming

they are all requirements, XML is currently the only syntax choice for representing the
Data Element Metadata within the Registry/Repository.

3. That the ebXML Registry Services Specification and associated Registry Information

Model v. 20 and higher, are the best standards to support CPSIN data dictionary
modeling and interchange (both are based on ISO 11179)

3.0 Approach and Solution

The proposed methodology to solve the problem is based on a four point plan of action.

1. Document the requirements from all stakeholders of the data elements. Ensure all
stakeholders were represented and their requirements well documented. (UMM &
Business Collaboration Framework {BCF} methodologies)

2. Review and reconcile all the relevant data models and derive a syntax neutral data

element metadata model. Take careful steps to ensure the model will meet all the
current and future functional requirements of the stakeholders.

3. Develop a serialization (expression) of the Data Element Metadata model in XML.

Account for future forwards and backwards compatibility and ease of implementation
from a programmers’ perspective.

4. Develop a strategy and methodology for using the Data Element Metadata to develop

new transactions and reconcile older data models as well as any new use cases
introduced by key stakeholders.

 6

NOTE: Setting out to reconcile the five different data model approaches is a monumental
challenge.

3.1 Requirements for Data Element Metadata serialization

In order for data elements to be placed and managed within an ebXML registry, they must be
serialized into a format that allows them to be bound to the Registry. A serialization is a format,
which includes both the syntax and the taxonomy for expressing a Data Element. There are no
formal standards for defining a format for such a binding or serialization. The UN/CEFACT Core
Components Working Group defines a data model that was used as the basis for this work.

Before a format was defined, it was important to capture the requirements for what the Data
Elements must be capable of supporting. In addition to the metadata requirements outlined in
the IJI Data Dictionary, each Data Element Metadata (DEM) object should be capable of
conveying the following information:

1. An XML schema and/or DTD may be derived or expressed from the DEM object, yet the
DEM object must not preclude other formats of instance data from being used within an
operational system in the future. Target output types include XML schema, XML DTD,
HTML and PDF. It may also provide eForms capabilities.

2. The DEM objects shall be readable by both humans and application actors within an

infrastructure and that the applications shall be able to consistently derive structure from
the DEM objects. This requires a language with terse and exact parsing rules that leave
no room for variance between commercial implementations of parsers or proprietary byte
handling routines.

3. The DEM objects can explicitly point at or otherwise reference a UML or other modeling

artifact via a variety of protocols (examples – HTTP/S, LDAP, FTP). This places a pre-
requisite for a mechanism like xlink or hypertext linking.

4. The Data Element metadata shall have a binding to a set of RIM metadata and/or shall

minimize replication of Registry meta-metadata instances except where required for data
portability.

5. The DEM shall not constrain the final representation in any way, yet must be capable of

facilitating multiple implementation serializations (syntax bindings) as represented via the
UN/CEFACT core components technical specification diagram.

 7

Figure 1 – Core Component concepts from UN/CEFACT CCTS Specification v 2.0

NOTE: Al of these concepts are explained in much greater detail within this report.

6. The DEM shall be capable of conveying semantics of the core Data Dictionary Data
elements in more than one language and syntax. Initially, English and French will be
supported.

7. The DEM must be in a format capable of expressing multi-byte character encoding such

as UTF-16 in order to facilitate internationalization.

8. The DEM must be capable of being transformed easily into other DEM formats (such as
the UN/CEFACT ATG2 Core Components/Business Information Entities Meta-metadata
format and work by the OASIS CAM and BCM groups when those groups have
completed their work.)

9. The DEM must be capable of declaring semantic equivalencies to other existing

metadata objects. This is a requirements based on an understanding that integration
with existing systems will be essential.

10. The DEM must be capable of containing an intrinsic relationship to context declarations in

order to facilitate the above requirements, possibly in addition to the registry relationships
expressed within the CPSIN data dictionary, ebXML RIM and ISO/EIC 11179 parts 1-5.

11. The DEM must facilitate both basic (atomic) Data Elements as well as more complex

aggregates. The aggregates to be designated as UN/CEFACT aggregate core
components (ACCs) and represented as aggregate business core components using
XML schema.

12. The DEM should be written in a way so programmers can write implementations, yet if

the DEM model changes, the implementations will not be broken. This is referred to as
forwards compatibility.

 8

Given the data model, a top down approach starting with a Data Element object is appropriate for
a starting point. The object model shall follow ISO/IEC 11179 MetaData Registries
representation formats, yet account for specializations provided by the IJI Data Dictionary work,
Government of Canada (GoC) stakeholders, UN/CEFACT CCTS, ISO TC 154 and ebXML RIM.
This model should be a superset so that metadata instances of all 353 Data Elements in the
current CPSIN/IJI gold copy of the data dictionary can be placed into a Registry using this format.

4.0 Analyzing the Data Element Models

The logical model for expression of XML Data Element Metadata (DEM) has been derived by
combining 5 works. Those works include the CPSIN IJI Data Dictionary version 1.0, the
UN/CEFACT Core Components Technical Specification version 2.0, ISO/IEC 11179 (various
works) and the ebXML Registry Information Model v 2.5.

Each of these models is examined in greater detail below.

4.1 UN/CEFACT Core Component and Business Information Entity
model

Below is the model for UN/CEFACT Core Components from the version 2.0 technical
specification.

 9

Figure 2 – Core Component model from UN/CEFACT CCTS Specification v 2.0

The UN/CEFACT Core Components Technical Specification version 2.0 contains a logical data
model for a core component. The terminology of the Core Components working group’s BIE is
synonymous with the CPSIN IJI definition of a Data Element. The difference between the
UN/CEFACT CCWG Core Component is that the UN/CEFACT Core Components are envisioned
for a global set of business collaborations vs. the CPSIN IJI Data Dictionary has been scoped
solely for the domain of justice, albeit international.

NOTE: Please note that the term “Data Types” is not always synonymous with the semantics
used within different agencies.

4.1 CPSIN IJI Data Element model

The following data model for Data Elements is from the CPSIN IJI Data Dictionary. Some of the
syntax neutral concepts expressed within it are likely better suited for XML specific metadata
expressions using the W3C XML Schema format. This format is ideal for expressing cardinality,
data types etc.

 10

Figure 3 – IJI Data Element components from CPSIN IJI Specification v 1.0

Note: The term “Representations” as used within the CPSIN IJI Data Dictionary is not always
synonymous with the use of it within the UN/CEFACT Core Components group.

 11

Figure 4 – UML Expression of CPSIN IJI Data Element model from Specification v 1.0

While this model is very close the CCTS model, it will have to be reconciled with the other models
in order to place instances into the registry. The representations will have to be expanded into a
separate set of elements in order to facilitate multiple serializations of the metadata for
applications outside the registry.

4.3 ISO/IEC 11179 - 2002

 12

 13

Figure 4 – ISO/IEC Data Element Components

4.4 ebXML Registry Information Model

 14

Figure 5 – ebXML Registry Information Model v 2.5

There is also a large degree of overlap with the IJI and CCTS data models. All of these models
have an identifier, versions, common name and associations with the authority that is
responsible.

5.0 Model Reconciliation Issues and Proposed Solutions

For the Data Elements of the CPSIN IJI data dictionary to be stored/managed in an ebXML
Registry/Repository system, there is need for alignment between the CPSIN Data Element Status
code values and the ebXML Registry code values. Both seem to be derived from ISO/IEC
11179-3, yet the ISO/IEC standard adds another layer of complexity to creating a prototype
implementation.

The first recommendation is to align the terminology used to describe certain terms.

IJI Term CCTS ISO/IEC 11179 ebXML RIM
Element Name Dictionary Entry

Name
Data Element
Entry Name

Registry Object
Name

Definition Definition Definition
Version Version MajorVersion;

MinorVersion
Not defined Expiration date
Domain Classification

 15

Node(s)
Minimum size Primitive Type

Minimum length
(from data type)

Maximum size Primitive Type
Maximum length
(from data type)

Layout representation Primary
Representation;
Secondary
Representation;
Expression Type
(from Data
Types)…

Context [not contextually
specific until BIE]

 Classification
Node(s) (RIM 2.5
section 9.4

Sample Data values Representation
Term

 n/a

Element Identifier Unique Identifier Uuid
Registration Authority Registrar,

Registration
Authority,
Submitting
Organization

Responsible
Organization;
Submiting
Organization

Responsible
Organization;
Submitting
Organization

Registration Status [handled by
ebXML RIM]

tba Status

Entity Name
Topic
Comment
Synonym Business Term
Familiar name Dictionary name?

Table 1 – Comparison of various components

Each of the IJI data Element attributes will be broken out individually and discussed in the next
section of this document. This will guide the XML serialization solution.

As per ISO/IEC 11179, the entire set of data element attributes will be grouped together into 4
sub areas in a new model. The new model will classify all existing attributes into one of the
subclasses of Data Element

The ebXML Registry Information Model makes the attribute “Status” mandatory. Since this may
be primarily used to machine access, there may be a secondary of separate “Status” asserted by
one or more organizations who use the DEM. It is not mandatory that these two Status attributes
be synchronized since on can be retrieved programmatically from the Registry and the other one
can be read from the instance; but it is a recommendation that the RIM status can also be
accessed via the DEM instance serialization. Further reasons are set forth in section 5.12.

 16

Figure 7 – UML expression of IJI Data ELement

5.1 Element Name

The IJI data dictionary declares that “element name” means “The full name of the Data Element”.
In general, the IJI data dictionary also follows the ISO 11179 naming conventions of an Object
Class Term, Property term and a representation term. Optionally, a further qualifier term may be
present. The names of Data Elements are represented alphabetically as a list.

The Core Components Technical Specification applies a similar convention. CCTS says a
Naming Convention is necessary to gain consistency in the naming and defining of all
Core Components, Data Types and Business Information Entities. The IJIJ data dictionary has
done a brilliant job of applying such a naming convention.

One of the primary reasons for such is that consistency must facilitate comparison and meaning
during the discovery and analysis process and also will guide locating meaningful data elements
while modeling new processes or making new schemas.

The UN/CEFACT CCTS uses a format of dot notation to concatenate terms representing class
term, property term and representation terms for the Dictionary Entry Name (the term that is
synonymous with the IJI’s “element name”). IJI uses a space between words.

Example: IJI data element “Being Type Identifier” would become “Being.Type.Identifier” if
expressed using the CCTS format.

CCTS uses only words from the Oxford English dictionary for data element names. This does not
preclude them from being expressed in other languages.

Recommendation – use dot notation for Element Name.

While further research may be needed to determine the technical advantages of each, the favor
was to use the dot notation format from UN/CEFACT in order to better align with UMM and the
ebXML RIM work. Other groups within government may be likely to use the CCTS format and
harmonization of terminology in formats that may be familiar to others could b useful.

 17

Provision must also be made for more that one language expression of a data element name.
Both French and English should be initially supported. Allowing other agencies to assert their
names for data elements may aid integration.

5.2 Definition

IJI defines the meaning of Definition as “A statement that explains the meaning of the data
element”.

The requirements are many. Multi-lingual support should be a must. The onus to be able to
explain semantics is also linked to the concept of context. A meaning may change as the context
in which a data element is used changes.

CCTS declares that the definition shall be consistent with the requirements of ISO 11179-4
Section 4 and will provide an understandable meaning, which should also be translatable to
other languages. This expands on IJI and meets the requirements of a Canada wide IJI data
dictionary that may someday become multi-language.

Recommendation – Definition as a property assertion.

Definition is really a property of a data element asserted by an organization. It will be useful to be
able to cross reference multiple definitions in order to semantically map different data elements
from one data format to another to achieve integration.

A primary assertion of definition should be made by the Responsible Organization (RO), a data
steward.

5.3 Version

The IJI data dictionary has a notion of versioning Data Elements. This is equally important and
represented within the ISO/IEC 11179 Metadata Registry (MDR), the ebXML RIM and CCTS.
The mask or representation layout of the IJI version attribute is a simple
majorVersion.minorVersion.

There are some potential dependencies that are not talked about within the IJI data dictionary.

Recommendation – version broken into major, minor and incremental

Recommend that version become a property of a data element and expressed under the
<Property> element in an xml serialization. The xml format is designed not to place any
dependency on the version attributes for programmers/applications. It is further recommended to
break the version into three sub-types of version: majorVersion, minorVersion and
incrementalVersion. Each of these attributes will have a data type of integer.

 The following format is recommended.

 <Properties assertedBy="Canadian Public Safety Information Network">
 <Property name="version.major" value="1" />
 <Property name="version.minor" value="0" />
 <Property name="version.incremental" value="0" />
 ...

 18

5.4 Domain

A Domain, by definition of the IJI Data Dictionary v 1.0, is a group of predefined characteristics
for a data element that is determined by its Representation Term. It is a set of values or a range
of possible values.

A data type defines in more physical terms what the data element can contain.
Examples include character strings, numbers, dates and times. This is required for the
specification of fields in record layouts, database table columns and XML tags to define
length and acceptable representation.

Recommendation:

The Domain attribute should be asserted as a property of the Data Element to preserve the
specific set of values defined within the IJI data dictionary. While it may be redundant with the
<Representation> elements, it is important to preserve the syntax neutral concepts developed by
the IJI data stewards (RO).

The representation in the XML Serialization will be as follows:

<Properties assertedBy="RO_Identifier_goes_here">
 ...
 <Property name="domain" value="dDate" />

...

5.5 Minimum Size

Minimum size is a representation attribute to specify the minimum number of units in a
representation.

Recommended: attribute of Property and specific to context.

Move this to an attribute of the Properties element. This may also be further constrained within a
specific context by imposing syntax specific constraints upon this attribute. For instance, the
Properties attribute may be expressed by stating the type attribute is “minimumSize” and the
value is “2”. In the <Representations> branch that is contextually specific to W3C XML Schema
format, the values are further constrained to a choice of one – two byte value from an
enumerated list of twelve choices.

<DataElement>
 ...
 <Properties assertedBy=”responsibleOrganizationIdentifier”>
 <Property type=”minimumSize”
 value=”2”
 </Properties>
 <Representations>
 <Representation type="http://www.w3.org/2001/XMLSchema" context="all">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:component-foo">
 <!--schema here-->
 <xsd:element name="BeingBirthMonth">
 <xsd:complexType>

 19

 <xsd:simpleContent>
 <xsd:extension base="xs:string">
 <xsd:attribute name="value" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xs:NMTOKEN">
 <xsd:enumeration value="01"/>
 <xsd:enumeration value="02"/>
 <xsd:enumeration value="03"/>
 <xsd:enumeration value="04"/>
 <xsd:enumeration value="05"/>
 <xsd:enumeration value="06"/>
 <xsd:enumeration value="07"/>
 <xsd:enumeration value="08"/>
 <xsd:enumeration value="09"/>
 <xsd:enumeration value="10"/>
 <xsd:enumeration value="11"/>
 <xsd:enumeration value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 ...

5.6 Maximum Size

Like minimum size, Maximum size is a representation attribute to specify the maximum number of
units in a representation. See the 5.5 Minimum Size for recommended solution.

5.7 Layout of Representation

The best solution for a layout of representation was to place this information in the native
metadata constraint language for the instance output type. This information is kept under the
path:

//DataElement/Representations/Representation

An example is to place an XML Schema fragment to make assertions of constraints on final
instance data in XML format. XML DTD may also work for this purpose, but to a lesser effect.

Instance data is also acceptable under this branch. If the output is in PDF format, it is possible to
place a PDF binary data blob into the XML tree within a CDATA section. An HTML or XHTML
representation for eForms may also be acceptable.

5.8 Context

Section 9.4 of the ebXML Registry Information Model discusses using the classification schemas
and nodes as a mechanism to express contextual classifications of registry objects. This is the
methodology we also recommend based on the ease of which this mechanism can express

 20

multiple contextual classifications and may be extended to meet future or other requirements in
this area.

The UN/CEFACT CCTS v2.0 identifies 8 context driver categories.

- Geopolitical
- Business Process
- Supporting Business Process
- Role
- Official Constraint
- Systems Capabilities
- Product Classification
- Industry Classification

A problem does exist however with respect to registry classification scheme bloating. If all the
CCTS context classifications are used, the registry classification scheme would be unmanageably
large.

Each individual context category has tree parts to it. A context category identifier, a qualifier or
identifier for a list of set of code values that are acceptable to express the values for that context,
and a value or set of values specific to an individual context. It may also be a good idea to
include the identifier for an agency or place where a stakeholder could retrieve additional
information about a specific context coded value list.

Furthermore, the list of eight context categories may not be complete and care should be taken to
build a Data Element in a format that will not break should another context be added.

A Data Element of the type envisioned in the CCTS is sufficiently high enough that it is reusable
over several contexts. When a Core Component Data Element is constrained within a specific
set of context category values, it becomes a Business Information Entity or BIE.

Recommendation: Inline and using Registry Classifications

The IJI Data Dictionary includes a Data Element property of Context. Because the IJI Data
Dictionary was developed within a specific domain (context), the Data Elements should be
considered BIE’s and are specific to certain sets of context values. We recommend keeping the
Property attribute of context in the Properties section of the Data Element.

The IJI data dictionary can be further contextually classified by one or more schemes by utilizing
the ebXML Registry Classification schemes in a hierarchical manner to assert context. By testing
this, we identified potential problems that may happen regarding two issues:

- The order in which data modelers apply context categories to their modeling
efforts; and

- A single registry may bloat if multiple classification schemes are used to
represent all possible choices of context values.

The latter is worth a closer look. For example, if you chose to express just 4 context categories
and had 50 values for each possible context, you would have to create 50 4 classification
schemes to express one specific order of classification. In reality, the numbers are much larger.

Context Classification

scheme
Number of values (approx.)

Geopolitical ISO 3166-2
ISO 639

1,650 (165 countries * 10 regions) *
the number of languages

 21

Industry Classification NAICS 3,950
Business Process UN/CEFACT

Catalog of
common
business
processes

50 (unknown at this time)

Supporting Process UN/CEFACT
Catalog of
common
business
processes

50 (unknown at this time)

Official constraints Unknown (United
Nations + each
nations
legislation (and
United Nations)

5000

Role Depends on
processes.

25 (guess)

Systems Capabilities Unknown 25 (guess)
Product Classification UN/SPSC 3,250 +

If you account for every possible combination, this may not work very well or take a long time to
implement.

Recommend: Limited use and an XML serialization of Context Assertion/Declaration sets.

Highly recommend that such projects proceed on a limited basis until more is learned about how
to declare, store and locate context groupings.

A solution to have a 2 or three deep nested hierarchy with limited context values expressed as a
classification scheme, then serialize a set of context definitions into an XML Registry Object is
probably the best way to make these declarations. The user would then be able to chose
between multiple context declarations under a certain node to retrieve a complete context
declaration.

The context format was written as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<ContextAssertion homeRegistry="http://ebxml.pwgsc.gc.ca:8080"
 value="urn:uuid:4a593056-3509-0766-2e7b-4e154030423f"
>
 <!--Category = (Geopolitical |
 OfficialConstraint |
 Process |
 ProcessRole |
 SupportingRole |
 ProductClassification |
 IndustryClasification |
 SystemCapability
)-->
 <Declaration category="Geopolitical"
 qualifier="ISO-3166-2"
 agencyURL="http://www.iso.org"
 value="CA-ON" />
 <Declaration category="IndustryClassification"

 22

 qualifier="NAICS-2002"
 agencyURL="http://www.naics.org"
 value="9221"
 description="Justice, Public Order, and Safety
Activities" />
 <Declaration category="SystemCapability"
 qualifier="ServiceOutputSyntax"
 value="xml_schema_xsd" />
</ContextAssertion>

The model for the context declaration is simple. A root element of ContextAssertion has only one
child element (“Declaration”). Declaration is an empty element having only attribute values for
category (an enumerated list of the eight context categories), qualified (a token to identify the
qualifier for the value), agencyURI (a resource identifier to aide in assessing context values bu
providing a link to more information about the qualifier), a value (the actual context value) and an
optional description.

5.9 Permissible values

Permissible values is part of the representation domain. Recommend this is left to the final
<Representation> element. See sections 5.5 and 5.6. Permissible values are best expressed
using XML schema enumerated list declarations in the <Representation> part of the DEM.

Permissible values can be expressed inline if needed as per the original IJI Data Dictionary
metadata. They are a <Property>.

5.10 Element Identifier

Notwithstanding another requirement for using UUID as a location-neutral binding, the IJI data
Dictionary has a notion of identifiers assigned by the agency assuming the role of ISO/IEC 11179
Responsible Organization or RO. A well documented problem with RO assigned identifiers is that
they are not themselves unique and cannot facilitate the requirements of a complex design time
or runtime architecture.

The ebXML RIM 2.5 requires that each and every Registry Object has a UUID in the form of a
DCE 128 bit algorithm. The DCE algorithm is thought to be adequate for purposes of establishing
an Universally unique identifier or UUID.

The problem with the DCE UUID is that it in itself is insufficient to meet the needs of the Binding
between the instance and DEM objects. Decoupling the URI for the location of a registry may be
a great way to facilitate both federated registry deployment and tracking of a single data element
within various registries.

RECOMMENDATIONS:

1. To use both the Registry Authority assigned UUID’s and the RO assigned UID’s inline in each
DEM object.

<?xml version="1.0" encoding="UTF-8" ?>
<DataElement
 home="http://ebxml.pwgsc.gc.ca:8080"
 id="urn:uuid:6e60580b-4538-2615-0c2c-3e034c430445"
 xmlns="http://ns.cpsin.org/data-element/1.0"
 >
...

 23

2. That the need for binding the two together can be addressed by programmatically accessing
the registry and specifying the UUID at the time the DEM is placed into the Registry. A program
to generate the DCE 128 bit UUID’s should be used to make these prior to them being submitted
to the registry.

The ebXML Registry specification states that the Registry must be capable of generating a UUID
in the DCE 128 bit format if one is not supplied at the time a Registry Object is loaded into the
Registry. For now – a methodology of allowing the registry to make the UUID, then modifying the
DEM to reflect this can be done, albeit a clumsy and un-elegant solution.

The mechanical identification and retrieval of this data element may be subsequently discovered
by using a combination of the home URI (includes the protocol for retrieval – example ldap://,
http:// or ftp://) and contains assertions by various parties of how to identify the Data Element.
The CCTS specification has a concept of a dictionary name in plain English, using dot notation to
concatenate concepts. The IJI data Dictionary has a similar notion of a name, using spaces to
join.

OtherIdentifiers

Each element may have more than one identifier. Those using Document Assembly specification
work for example may wish to use other identifiers rather than the Registry assigned UUID.
Additionally, an identifier to represent a common dictionary term (such as the UN/CEFACT
CCTS) may be useful.

Recommendation – multiple identifiers

The XML expression for the additional identifiers may be expressed as follows:

<Identifiers>
 <Identifier type="responsibleOrgURL"
 value="http://www.sgc.gc.ca/iji-iij/CPSIN_ITS_e.asp" />
 <Identifier type="ElementIdentifier"
 value="014" />
 <Identifier type="DataDictionaryName"
 value="Gender.Identifier"
 xml:lang="en-CA" />
 <Identifier type="EntityName"
 value="Being, Gender" />
 </Identifiers>

The “Identifiers” element contains only one child element (“Identifier”). Each Identifier element
has no children, two mandatory attributes (“type” – to represent the qualifier for the entity who
asserts the identifier and “value+ - the actual value of the identifier) and one optional attribute
(xml:lang to facilitate multi lingual support).

This model is good to ensure forwards and backwards compatibility with implementations.
Additionally, existing code bases will be unaffected by any new identifiers added to the DEM
object over its’ lifecycle.

The IJI “Entity name” attribute of a data element has been classified as an identifier. The
synonym may be placed here as well.

IJI Element Identifier

Element identifier is already assigned for many of the data elements within the IJI data dictionary.
They start a 0001 and go up to 0353. These are preserved.

 24

UN/CEFACT Data Dictionary Name

The CCTS dictionary name is also classified as an identifier. It is thought to be semantically
meaningful to humans who are familiar with the semantics of words described in the oxford
English dictionary. The data format above facilitates that other language data dictionary names
may also be used within this structure to facilitate global re-use of data elements.

IJI Entity Name

This is the identifier for the CPSIN IJI logical model entity or entities in which the data element
appears. This may be very hard to track and synchronize in an inline serialization since it will
have to be updated each time a new entity uses a specific Data Element.

It is recommended that the relationships between the IJI Data Elements and the Entities that use
them be reflected in the Registry via the “Associations” mechanism. This alleviates the problems
of synchronization. The ebXML Registry is sufficient to handle this requirement.

Responsible Organization URL

The IJI data dictionary describes a ‘Registration Authority” (RA). The RA is called a Responsible
Organization within ISO/IEC 11179 or RO. The RO identifier is needed to identify the RO/RA
actor. A URL is probably the best way to identify each RA/RO since they are unique and also can
lead to more details of how to contact the RA/RO. See below 5.11 also.

5.11 Registration Authority

See directly above also.

Within the Data model for data elements are three identifiers that are assigned by the
Responsible Organization (a term used to identify the Responsible Organization or “RO”). The
XML Fragment proposed for the XML serialization is expressed as follows:

 <Identifiers>
 <Identifier type="responsibleOrgURL"
 value="http://www.sgc.gc.ca/iji-iij/" />
 ...

This presents a possible solution to use a URL to identify the RO. The proposed solution for the
CPSIN Registry will be to use the value http://www.sgc.gc.ca/iji-iij/.

5.12 Registration Status

The CPSIN version 1.0 gold data dictionary has the following permissible values for a Data
Element:

• Proposed
• Under Construction
• Withdrawn
• Accepted -Code Values Pending
• Approved
• Retired

With the following extensions based on ISO/IEC 11179

 25

• Certified
• Standardized

The ebXML RIM v 2.5 specifies the following as permissible values for a RegistryObject (NOTE:
RegistryObject may be deemed a Superclass of Data Element)

The following values are from ebXML RIM 2.5 and derive an alignment of terms/semantics

• Submitted
• Approved
• Deprecated
• Undeprecated
• Withdrawn

Solution:

The following table maps the CPSIN data dictionary status attribute to the ebXML RIM attribute
for status.
CPSIN Term EbXML Rim Term Notes:
Proposed Submitted There are several terms which

do not exist in the RIM
attribute enumerated list of
values. “Submitted” most
closely matches the semantics
for “Proposed”

Under Construction Submitted There is no equivalent to
“Under Construction within the
ebXML RIM. Propose to use
Submitted as equivalent.
“Under Construction” seems to
be a specialization of
submitted (ie – submitted plus
an explanation)

Withdrawn Withdrawn Perfect match
Accepted – Code Values
Pending

Submitted Accepted – code Values
pending is another
specialization of Submitted.
(see “Under Construction”
above).

Approved Approved Matches
Retired Deprecated Deprecated means it is no

longer in date. Seemed to
match better with “retired” than
“withdrawn”, which indicates
an item has been withdrawn
completely. If it is retired, it
may still be desired that it is
reference-able from the
Registry.

Recommendation: IJI Status is a Property of a Data Element

Proposed to make the following format a way to express the status in both ebXML RIM and
CPSIN IJI terms. The Registry itself may keep track of the official status in the RIM metadata for

 26

each Data Element Object within the registry and the xml serialization of each Data Element
object will retain it’s own status property assertion as defined by IJI.

The Registration status assertion is a property of a registry object and should be expressed in a
way that allows an organization of type Responsible Organization (RO is defined as the
organization responsible for this object) to be associated as making the assertion.

<DataElement>
 ...
 <Properties assertedBy=”responsibleOrganizationIdentifier”>
 <Property type=”registrationStatus”
 value=”(Proposed |
 UnderConstruction |
 Withdrawn |
 Accepted-CodeValuesPending |
 Approved |
 Retired)”

 ...

CPSINStatus attribute shall have a choice of one of the values from the enumerated list. This is
deemed necessary to preserve any specializations of the registry status assertion needed by IJI
data dictionary stakeholders.

It is not clear if there is a requirement to synchronize these two status’s (or even if it is possible
given the discrepancies between the ebXML RIM and the IJI Data Dictionary.

5.13 Entity Name

The entity name attribute of each Data Element is a property asserted by the IJI Data Steward. It
can be expressed within the properties branch of the Data element as follows:

 <Properties assertedBy="RO_Identifier_goes_here">
 <Property name="EntityName" value="being, person" />

5.14 Topic

The Topic attribute may be preserved as a property asserted by the RO. Expression of such may
be as follows:

 <Properties assertedBy="RO_Identifier_goes_here">
 <Property name="topic" value="" />

5.15 Comment

A comment (as defined by the IJIJ data Element dictionary) is a type of annotation that is used for
the RA/RO to provide additional details that they deem relevant to pass over to users of the data
element.

Recommendation – expansion of comment into Documentation.

 <Documentations>
 <Documentation type="comment|note|instruction|other"
 locale="en_CA"

 27

 mimeType="text/html">
 <![CDATA[<html><body>Element Approved but further
 research needed for values</body></html>]]>
 </Documentation>
 <Documentation type="comment|note|instruction|other"
 locale="fr_CA"
 mimeType="text/html">
 <![CDATA[<html><body>viva la difference!</body></html>]]>
 </Documentation>
 <Documentations>

The XML format for representing the data element will contain a “Documentation” element with
three attributes. This has also been designed to allow for extensions without having any impact
on existing implementations.

Each Documentation element has three attributes – “type” (must be a choice from an
enumerated list of either comment | note | instruction | other); “locale” (must be a choice from an
enumerated list of the ISO 3166-2 country and region code list) and mimeType (to specify the
MIME type of the Documentation). This format supports full multi lingual capabilities to express
annotations for extending the base set of details.

Adding content to this branch of the XML representation must be done or approved by the RA/RO
only. Others who wish to add content should submit their requests to the RA/RO.

5.16 Synonymous name

Synonymous name is specialization of Identifier. It may be represented in the <Identifiers>
element. In order to facilitate multi lingual support and re-use, a language attribute that may use
ISO 639 language code identifiers to identify the natural language of each synonymous name
may be a good idea as follows:

 <Identifiers>
 <Identifier type="SynonymousName" value="text" xml:lang="en-CA" />
 </Identifiers>

5.17 Familiar Name

Familiar name is a type of identifier. It will be represented in the <Identifiers> element branch of
the model. It should also be capable of being expressed in natural languages other than English.

 <Identifiers>

 <Identifier type="familiarName" value="text" xml:lang="en-CA" />

 </Identifiers>

6.0 Context Declaration Mechanism

Note: This is a vast area and will need to be discussed later in greater detail. Further
work must be done to ensure all stakeholders are represented.

 28

A model for the declaration of context may be derived from the UN/CEFACT Core Components
Technical Specification v 2.0 (CCTS). Within that document, exists a model for declaring sets of
contexts. The model is shown below.

Figure 8 – Core Component model for Context from UN/CEFACT CCTS Specification v 2.0

The context format may be expressed using XML as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<ContextAssertion homeRegistry="http://ebxml.pwgsc.gc.ca:8080"
 value="urn:uuid:4a593056-3509-0766-2e7b-4e154030423f"
>
 <!--Category = (Geopolitical |
 OfficialConstraint |
 Process |
 ProcessRole |
 SupportingRole |
 ProductClassification |
 IndustryClasification |
 SystemCapability
)-->
 <Declaration category="Geopolitical"
 qualifier="ISO-3166-2"
 agencyURL="http://www.iso.org"
 value="CA-ON" />
 <Declaration category="IndustryClassification"
 qualifier="NAICS-2002"

 29

 agencyURL="http://www.naics.org"
 value="9221"
 description="Justice, Public Order, and Safety
Activities" />
 <Declaration category="SystemCapability"
 qualifier="ServiceOutputSyntax"
 value="xml_schema_xsd" />
</ContextAssertion>

This format has several design considerations that should be incorporated into any final
design.

a. It’s hierarchy is simple and adding additional context categories at a later date
will not break any existing implementations by fault of not being able to process
the existing categories.

b. It allows for multiple qualifiers for context values. It is not fixed to any one set of
values.

c. It is flexible and allows context sets to be declared that are incomplete (example –
have accounted for only 3 out of 8 context categories).

NOTE: This is work under development. Next steps – develop an XML Schema for
constraining this data model and publishing it.

7.0 Assembly of Metadata at Design Time (Assembly Document)

[To be completed later]

The assembly guide is meta-metadata. The purpose of the assembly guide is to provide a map
to build an XML schema as an output. The assembly guide document is used at design time
only. It must perform a variety of features.

The sample below was used for the demonstration in Ottawa, Canada in September 2003.
Further work is needed to derive a functional application and rule set.

The assembly guide is an important part of the methodology for allowing users to build new
documents based on the data elements in the registry.

<? xml version="1.0" ?>
<AssemblyGuide outputSyntax="W3CSchema"
 defaultContentRegistry="http://ebxml.pwgsc.gc.ca:8080">
 <DataElement root="true"
 name="Being" >
 <DataElement name="BeingTypeIdentifier"
 useDataElement="uuid" />
 <DataElement name="0014-Gender.Identifier.xml"
 useDataElement="uuid" />
 <DataElement name="BeingBirthYear"
 useDataElement="uuid" />
 <DataElement name="BeingBirthMonth"
 useDataElement="uuid" />
 <DataElement name="BeingBirthDay"
 useDataElement="uuid" />
 </DataElement>
</AssemblyGuide>

 30

8.0 Methodology for Extraction of Data Element Metadata

[To be completed later]

The exact methodology for extracting a Business Information Entity (BIE) from a Data Element is
work to be done in the future.

For the purposes of this paper, a methodology was developed by placing several BIE’s inline and
extracting the correct schema fragment based on a set of contexts (see section 6.0 – Context
above).

Java code was written to consume one data element and one context declaration and a
parameter to express the output type. For purposes of the demonstration, the output type was
the W3C XML schema.

The code below requires three separate jar files to run. Xerces.jar, jdom.jar and xml-apis.jar. All
are available freely on the internet.

This code is constructed to allow it to be called as a helper class from a new main. The new main
could easily consume the Assembly Guide, then extract the exact metadata from each Data
element and dynamically build a new Schema.

A custom extension could also be written to use a registry client application to request each data
element directly from the registry.

This sample proves that dynamic content assembly is possible and easy to accomplish.

NOTE: Formatting of the code was not preserved.

/**
 * This class will return a representation of a DataElement
 * given type and context.
 *
 * @author Matthew MacKenzie (matt@yellowdragonsoft.com)
 * @version $Id:$
 */
import org.jdom.Element;
import org.jdom.Document;
import org.jdom.Namespace;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

import java.util.*;
import java.io.*;

public class GetRepresentation
{
 public static final String DATA_ELEMENT_NAMESPACE
 = "http://ns.cpsin.org/data-element/1.0";
 private static final String XSD_NAMESPACE
 = "http://www.w3.org/2001/XMLSchema";
 private InputStream xmlStream;
 private Element rootNode;
 private List representations;
 private static final Namespace DATA_ELEMENT_NS
 =
Namespace.getNamespace(GetRepresentation.DATA_ELEMENT_NAMESPACE);
 private static final Namespace XSD_NS
 = Namespace.getNamespace(GetRepresentation.XSD_NAMESPACE);

 private static final String REPRESENTATIONS_TAG = "Representations";
 private static final String REPRESENTATION_TAG = "Representation";

 31

 /**
 * Constructor. Argument is an input stream of the DataElement XML to be
parsed.
 */
 public GetRepresentation(InputStream xmlStream)
 {
 this.xmlStream = xmlStream;
 }

 /**
 * Retrieves a representation give type and context. If the
 * type matches XSD_NAMESPACE, the bare XSD is returned, otherwise
 * the whole Representation element is returned. If nothing exists for
 * the given parameters, null is returned.
 */
 public Element retrieveRepresentation(String type, String context)
 throws JDOMException, IOException
 {
 if (this.rootNode == null)
 {
 if (this.xmlStream == null)
 throw new IOException("XML Stream is null!");

 this.rootNode = new
SAXBuilder().build(this.xmlStream).getRootElement();

 if
(!this.rootNode.getNamespace().equals(GetRepresentation.DATA_ELEMENT_NS))
 throw new JDOMException("Root node is not in the
right namespace (" +

 GetRepresentation.DATA_ELEMENT_NAMESPACE + ")");

 }

 if (this.representations == null)
 {
 Element repsXml =
this.rootNode.getChild(GetRepresentation.REPRESENTATIONS_TAG,

 this.representations =
repsXml.getChildren(GetRepresentation.REPRESENTATION_TAG,

 System.out.println("Found " + this.representations.size()
 + " representation(s) of this data element."
 + " The one below is for context: "
 + context);

 if (this.representations == null)
 return null;
 }

 Iterator repIter = this.representations.iterator();

 while (repIter.hasNext())
 {
 Element rep = (Element)repIter.next();
 if (rep.getAttributeValue("type").equals(type) &&
 rep.getAttributeValue("context").equals(context))
 {
 if (type.equals(GetRepresentation.XSD_NAMESPACE))
 {
 return rep.getChild("schema",
GetRepresentation.XSD_NS).detach();
 }
 return rep.detach();
 }
 }
 return null;

 }

 public static void main(String[] args)
 throws Exception
 {
 if (args.length < 3)
 {

 32

 System.out.println("USAGE: GetRepresentation <file> <rep
type> <context>");
 System.exit(-1);
 }
 GetRepresentation gr = new GetRepresentation(new
FileInputStream(args[0]));
 Element rep = gr.retrieveRepresentation(args[1], args[2]);
 new XMLOutputter().output(rep, System.out);
 }
}

8.1 Binding between instance data and metadata

If the CPSIN IJI data dictionary is to be placed into an ebXML Registry, there is a binding that
must be present between instance data and the Data Dictionary to facilitate discovery of
metadata by agencies that consume the data as part of services they may invoke. The binding
must be both at design time (via an Assembly Document) and at run time (via a reference
between individual data elements and the BIE’s)

The concept of Assembly Document will be discussed at a later date in section 7.0

For the runtime instance data binding, XML 1.0 provides a good mechanism to use for a runtime
instance data binding requirement - called a FIXED attribute.

RECOMMENDATION: That a UUID be used as a fixed attribute to each data element in instance
data. The UUID must be in a form that can transmit the following information:

1. Present the user a location where they can retrieve the metadata object associated with
the instance data elements

2. Present the user with the protocol to be used for retrieving the metadata and
3. Present the user with a Universally Unique Identifier in order to:

a. recognize other instances of that metadata concept and
b. retrieve a copy of one and one only metadata object from the registry.

By affixing the UUID as a fixed value attribute, XML instance data that is subject to a parse to
check for well formed-ness will have the UUID’s present and not incur any subsequent lag in
runtime in-efficiency. A validating parse against either an XML schema or an XML DTD will result
in the FIXED attribute being attached to the in-memory serialization of the XML instance and will
be available to application and human actors.

This should be formalized and will not be difficult to do.

RECOMMENDATION: se of URN’s in the format of a backwards URL with a UUID affixed in
order to convey all the requirements.

9.0 Sample XML Expression of IJI Data Element as CC’s/BIE’s

Based on the data model and an interpretation of the ISO/IEC 11179 and ebXML Registry
models, the following sample illustrates how an XML serialization of the Data element model may
be specified. A schema has been developed for this model and is attached hereto as Appendix
“A”.

<?xml version="1.0" encoding="UTF-8" ?>
<DataElement

 33

 home="http://ebxml.pwgsc.gc.ca:8080"
 id="urn:uuid:6e60580b-4538-2615-0c2c-3e034c430445"
 xmlns="http://ns.cpsin.org/data-element/1.0"
 >
 <Identifiers>
 <Identifier type="responsibleOrgURL"
 value="http://www.sgc.gc.ca/iji-iij/CPSIN_ITS_e.asp" />
 <Identifier type="ElementIdentifier" value="014" />
 <Identifier type="DataDictionaryName"
 value="Gender.Identifier"
 xml:lang="en-CA" />
 <Identifier type="EntityName"
 value="Being, Gender" />
 </Identifiers>

 <Properties assertedBy="Canadian Public Safety Information Network">
 <Property name="version.major" value="1" />
 <Property name="version.minor" value="0" />
 <Property name="version.incremental" value="0" />
 <Property name="registration.status" value="APPROVED" />
 <Property name="domain" value="dDateValue" />
 <property name=”context” value=”IJI Context” />
 <Property name="topic" value="Person" />
 <Property name="familiar.name"
 value="Person.Gender.Identifier"
 context="A numeric value corresponding to the
 gender which a person belongs" />
 <Property name="synonyms"
 value="Animal.Gender.Identifier"
 context="A numeric value corresponding to the
 gender which an Animal belongs" />
 </Properties>

 <Documentations>
 <Documentation type="comment|note|instruction|other"
 locale="en_CA"
 mimeType="text/html">
 <![CDATA[<html><body>Element Approved but further
 research needed for values</body></html>]]>
 </Documentation>
 <Documentation type="comment|note|instruction|other"
 locale="fr_CA"
 mimeType="text/html">
 <![CDATA[<html><body>viva la difference!</body></html>]]>
 </Documentation>
 <Documentations>

 <Representations>
 <Representation type="http://www.w3.org/2001/XMLSchema"
 context="urn:uuid:4a593056-3509-0766-2e7b-4e154030423f">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:component-foo">
 <!--schema here-->

 <xsd:element name="Sex">
 <xsd:complexType>
 <xsd:simpleContent>

 34

 <xsd:extension base="xsd:string">
 <xsd:attribute name="value" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="01 - Male"/>
 <xsd:enumeration value="02 - Female"/>
 <xsd:enumeration value="03 - Asexual"/>
 <xsd:enumeration value="04 - Transgendered - in
transition"/>
 <xsd:enumeration value="05 - Transgendered -
complete to female"/>
 <xsd:enumeration value="06 - Transgendered -
complete to male"/>
 <xsd:enumeration value="07 - Hemaphrodyte"/>
 <xsd:enumeration value="08 - Unisexual Species"/>
 <xsd:enumeration value="09 - Not applicable"/>
 <xsd:enumeration value="10 - Other"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="uuid" use="fixed" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="urn:uuid:6e60580b-4538-
2615-0c2c-3e034c430445" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="GenderIdentifier">
 <xsd:complexType/>
 </xsd:element >
 </xsd:schema>
 </Representation>

 <!--Start of another context here-->
 <Representation type="http://www.w3.org/2001/XMLSchema"
context="urn:uuid:6563671c-5008-464c-5b38-1377054b5a7a">
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:component-foo">
 <!--schema here-->

 <xsd:element name="SexIdentifier">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="value" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="01 - Homme"/>
 <xsd:enumeration value="02 - Femme"/>
 <xsd:enumeration value="03 - Asexual"/>
 <xsd:enumeration value="04 - Transgendered - dans
la transition"/>

 35

 <xsd:enumeration value="05 - Transgendered -
accomplissez a la femme"/>
 <xsd:enumeration value="06 - Transgendered -
accomplissez a la homme"/>
 <xsd:enumeration value="07 - Hemaphrodyte"/>
 <xsd:enumeration value="08 - Espéce
D'Unisexual"/>
 <xsd:enumeration value="09 - Non applicable"/>
 <xsd:enumeration value="10 - Autre"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="uuid" use="fixed" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="urn:uuid:6e60580b-4538-
2615-0c2c-3e034c430445" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="GenderIdentifier">
 <xsd:complexType/>
 </xsd:element >
 </xsd:schema>
 </Representation>

 </Representations>

</DataElement>

10.0 – Recommended Future Work

There are several next steps that should be taken to keep this work going in the correct direction.
The below is a partial list of recommendations:

10.1 Circulate the XML Schema for the Data Element
This will involve ensuring the rules for representation from the IJI data dictionary are captured and
expressed properly. Additional input from appropriate standards groups would also be a good
idea.

10.2 Complete an XML schema for a Context Declaration
Seek input and finalize a v1.0 schema for expressing Context. Seek input from appropriate
UN/CEFACT groups.

 36

10.3 Complete an XML schema for the Assembly Guide

10.4 IJI Data Dictionary placed into Registry
Complete loading of the IJI data dictionary into a permanent registry/repository in the proper XML
format

10.5 Build a prototype application
It would be a good exercise to build a sample application that will allow schema designers to
design and generate XML schemas automatically based on content in the registry and the context
in which they will use it.

10.6 Reconcile this work with the CCRIM work
[TBD]

10.7 Reconcile this work with the UN/CEFACT ATG Core Components
work
[TBD]

10.8 Circulate this work to standards groups to seek additional input.
[TBD]

10.9 Harmonize the CPSIN IJI data dictionary with at least one other
Data dictionary
[TBD] Using the registry for this.

 37

Appendix “A” – XSD Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- Author: Yellow Dragon Software Corporation (Matthew MacKenzie,
Duane Nickull) -->

<xs:schema targetNamespace="http://ns.cpsin.org/data-element/1.0"
xmlns:de="http://ns.cpsin.org/data-element/1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="DataElement">
 <xs:annotation>
 xs:documentation>Specification of DataElement.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Identifiers">
 <xs:annotation>

 <xs:documentation>Collection element to hold 1-unbounded
Indentifier instances.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element
name="Identifier" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>Simple type/value element representing a piece
of information which canonically identifies data
element.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:attribute name="type" type="de:IdentifierTypes"
use="required"/>

 <xs:attribute name="value" type="xs:string" use="optional"/>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Properties"
minOccurs="0">
 <xs:annotation>

 <xs:documentation>Collection element to hold 1-unbounded
Property instances.</xs:documentation>
 </xs:annotation>

 38

http://ns.cpsin.org/data-element/1.0
http://ns.cpsin.org/data-element/1.0
http://www.w3.org/2001/XMLSchema

 <xs:complexType>
 <xs:sequence>
 <xs:element
name="Property" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>Element providing metadata storage for a
DataElement. Property types are added to the PropertyTypes simpleType
in the schema, allowing extensibility of metadata without structural
changes to the overall schema.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:attribute name="name" type="de:PropertyNames"
use="required"/>

 <xs:attribute name="value" type="xs:string" use="optional"/>

 <xs:attribute name="context" type="xs:string" use="optional"/>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute
name="assertedBy" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Documentation"
minOccurs="0">
 <xs:annotation>

 <xs:documentation>Collection element to hold documentation
entries. Entries can be differentiated by locale, type and
mimeTYpe.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element
name="Entry" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>An entry in this DataElement's
documentation.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="locale" type="de:Locales"/>

 39

 <xs:attribute name="type" type="de:DocumentationTypes"/>

 <xs:attribute name="mimeType" type="de:DocumentationMimeTypes"
use="optional" default="text/plain"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Representations">
 <xs:annotation>
 <xs:documentation>List of
representations of this DataElement. A representation is essentially a
schema in any format imaginable, although it is suggested that an XML
schema format is used.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element
name="Representation" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>A structure Representation of this
DataElement. It is recomended that the type attribute of this element
be the namespace value for the schema language being used. For xsd,
that would be http://www.w3.org/2001/XMLSchema.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" type="xs:string"/>

 <xs:attribute name="context" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 40

http://www.w3.org/2001/XMLSchema

 <xs:attribute name="home" type="xs:anyURI"
use="required"/>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="IdentifierTypes">
 <xs:annotation>
 <xs:documentation>List of acceptable Identifier
types.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="responsibleOrgURL"/>
 <xs:enumeration value="submittingOrgURL"/>
 <xs:enumeration value="ElementIdentifier"/>
 <xs:enumeration value="DataDictionaryName"/>
 <xs:enumeration value="EntityName"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PropertyNames">
 <xs:annotation>
 <xs:documentation>List of property names in
use.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="version.major"/>
 <xs:enumeration value="version.minor"/>
 <xs:enumeration value="version.incremental"/>
 <xs:enumeration value="registration.status"/>
 <xs:enumeration value="domain"/>
 <xs:enumeration value="topic"/>
 <xs:enumeration value="familiar.name"/>
 <xs:enumeration value="synonyms"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Locales">
 <xs:annotation>
 <xs:documentation>List of acceptable locales.
Used primarily for choosing an appropriate culture for Documentation
Entries.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="en_CA"/>
 <xs:enumeration value="en"/>
 <xs:enumeration value="en_GB"/>
 <xs:enumeration value="en_US"/>
 <xs:enumeration value="fr_FR"/>
 <xs:enumeration value="fr"/>
 <xs:enumeration value="fr_CA"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DocumentationMimeTypes">
 <xs:annotation>
 <xs:documentation>List of recognized
documentation formats. Remember to use CDATA when doing anything other
than text/plain.</xs:documentation>
 </xs:annotation>

 41

 <xs:restriction base="xs:string">
 <xs:enumeration value="text/plain"/>
 <xs:enumeration value="text/html"/>
 <xs:enumeration value="text/xml"/>
 <xs:enumeration value="application/pdf"/>
 <xs:enumeration value="application/ms-word"/>
 <xs:enumeration value="text/rtf"/>
 <xs:enumeration value="application/octet-
stream"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DocumentationTypes">
 <xs:annotation>
 <xs:documentation>List of documentation
types.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="comment"/>
 <xs:enumeration value="note"/>
 <xs:enumeration value="instruction"/>
 <xs:enumeration value="other"/>
 <xs:enumeration value="warning"/>
 <xs:enumeration value="copyright"/>
 <xs:enumeration value="restrictions"/>
 <xs:enumeration value="description"/>
 <xs:enumeration value="abstract"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

 42

Appendix “B” – IJI Object Model for “Person”

 43

Appendix “C” – Java Code for Extracting BIE’s from Data
Elements.

/**
 * This class will return a representation of a DataElement
 * given type and context.
 *
 * @author Matthew MacKenzie (matt@yellowdragonsoft.com)
 * @version $Id:$
 */
import org.jdom.Element;
import org.jdom.Document;
import org.jdom.Namespace;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

import java.util.*;
import java.io.*;

public class GetRepresentation
{
 public static final String DATA_ELEMENT_NAMESPACE
 = "http://ns.cpsin.org/data-element/1.0";
 private static final String XSD_NAMESPACE
 = "http://www.w3.org/2001/XMLSchema";
 private InputStream xmlStream;
 private Element rootNode;
 private List representations;
 private static final Namespace DATA_ELEMENT_NS
 =
Namespace.getNamespace(GetRepresentation.DATA_ELEMENT_NAMESPACE);
 private static final Namespace XSD_NS
 = Namespace.getNamespace(GetRepresentation.XSD_NAMESPACE);

 private static final String REPRESENTATIONS_TAG = "Representations";
 private static final String REPRESENTATION_TAG = "Representation";

 /**
 * Constructor. Argument is an input stream of the DataElement XML to be
parsed.
 */
 public GetRepresentation(InputStream xmlStream)
 {
 this.xmlStream = xmlStream;
 }

 /**
 * Retrieves a representation give type and context. If the
 * type matches XSD_NAMESPACE, the bare XSD is returned, otherwise
 * the whole Representation element is returned. If nothing exists for
 * the given parameters, null is returned.
 */
 public Element retrieveRepresentation(String type, String context)
 throws JDOMException, IOException
 {
 if (this.rootNode == null)
 {

 44

 if (this.xmlStream == null)
 throw new IOException("XML Stream is null!");

 this.rootNode = new
SAXBuilder().build(this.xmlStream).getRootElement();

 if
(!this.rootNode.getNamespace().equals(GetRepresentation.DATA_ELEMENT_NS))
 throw new JDOMException("Root node is not in the
right namespace (" +

 GetRepresentation.DATA_ELEMENT_NAMESPACE + ")");

 }

 if (this.representations == null)
 {
 Element repsXml =
this.rootNode.getChild(GetRepresentation.REPRESENTATIONS_TAG,

 GetRepresentation.DATA_ELEMENT_NS);

 this.representations =
repsXml.getChildren(GetRepresentation.REPRESENTATION_TAG,

 GetRepresentation.DATA_ELEMENT_NS);

 System.out.println("Found " + this.representations.size()
 + " representation(s) of
this data element.");

 if (this.representations == null)
 return null;
 }

 Iterator repIter = this.representations.iterator();

 while (repIter.hasNext())
 {
 Element rep = (Element)repIter.next();
 if (rep.getAttributeValue("type").equals(type) &&
 rep.getAttributeValue("context").equals(context))
 {
 if (type.equals(GetRepresentation.XSD_NAMESPACE))
 {
 return rep.getChild("schema",
GetRepresentation.XSD_NS).detach();
 }
 return rep.detach();
 }
 }
 return null;

 }

 public static void main(String[] args)
 throws Exception
 {
 if (args.length < 3)
 {
 System.out.println("USAGE: GetRepresentation <file> <rep
type> <context>");
 System.exit(-1);

 45

 }
 GetRepresentation gr = new GetRepresentation(new
FileInputStream(args[0]));
 Element rep = gr.retrieveRepresentation(args[1], args[2]);
 new XMLOutputter().output(rep, System.out);
 }
}

 46

	Table of Contents
	1.0 Statement of Work
	1.1 Background
	1.2 Customer Requirement
	1.3 Work Components

	2.0 Assumptions
	Approach and Solution
	Requirements for Data Element Metadata serialization
	4.0 Analyzing the Data Element Models
	4.1 UN/CEFACT Core Component and Business Information Entity
	4.1 CPSIN IJI Data Element model
	4.3 ISO/IEC 11179 - 2002
	4.4 ebXML Registry Information Model

	5.0 Model Reconciliation Issues and Proposed Solutions
	5.1 Element Name
	5.2 Definition
	5.3 Version
	5.4 Domain
	5.5 Minimum Size
	5.6 Maximum Size
	5.7 Layout of Representation
	5.8 Context
	5.9 Permissible values
	5.10 Element Identifier
	5.11 Registration Authority
	5.12 Registration Status
	5.13 Entity Name
	5.14 Topic
	5.15 Comment
	5.16 Synonymous name
	5.17 Familiar Name

	6.0 Context Declaration Mechanism
	7.0 Assembly of Metadata at Design Time (Assembly Document)
	8.0 Methodology for Extraction of Data Element Metadata
	8.1 Binding between instance data and metadata

	9.0 Sample XML Expression of IJI Data Element as CC’s/BIE’s
	10.0 – Recommended Future Work
	10.1 Circulate the XML Schema for the Data Element
	10.2 Complete an XML schema for a Context Declaration
	10.3 Complete an XML schema for the Assembly Guide
	10.4 IJI Data Dictionary placed into Registry
	10.5 Build a prototype application
	10.6 Reconcile this work with the CCRIM work
	10.7 Reconcile this work with the UN/CEFACT ATG Core Compone
	10.8 Circulate this work to standards groups to seek additio
	10.9 Harmonize the CPSIN IJI data dictionary with at least o

	Appendix “A” – XSD Schema
	Appendix “B” – IJI Object Model for “Person”
	Appendix “C” – Java Code for Extracting BIE’s from Data Elem

