
Guidelines For The Customization of UBL v1.0
Schemas

Working Draft 1.0-beta4, 04/29/04

Document identifier:

wd-cmsc-cmguidelines-1.0-beta4

Editor:

Eduardo Gutentag, Sun Microsystems, Inc. <eduardo.gutentag@sun.com>

Authors:

Matthew Gertner <matthew@acepoint.cz>
Eduardo Gutentag, Sun Microsystems, Inc. <eduardo.gutentag@sun.com>
Arofan Gregory, Aeon LLC <agregory@aeon-llc.com>

Contributors:

Eve Maler, Sun Microsystems, Inc.
Dan Vint, ACORD
Bill Burcham, Sterling Commerce
Sylvia Webb, Gefeg

Abstract:

This document presents guidelines for a compatible customization of UBL schemas, and how to
proceed when that is impossible.

Status:

This is a draft document and is likely to change on a regular basis.

If you are on the <ubl@lists.oasis-open.org> list for committee members, send
comments there. If you are not on that list, subscribe to the <ubl-comment@lists.oasis-
open.org> list and send comments there. To subscribe, send an email message to <ubl-
comment-request@lists.oasis-open.org> with the word "subscribe" as the body
of the message.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the UBL TC web page (http://www.oasis-open.org/committees/ubl/).

Copyright © 2003, 2004 OASIS Open, Inc. All Rights Reserved.

1

2

3

4

5

6

7

8

9
10
11

12

13
14
15
16

17

18
19

20

21

22
23
24
25
26

27
28
29

30

Table of Contents

1. Introduction
1.1. Goals of this document
1.2. Limitations of this document

2. Background
2.1. The UBL Schema
2.2. Customization of UBL Schemas
2.3. Customization of customization

3. Compatible UBL Customization
3.1. Use of XSD Derivation
3.2. Some observations on extensions and restrictions
3.3. Documenting the Customization
3.4. Use of namespaces

4. Non-Compatible UBL Customization
4.1. Use of Ur-Types
4.2. Building New Types Using Core Components

5. Customization of Codelists
6. Use of the UBL Type Library in Customization

6.1. The Structure of the UBL Type Library
6.2. Importing UBL Schema Modules
6.3. Selecting Modules to Import
6.4. Creating New Document Types with the UBL Type Library

7. Future Directions

Appendixes

A. Notices
B. Intellectual Property Rights
References

1. Introduction

Note

It is highly recommended that readers of the current document first consult the CCTS
paper [Reference] before proceeding, in order to understand some of the thinking behind
the concepts expressed below.

With the release of version 1.0-beta of the UBL library it is expected that subsequent changes to it will
be few and far between; it contains important document types informed by the broad experience of
members of the UBL Technical Committee, which includes both business and XML experts.

However, one of the most important lesson learned from previous standards is that no business library is
sufficient for all purposes. Requirements differ significantly amongst companies, industries, countries,
etc., and a customization mechanism is therefore needed in many cases before the document types can
be used in real-world applications. A primary motivation for moving from the relatively inflexible EDI
formats to a more robust XML approach is the existence of formal mechanisms for performing this
customization while retaining maximum interoperability and validation.

It is an UBL expectation that:

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

55
56
57

58

59

60
61
62

63
64
65

66
67
68
69
70
71

72

1. Customization will indeed happen,

2. It will be done by national and industry groups and smaller user communities,

3. These changes will be driven by real world needs, and

4. These needs will be expressed as context drivers.

EDI dealt with the customization issue through a subsetting mechanism that took a standard (the
UN/EDIFACT standard, the ANSI X12 standard, etc.) [References] and subsetted it through industry
Implementation Guides (IG), which were then subsetted into trading partners IGs, which were then
subsetted into departamental IGs. UBL proposes dealing with this through schema derivation.

Thus UBL starts as generic as possible, with a set of schemas that supply all that's likely to be needed in
the 80/20 or core case, which is UBL's primary target. Then it allows both subsetting and extension
according to the needs of the user communities, industries, nations, etc., according to what is permitted
in the derivation mechanism it has chosen, namely W3C XML Schema.

Figure 1.

These customizations are based on the eight context drivers identified by ebXML (see below). Any
given schema component always occupies a location in this eight-space, even if not a single one has
been identified (that is, if a given context driver has not been narrowed, it means that it is true for all its
possible contextual values). For instance, UBL has an Address type that may have to be modified if the
Geopolitical region in which it will be used is Thailand. But as long as this narrowing down of the
Geopolitical context has not been done, the Address type applies to all possible values of if, thus
occupying the "any" position in this particular axis of the eight-space.

In order for interoperability and validation to be achieved, care must be taken to adhere to strict
guidelines when customizing UBL schemas. Although the UBL TC intends to produce a customization
mechanism that can be applied as an automatic process in the future, this phase (known as Phase II, and
predicted in the UBL TC's charter) has not been reached. Instead, Phase I, the current phase, offers the
guidelines included in this document.

In what follows in this document, "Customization" always means "context motivated customization", or
"contextualization".

73

74

75

76

77
78
79
80

81
82
83
84

85

86
87
88
89
90
91
92

93
94
95
96
97

98
99

1.1. Goals of this document

This document aims to describe the procedure for customizing UBL schemas, with three distinct goals.

1. The first goal is to ensure that UBL users can extend UBL schemas in a manner that:
 allows for their particular needs,

 can be exchanged with trading partners whose requirements for data content are different but
related, and

 is UBL compatible.

2. The second goal is to provide some canonical escape mechanisms for those whose needs extend
beyond what the compatibility guidelines can offer. Although the product of these escape
mechanisms cannot claim UBL compatibility, at least it can offer a clear description of its
relashionship to UBL, a claim that cannot be made by other ad hoc methods.

3. The third goal is to gather use case data for the future UBL context extension methodology, the
automatic mechanism for creating customized UBL schemas, scheduled for Phase II. To achieve this
goal users are strongly encouraged to provide feedback.

The current version of this document provides general guidelines for the customization of UBL
schemas. As implementation feedback is received and use cases become clearer, future versions of
this document will include more specific customization guidance.

1.2. Limitations of this document

This document does not provide detailed instructions on how to customize schemas.

This document does not provide instructions on how to customize schemas for specific industries.

2. Background

The major output of the UBL TC is encapsulated in a series of UBL Schemas [Reference]. It is assumed
that in many cases users will need to customize these schemas for their own use. In accordance with
ebXML [Reference to CCTS] the UBL TC expects this customization to be carried out only in response
to contextual needs (see [xxx]) and by the application of any one of the eight identified context drivers
and their possible values.

It must be noted that the UBL schemas themselves are the result of a theoretical customization:

Behind every UBL Schema, a hypothetical schema exists in which all elements are optional and all
types are abstract. This is what we call the "Ur-schema". As mandated in the XSD specification, abstract
types cannot be used as written; they can only be used as a starting point for deriving new, concrete
types. Ur-types are modelled as abstract types since they are designed for derivation. Whether the UBL
TC actually produces and publishes a copy of these Ur-schemas is irrelevant, since it is possible for any
one to reconstruct deterministically the appropriate Ur-schema from any of the schemas produced by the
UBL TC.

2.1. The UBL Schema

The first set of derivations from the abstract Ur-types is the UBL Schema Library itself, which is
assumed to be usable in 80% of business cases. These derivations contain additional restrictions to

100

101

102
103

104
105

106

107
108
109
110

111
112
113

114
115
116

117

118

119

120

121
122
123
124
125

126

127
128
129
130
131
132
133

134

135
136

reduce ambiguity and provide a minimum set of requirements to enable interoperable trading of data by
the application of one context, Business Process. The UBL schema may then be used by specific
industry organizations to create their own customized schemas. When the UBL Schema is used,
conformance with UBL may be claimed. When a Schema that has been customized through the UBL
sanctioned derivation processs is used, conformance with UBL may also be claimed.

2.2. Customization of UBL Schemas

It is assumed that in many cases specific businesses will use customized UBL schemas. These
customized schemas contain derivations of the UBL types, created through additional restrictions and/or
extensions to fit more precisely the requirements of a given class of UBL users. The customized UBL
Schemas may then be used by specific organizations within an industry to create their own customized
schemas.

2.3. Customization of customization

Due to the extensiblilty of W3C Schema, this process can be applied over and over to refine a set of
schemas more and more precisely, depending on the needs of specific data flows.

In other words, there is no theoretical limit to how many times a Schema can be derived, leading to the
possible equivalent of infinite recursion. In order to avoid this, the Rule of Once-per-Context has been
developed, as presented later, in "Context Chains "

3. Compatible UBL Customization

Central to the customization approach used by UBL is the notion of schema derivation. This is based on
object-oriented principles, the most important of which are inheritance and polymorphism. The meaning
of the latter can be gleaned from its linguistic origin: poly, meaning "many", and morph, meaning
"shape". By adhering to these principles, document instances with different "shapes" (that is, that
conform to different but related schemas,) can be used interchangeably.

The UBL Naming and Design Rules Subcommittee (NDRSC) has decided to use XSD, the standard
XML schema language produced by the World Wide Web Consortium (W3C), to model document
formats. One of the most significant advances of XSD over previous XML document description
languages, such as DTDs, is that it has built-in mechanisms for handling inheritance and polymorphism,
which we will refer to as "XSD derivation". It therefore fits well with the real-world requirements for
business data interchange and our goal of interoperability and validation.

There are two important types of modification that XSD derivation does not allow. The first can be
summarized as the deletion of required components (that is, the reduction of a component's cardinality
from x..y to 0..y). The second is the ad hoc location of an addition to the content model through
extension. There may be some cases where the user needs a different location for the addition, but XSD
extension only allows addition at the end of a sequence.

Thus, there are three different scenarios covering the derivation of new types from existing ones:

 Compatible UBL Customization

 An existing UBL type can be modified to fit the requirements of the customization
through XSD derivation. These modifications can include extension (adding new
information to an existing type), and/or refinement (restricting the set of information
allowed to a subset of what is permitted by the existing type).

137
138
139
140
141

142

143
144
145
146
147

148

149
150

151
152
153

154

155
156
157
158
159

160
161
162
163
164
165

166
167
168
169
170

171

172

173
174
175
176

 Non-compatible UBL Customization

 An existing UBL type could be modified to fit the requirements of the customization, but
the changes needed go beyond those allowed by XSD derivation.

 No existing UBL type is found that can be used as the basis for the new type.
Nevertheless, the base library of core components that underlies UBL can be used to
build up the new type so as to ensure that interoperability is at least possible at the core
component level.

These Guidelines will deal with each of the above scenarios, but we will first and foremost concentrate
on the first, as it is the only one that can produce UBL-compatible schemas.

3.1. Use of XSD Derivation

XSD derivation allows for type extension and restriction. These are the only means by which one can
customize UBL schemas and claim UBL compatibility. Any other possible means, even if allowed by
XSD itself, is not allowed by UBL. For instance, although XSD does permit the redefinition of a type to
be something other than what it originally is, UBL has decided to reject this approach, because by
default <xsd:redefine> does not leave any traces of having been used (such as a new namespace,
for instance) and because of the danger of circular redefinitions.

The examples in the following sections will be based on the following complex type (and note that in all
cases the <xsd:annotation> elements have been removed in order to achieve maximum legibility):

<xsd:complexType name="PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

3.1.1. Extensions

XSD extension is used when additional information must be added to an existing UBL type. For
example, a company might use a special identification code in relation to certain parties. This code
should be included in addition to the standard information used in a Party description (PartyName,
Address, etc.) This can be achieved by creating a new type that references the existing type and adds the
new information:

 <xsd:complexType name="MyPartyType">

177

178
179

180
181
182
183

184
185

186

187
188
189
190
191
192

193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

218
219
220
221
222

223

 <xsd:extension base="cat:PartyType">
 <xsd:element ref="MyPartyID" minOccurs="1" maxOccurs="1"/>
 </xsd:element>
 </xsd:extension>
 </xsd:complexType>

Some observations:

 Notice that derivation can be applied only to types and not to elements that use those types. This
is not a problem: UBL uses explicit type definitions for all elements, in fact disallowing XSD use
of anonymous types that define a content model directly inside an element declaration.

 This derived type, MyPartyType, can be used anywhere the original PartyType is allowed.
The instance document should use the xsi:type attribute to indicate that a derived type is being
used. This does not enforce the use of the new type inside a given element, however, so an
Order instance could still be created using the standard UBL PartyType. If the user wishes
to require the use of the derived type, blocking the possibility of using the original type in an
instance, a new derived type must be created from the Order type using refinement and
specifying that the MyPartyType must be used.

 UBL defines global elements for all types, and these elements, rather than the types themselves,
are used in aggregate element declarations. The same procedure can be used for derived types, so
a global MyParty element should be created based on the MyPartyType.

 All derived types should be created in a separate namespace (which might be tied to the user
organization) and reference the UBL namespaces as appropriate. [Appropriate reference to
UBL's namespace usage, and below]

3.1.2. Restrictions

XSD restriction is used when information in an existing UBL type must be constrained or taken away.
For instance, the UBL PartyType permits the inclusion of any number of Party identifiers or none. If
a specific organization wishes to allow exactly one identifier, this is achieved as follows (note that the
annotation fields are removed from the type definition to make the example more readable):

<xsd:complexType name="MyPartyType">
 <xsd:restriction base="cat:PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="1" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>

224
225
226
227
228

229

230
231
232

233
234
235
236
237
238
239

240
241
242

243
244
245

246

247
248
249
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

 </xsd:complexType>

Note that the entire content model of the base type, with the appropriate changes, must be repeated when
performing restriction.

A very important characteristic of XSD restriction is that it can only work within the limits
substitutability, that is, the resulting type must still be valid in terms of the original type; in other words,
it must be a true subset of the original such that a document that validates against the original can also
validate against the changed one. Thus:

 you can reduce the number of repetitions of an element (that is, change its cardinality from
1..100 to 1..50, for instance)

 you can eliminate an optional element (that is, change its cardinality from 0..3 to 0..0)

 you cannot eliminate a required element or make it optional (that is, change its cardinality from
1..3 to 0..3)

3.2. Some observations on extensions and restrictions

 Extensions and restrictions can be applied in any order to the same Type; it is recommended,
though, that they be applied close to each other to improve understanding of the resulting
schema.

 Notice that derivation can be applied only to types and not to elements that use those types. This
is not a problem: UBL uses explicit type definitions for all elements, in fact disallowing XSD use
of anonymous types that define a content model directly inside an element declaration.

 This derived type, MyPartyType, can be used anywhere the original PartyType is allowed.
The instance document should use the xsi:type attribute to indicate that a derived type is being
used. This does not enforce the use of the new type inside a given element, however, so an
Order instance could still be created using the standard UBL PartyType. If the user wishes
to require the use of the derived type, blocking the possibility of using the original type in an
instance, a new derived type must be created from the Order type using refinement and
specifying that the MyPartyType must used.

 UBL defines global elements for all types, and these elements, rather than the types themselves,
are used in aggregate element declarations. The same procedure can be used for derived types, so
a global MyParty element should be created based on the MyPartyType.

 All derived types should be created in a separate namespace (which might be tied to the user
organization) and reference the UBL namespaces as appropriate. [Appropriate reference to
UBL's namespace usage, and below]

3.3. Documenting the Customization

Every time a derivation is performed on a UBL- or UBL-derived-Schema, the context driver and the
driver value used must be documented. If this is not done, then by definition the derived Schema is not
UBL-compliant.

Context is expressed using a set of name/value pairs (context driver, driver value), where the names are
one of a limited set of context drivers established by the UBL TC on the basis of the CCTS (Reference):

274

275
276

277
278
279
280

281
282

283

284
285

286

287
288
289

290
291
292

293
294
295
296
297
298
299

300
301
302

303
304
305

306

307
308
309

310
311

 Business process

 Official constraint

 Product classification

 Business process role

 Industry classification

 Supporting role

 Geopolitical

 System constraint

There is no pre-set list of values for each driver. Users are free at this point to use whatever codification
they choose, but they should be consistent; therefore while not obliged to do so, communities of users
are strongly encouraged to always use the same values for the same context (that is, those who use
"U.S.A" to indicate a country in the North American Continent, should not intermix it with "US" or
"U.S." or "USA"). And if a particular standardized codification is used, it should also be identified in the
documentation. (Some standard sets of values are provided in the CCTS specification.)

There is no predetermined order in which context drivers are applied.

More than one context driver might be applied to various types within the same set of schema
extensions. Therefore, documentation at the root level, although desirable, is not enough. Context should
be included within a <Context> child of the element <Contextualization> (in the UBL
namespace) inside the documentation for each customized type, with the name of the context driver
expressed as in the list above, but using the provided elements within that element. For example, if a
type is to be used in the French apparel industry (shoes), the Context documentation would appear as
follows:

<xsd:annotation>
 <xsd:documentation>
 <ubl:Contextualization>
 <ubl:Context>
 <ubl:Geopolitical>France</ubl:Geopolitical>
 <ubl:IndustryClassification>Apparel</ubl:IndustryClassification>
 <ubl:ProductClassification>Shoes</ubl:ProductClassification>
 </Context>
 </ubl:Contextualization>
 </xsd:documentation>
<xsd:annotation>

The <Context> element can be repeated, once for each incremental change.

If a customization is made that does not fit into any of the existing context drivers, it should be described
in prose inside the <Context> element:

<xsd:annotation>
 <xsd:documentation>
 <ubl:Contextualization>
 <ubl:Context>Used for jobs performed on weekends to specify
 additional data required by the trade union</ubl:Context>
 </ubl:Contextualization>

312

313

314

315

316

317

318

319

320
321
322
323
324
325

326

327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344

345

346
347

348
349
350
351
352
353

 </xsd:documentation>
<xsd:annotation>

Note

Any issues with the set of context drivers currently defined or the taxonomies to be used
for specifying values should be communicated to the UBL Context Driver
Subcommittee.

For each of the context drivers (Geopolitical, IndustryClassification, etc.) the following
characteristics should also be specified (a later version will provide the requisite attributes for doing so):

 CodeListID - string: The identification of a list of codes. Can be used to identify the URL of a
source that defines the set of currently approved permitted values.

 CodeListAgencyID - string: An agency that maintains one or more code lists. Defaults to the
UN/EDIFACT data element 3055 code list.

 CodeListAgencyName - string: The name of the agency that maintains the code list.

 CodeListName - string: The name of a list of codes.

 CodeListVersionID - string: The Version of the code list. Identifies the Version of the
UN/EDIFACT data element 3055 code list.

 languageID - string: The identifier of the language used in the corresponding text string (ISO
639: 1998)

 CodeListUniformResourceID - string: The Uniform Resource Identifier that identifies where the
code list is located.

 CodeListSchemeUniformResourceID - string: The Uniform Resource Identifier that identifies
where the code list scheme is located.

 Content: A value or set of values taken from the indicated code list or classification scheme.

 Text Value: A textual description of the set of values.

3.3.1. Context chains

As mentioned in "Customization of Customization", there is a risk that derivations may form extremely
long and unmanageable chains. In order to avoid this problem, the Rule of Once-per-Context was
formulated: no context can be applied, at a given hierarchical level of that context, more than once in a
chain of derivations. Or, in other words, any given context driver can be specialized, but not reset. Thus,
if the Geopolitical context driver with a value of "USA" has been applied to a type, it is possible to apply
it again with a value that is a subset, or that occupies a hierarchically lower level than that of the original
value, like California or New York, but it cannot be applied with a value equal or higher in the
hierarchy, like Japan. In order to use that latter value, one must go up the ladder of the customization
chain and derive the type from the same location as that from which the original was derived.

Figure 2.

354
355

356

357
358
359

360
361

362
363

364
365

366

367

368
369

370
371

372
373

374
375

376

377

378

379
380
381
382
383
384
385
386
387

388

3.4. Use of namespaces

Every customized Schema or Schema module must have a namespace name different from the original
UBL one. This may end up having an upward-moving ripple effect (a schema that includes a schema
module that now has a different namespace name must change its own namespace name, for instance).
However, it should be noted that all that has to change is the local part of the namespace name, not the
prefix, so that XPaths in existing XSLT stylesheets, for instance, would not have to be changed except
inasmuch as a particular element or type has changed.

Although there is not constraint as to what namespace name should be used for extensions, or what
method should be used for constructing it, it is recommended that the method be, where appropriate, the
same as the method specified in [Reference to NDR document, section on namespace construction]

4. Non-Compatible UBL Customization

There are two important types of customization that XSD derivation does not allow. The first can be
summarized as the deletion of required components (that is, the reduction of a component's cardinality
from x..y to 0..y). The second is the ad hoc location of an addition to a content model. There may be
some cases where the user needs a different location for the addition than the one allowed by XSD
extension, which is at the end of a sequence.

389

390
391
392
393
394
395

396
397
398

399

400
401
402
403
404

Because XSD derivation does not allow these types of customization, any attempts at enabling them
(which in some cases simply mean rewriting the schema with the desired changes as a different schema
in a different, non-UBL namespace) must by necessity produce results that are not UBL compatible.
However, in order to allow users to customize their schemas in a UBL-friendly manner, the notion of an
Ur-schema was invented: for each UBL Schema, an theoretical Ur-schema exists in which all elements
are optional and all types are abstract. The use of abstract types is necessary because an Ur-type can
never be used as is; a derived type must be created, as per the definition of abstract types in the XSD
specification.

4.1. Use of Ur-Types

XSD derivation is sufficient for most cases, but as mentioned above, in some instances it may be
necessary to perform changes to the UBL types that are not handled by standard mechanisms. In this
case, the UBL Ur-types should be used. Remember, an Ur-type exists for each UBL standard type and
differs only in that all elements in the content model are optional, including elements that are required in
the standard type. By using the Ur-type, the user can therefore make modifications, such as eliminating
a required field, that would not be possible using XSD derivation on the standard type.

For instance, suppose an organization would like to use the UBL PartyType, but does not want to
use the required ID element. In this case, normal XSD refinement is used, but on the Ur-type rather than
the standard type:

<xsd:complexType name="MyPartyType">
 <xsd:restriction base="ur:PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="0" maxOccurs="0">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexType>

The new type is no longer compatible with the UBL PartyType, so standard processing engines that
know about XSD derivation will not recognize the type relationship. However, some level of
interoperability is still preserved, since both UBL PartyType and MyPartyType are derived from
the PartyType Ur-type. If this additional flexibility is required, a processor can be implemented to
use the Ur-type rather than the UBL type. It will then be able to process both the UBL type and the
custom type, since they have a common ancestor in the Ur-type (at the expense, of course, of an added
level of complexity in the implementation of the processor).

Figure 3.

405
406
407
408
409
410
411
412

413

414
415
416
417
418
419

420
421
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453

454

Once again: changes to the Ur-type do not enforce changes in the enclosing type, so the UBL
OrderType has to be changed as well if the user organization wants to ensure that only the new
MyPartyType is used. In fact, the new OrderType will not be compatible with the UBL
OrderType, since MyPartyType is no longer derived from UBL's PartyType. However, the new
OrderType can be derived from the OrderType Ur-type to achieve maximum interoperability.

It is possible that at some point one ends up with a schema that contains customizations that were made
in a compatible manner as well as customizations that were made in a non-compatible manner. If that is
the case, then the schema must be considered non-compatible.

4.2. Building New Types Using Core Components

Sometimes no type can be found in the UBL library or Ur-type library that can be used as the basis for a
new type. In this case, maximum interoperability (though not compatibility) can be achieved by building
up the new type using types from the core component library that underlies UBL. (See below)

For example, suppose a user organization needs to include a specialized product description inside
business documents. This description includes a unique ID, a name and the storage capacity of the
product expressed as an amount. The type definition would then appear as follows:

<xsd:complexType name="ProductDescriptionType">
 <xsd:sequence>
 <xsd:element name="ID" type="cct:IdentifierType"/>
 <xsd:element name="Name" type="cct:NameType"/>
 <xsd:element name="Capacity" type="cct:AmountType"/>
 </xsd:sequence>
</xsd:complexType>

Note

The above example should belong to a clearly non-UBL namespace.

It goes without saying that all new names defined when creating custom types from scratch should also
conform to the UBL Naming and Design Rules [Reference].

455
456
457
458
459

460
461
462

463

464
465
466

467
468
469

470
471
472
473
474
475
476

477

478

479
480

5. Customization of Codelists

The guidelines presented in this document do not include the customization of Codelists. This topic is
not addressed here. It is expected that it will be addressed during the 1.1 timeframe.

6. Use of the UBL Type Library in Customization

UBL provides a large selection of types which can be extended and refined as described in the preceding
sections. However, the internal structure of the UBL type library needs to be understood and respected
by those doing customizations. UBL is based on the concept of compatible reuse where possible, and
there are cases where it would be possible to extend different types within the library to achieve the
same end. This section discusses the specifics of how namespaces should be imported into a
customizer's namespace, and the preference of types for specific extension or restriction. What follows
applies equally to UBL-compatible and UBL-non-compatible extensions.

6.1. The Structure of the UBL Type Library

The UBL type library is exhaustively modelled and documented as part of the standard; what is provided
here is a brief overview from the perspective of the customizer.

Within the UBL type library is an implicit hierarchy, structured according to the rules provided by the
UBL NDR. When customizing UBL document types, the top level of the hierarchy is represented by a
specific business document. The business document schema instances are found inside the control
schema modules, which consist of a global element declaration and a complex type declaraion
(referenced by the global element declaration) for the document type. Also within these control schema
modules are imports of the other UBL namespaces used (termed "external schema modules"), and
possibly includes of schema instances specific to that module (termed "internal schema modules"). The
control schema modules import the Common Aggregate Components (CAC) and Common Basic
Components (CBC) namespaces, which include global element and type declarations for all of the
reusable constructs within UBL. These namespace packages in turn import the Specialized Datatype and
Unspecialized Datatype namespaces, which include declarations for the constructs which describe the
basic business uses for data-containing elements. These namespaces in turn import the CCT namespace,
which provides the primitives from which the UBL library is built.[Reference the picture in NDR]

This hierarchy represents the model on which the UBL library is based, and provides a type-intensive
environment for the customizer. The basic structure is one of semantic qualification: as you move from
the modeling primitives (CCTs) and go up the hierarchy toward the business documents, the semantics
at each level become more and more completely qualified. This fact provides the fundamental guidance
for using these types in customizations, as discussed more fully below.

6.2. Importing UBL Schema Modules

UBL schema modules are included for use in a customization through the importing of their
namespaces. Before extending or refining a type, you must import the namespace in which that type is
found directly into the customizing namespace. While inclusion may be used to express internal
packaging of multiple schema instances within a customizer's namespace, the include mechanism should
never be used to reference the UBL type library.

The UBL NDR provides a mechanism whereby each schema module made up of more than a single
schema instance has a "control" schema instance, which performs all of the imports for that namespace.
Customizers should follow this same pattern, since their customizations may well be further customized
along the lines described above. In the same vein, when a UBL document type is imported, it should be
the control schema module for that document type which is imported, bringing in all of the doctype-

481

482
483

484

485
486
487
488
489
490
491

492

493
494

495
496
497
498
499
500
501
502
503
504
505
506
507

508
509
510
511
512

513

514
515
516
517
518

519
520
521
522
523

specific constructs, whether in the control schema instance for that namespace or one of the "internal"
schema instances.

6.3. Selecting Modules to Import

In many cases, the customizer will have no choice about importing or not importing a specific module:
if the customizer needs to extend the document-type-level complex type, there is only a single choice:
the control schema for the document type must be imported. Not all cases are so clear, however. When
creating lower-level elements, by extending the types found in the CAC and CBC namespaces (for
example), it is possible to either extend a provided type, or to build up a new one from the types
available within the Specialized Datatypes and Unspecialized Datatypes namespace packages.

UBL compatible customization always involves reuse at the highest possible level within the hierarchy
described here. Thus, it is always best to reuse an existing type from a higher-level construct than to
build up a new type from a lower-level one. Whenever faced with a choice about how to proceed with a
customization, you should always determine if there is a customizable type within the CAC or CBC
before going to the Datatype namespace packages. This rule further applies to the use of the datatype
namespaces: never go directly to the CCT namespace to create a type if something is available for
extension or refinement within the datatype namespaces. By the same token, it is always preferable to
extend a complex datatype than to create something with reference to an XSD primitive datatype, or a
custom simple type.

It is important to bear in mind that the structure of the UBL library is based around the ideas of semantic
qualification and reuse. You should never introduce semantic redundancy into a customized document
based on UBL. You should always further qualify existing semantics if at all possible.

6.4. Creating New Document Types with the UBL Type Library

UBL provides many useful document types for customization, but for some business processes, the
needed document types will not be present. When creating a new document type, it is recommended that
they be structured as similarly as possible to existing documents, in accordance with the rules in the
UBL NDR. The basic structure can easily be seen in an examination of the existing document types.
What is not so obvious is the approach to the use of types. The design here is to primarily use the types
provided in the CAC and CBC, and only then going to the Datatypes namespace packages. This is the
same approach described for modifying UBL document types in the preceding section.

7. Future Directions

It is planned that in Phase II of the development of this Context Methodology, a context extension
method will be designed to enable automatic customization of UBL types based on context, as outlined
in the charter of the UBL TC. This methodology will work through a formal specification of the reasons
for customizing the type, i.e. the context driver and its value. By expressing the context formally and
specifying rules for customizing types based on this context, most of the changes that need to be made to
UBL in order for it to fit in a given usage environment can be generated by an engine rather than
performed manually. In addition, significant new flexibility may be gained, since rules from two
complementary contexts could perhaps be applied simultaneously, yielding types appropriate for, say,
the automobile industry and the French geopolitical entity, with the appropriate documentation and
context chain produced at the same time.

UBL has not yet progressed to this stage of development. For now, one of the main goals of the UBL
Context Methodology Subcommittee is to gather as many use cases as possible to determined what types
of customizations are performed in the real world, and on what basis. Another important goal is to
ensure that types derived at this point from UBL's version 1 can be still used later on, intermixed with

524
525

526

527
528
529
530
531
532

533
534
535
536
537
538
539
540
541

542
543
544

545

546
547
548
549
550
551
552

553

554
555
556
557
558
559
560
561
562
563

564
565
566
567

types derived automatically in the future.

A. Notices

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS]
2003, 2004. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures
with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the result of
an attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents
of this specification. For more information consult the online list of claimed rights.

B. Intellectual Property Rights

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the UBL TC web page.

References

Normative

[RFC 2119] S. Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. IETF

568

569

570
571

572
573
574
575
576
577
578
579

580
581
582

583
584
585
586
587
588
589
590

591
592

593
594
595
596
597

598
599

600

601
602
603

604

605

606

(Internet Engineering Task Force). 1997.607

