
 1

Universal Business Language (UBL) 2

3

4

5

6

7
8

9
10

11
12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27

Code List Schema White Paper
Version: 1.0 draft 7/27/2005 11:07:00 AM
Document identifier:
wd-ublclsc-codelistSchemaWP-20050727.doc

Location:
http://www.oasis-open.org/committees/ubl/

Author:
Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com

Contributors:
Anthony Coates abcoates@londonmarketsystems.com
Stephen Green stephen_green@seventhproject.co.uk

Abstract:
This white paper discusses the options on the table for UBL to select a basic model of schema
representation for code lists. Several alternatives have been proposed that can be expected to
meet the requirements set forth in the code list requirements document.
Note that this edition is a draft in progress and contains many TBDs.

Status:
This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your
comments are invited. Members of this subcommittee should send comments on this
specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send
comments to the ubl-comment@lists.oasis-open.org list.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page
(http://www.oasis-open.org/who/intellectualproperty.php

Table of Contents28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

1 Introduction and Use Case Overview...4
1.1 Schema Modification Use Cases...4

1.1.1 Use Case of Code List Schema Extension ...4
1.1.2 Use Case of Code List Schema Restriction ..5

2 Code List Schema ..6
2.1 Code List Schema Usage..6
2.2 Sample Code List Schema ..7
2.3 Code List Schema Components..9

2.3.1 Schema File Name..10
2.3.2 XML Header ..10
2.3.3 XML Schema Header ..10
2.3.4 Unrestricted Element...10
2.3.5 Simple Type to Contain the Enumerated Values ..10
2.3.6 Complex Type to Hold Enumerated Values and Supplemental Components11
2.3.7 Global Attributes to Allow Usage of Code Lists as an Attribute ..12
2.3.8 Global Element to Allow Usage of Code List as an Element ..13
2.3.9 End of Schema..13

3 Methods..14
3.1 Substitution Groups ...14

3.1.1 Extending a Code List Using Substitution Groups ..14
3.1.2 Restricting a Code List Using Substitution Groups ...15

3.2 Redefine...15
3.2.1 Extending a Code List Using Redefinition...18
3.2.2 Restricting a Code List Using Redefinition..18

3.3 xsi:type...18
3.3.1 Extending a Code List Using xsi:type..23
3.3.2 Restricting a Code List Using xsi:type...23

3.4 Union with Any Type Plus Lax...23
3.4.1 Extending a Code List Using Union with Any Type Plus Lax..23
3.4.2 Restricting a Code List Using Union with Any Type Plus Lax...23

3.5 AEX 2...24
3.5.1 Extending a Code List Using AEX 2..24
3.5.2 Restricting a Code List Using AEX 2...24

4 Impacts ...24
4.1 NDR Rules...25

4.1.1 NDR’s that are important to Code List discussion...25 64

65

66

67

68

69

4.1.2 All NDR’s ...26
5 Samples..46
6 References ...47
Appendix A. Revision History ..48
Appendix B. Notices ..49

1 Introduction and Use Case Overview 70

71
72
73
74

75
76
77
78
79

80
81
82
83
84
85

86
87
88
89
90

91

92
93
94
95
96

97

98
99

100
101
102
103

104

105

106
107

108

109
110

Code lists are used to enumerate values in documents that are or will be exchanged
electronically. Code list values can, for example, specify items such as the units of measurement
to be used, a particular day of the week or one element of an address such as the two letter state
abbreviation in a US address.

Associated with each code list is a schema that codifies the relationship between code list
elements and the value that can be assigned to each element. These schemas are used to
validate each code list at the creation source and thereby prevent creation of invalid lists. Such
schemas are typically drafted, circulated for review, edited and eventually adopted in some
standardized form.

This standardization process ensures consistency and wide availability. It also helps to promote
widespread usage. As adoption spreads, however, so does the need to modify a code list. The
reasons for such changes are varied and might include new uses for an existing list or the
addition of new code list values. The ease with which modifications can be made as well as the
ease of code list creation and use are directly tied to way in which a code list is represented with
a schema.

This white paper discusses alternatives for the representation of code lists in XML Schema by
third party users. It compares the issues raised by each of these different representations and
focuses on the impact each such representation has on code list schema design, use, reuse,
extensibility and restrictability. Also discussed are code list instance document creation and
modification.

1.1 Schema Modification Use Cases
In an effort to illuminate the issues that real users of code lists face the subsections below
present two use cases. The first involves code list extension, in which code list changes must be
made to permit a new code list value to be used. The second covers code list restriction, which
limits the permissible values that can be assigned to a specific code list element in an instance
document.

1.1.1 Use Case of Code List Schema Extension
A trading group such as an automobile manufacturer and its suppliers currently use UBL
schemas to validate code list instance documents. These documents are exchanged
electronically. Assume that a new currency, FQD (Free Iraqi Dollar), comes into being and is
immediately used by these trading organizations. However the maintainer of the CurrencyCode
list used by this group updates the list on an annual basis, so a new version of the standard code
list is not yet available. Yet trade within the group must go on utilizing the new currency.

Assume that:

• CurrencyCode code list "ISO 4217" is defined by UN/CEFACT and is maintained by that
organization. Changes to this list are made at regular intervals.

• The trading partners are using the UBL-Order-1.0 schema to define their order process.

• The following two XML fragments are used in a partner exchange and that instances of these
same fragments will be used with the new Iraqi currency during transactions:

 111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128
129
130
131

132

133
134

135

136
137
138
139
140
141
142
143
144
145
146
147
148
149

<cbc:LineExtensionAmount
amountCurrencyID="EUR"
amountCurrencyCodeListVersionID="0.3">

50.00
</cbc:LineExtensionAmount>

and

<PricingCurrencyCode>EUR</PricingCurrencyCode>

The challenge:
• How this trading group immediately accommodates use of the FQD without modifying the

UBL schemas or the CurrencyCode list schema. Note that it is desired, as well, to be able to
validate the fact that the creator of an XML instance file is indeed using only valid codes
which now include the FQD.

1.1.2 Use Case of Code List Schema Restriction
Now consider a case in which the permissible values for a particular code list element in an
instance document need to be more restricted than those in the associated code list schema.
This could occur in the example above if the aforesaid trading group needed to use Euros as the
only currency for some set of transactions.

Assume as before that:

• CurrencyCode code list "ISO 4217" is defined by UN/CEFACT and is maintained by that
organization. Changes to this list are made at regular intervals.

• The trading partners are using the UBL-Order-1.0 schema to define their order process.

Then the following code list schema fragments are used in a partner exchange to restrict the type
of the currency to only Euros:

<cbc:LineExtensionAmount amountCurrencyID="EUR"
amountCurrencyCodeListVersionID="0.3">
50.00
</cbc:LineExtensionAmount>

and

<PricingCurrencyCode>EUR</PricingCurrencyCode>

The Challenge:
• How can this trading group limit the use of currency codes to only the Euro without modifying

the UBL schemas or the CurrencyCode list schema.

2 Code List Schema 150

151

152
153

154
155

156

2.1 Code List Schema Usage
The code list can be used as an element or as an attribute of a containing element. All
mechanisms should support both usage styles since UBL currently uses both.

The following schema fragments allow the definition of the use cases discussed in this white
paper:

Schema fragments:
<xsd:element name="LineExtensionAmount" type="ExtensionAmountType"/> 157
 <xsd:complexType name="ExtensionAmountType"> 158
 <xsd:simpleContent> 159
 <xsd:extension base="sdt:UBLAmountType"/> 160
 </xsd:simpleContent> 161
 </xsd:complexType> 162
 163
 <xsd:element ref="PricingCurrencyCode" minOccurs="0"/> 164
 165
 <xsd:element name="PricingCurrencyCode" type="cur:CurrencyCodeType"> 166
 <xsd:annotation> 167
 <xsd:documentation> 168
 <ccts:Component> 169
 <ccts:ComponentType>BBIE</ccts:ComponentType> 170
 <ccts:DictionaryEntryName>Order. Pricing Currency. 171
 Code</ccts:DictionaryEntryName> 172
 <ccts:Definition>the currency in which all pricing on 173
 the transaction will be specified.</ccts:Definition> 174
 <ccts:Cardinality>0..1</ccts:Cardinality> 175
 <ccts:ObjectClass>Order</ccts:ObjectClass> 176
 <ccts:PropertyTerm>Pricing Currency</ccts:PropertyTerm> 177
 178
 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm> 179
 <ccts:DataType>Currency_ Code. Type</ccts:DataType> 180
 </ccts:Component> 181
 </xsd:documentation> 182
 </xsd:annotation> 183
 </xsd:element> 184

185

186

Instance document:

<cbc:LineExtensionAmount amountCurrencyID="EUR" 187
 amountCurrencyCodeListVersionID="0.3"> 188
 189
50.00 190
 191
</cbc:LineExtensionAmount> 192
 193
and 194
 195
<PricingCurrencyCode>EUR</PricingCurrencyCode> 196

197

2.2 Sample Code List Schema 198

199
200
201

202
203
204

205
206
207
208
209

210
211
212
213

214

For every code list, there exists a specific code list schema. This code list schema must have a
targetNamespace containing the UBL-specific code list namespace and have a prefix that holds
the code list identifier itself.

The element construct in the code list schema can be used to represent a global declared
element in the document schemas. The name of the element is the UBL tag name of the specific
Business Information Entity (BIE) for a code.

The simpleType can be used to represent the possible codes and the characteristics of code
content. The name of the simpleType must always end with “Content”. Within the simpleType is a
restriction of the XSD built-in data type “xs:normalizedString”. This restriction includes the specific
facets “length”, “minLength”, “maxLength” and “pattern” for regular expressions to describe the
specific characteristics of each code list.

Each code will be represented using the facet “enumeration” after its characteristics have been
defined. The value of each enumeration represents the specific code value and the annotation
includes the further definition of each code, for example “Code.Name”, “Language.Identifier”, and
the code description.

The schema definitions to support this might appear as follows:
<?xml version="1.0" encoding="UTF-8"?> 215
<!-- 216
 Universal Business Language (UBL) Schema 1.0 217
 218
 Copyright (C) OASIS Open (2004). All Rights Reserved. 219
 220
… 221
 222
 Universal Business Language Specification 223
 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl) 224
 OASIS Open (http://www.oasis-open.org/) 225
 226
 227
 Document Type: CurrencyCode 228
 Generated On: Mon Aug 16 14:34:47 2004 229
--> 230
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 231
xmlns="urn:oasis:names:specification:ubl:schema:xsd:CurrencyCode-1.0" 232
xmlns:ccts="urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters233
-1.0" 234
targetNamespace="urn:oasis:names:specification:ubl:schema:xsd:CurrencyCode-1.0" 235
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.0"> 236
 <xsd:import 237
namespace="urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-238
1.0" schemaLocation="../common/UBL-CoreComponentParameters-1.0.xsd"/> 239
 <xsd:simpleType name="CurrencyCodeContentType"> 240
 <xsd:restriction base="xsd:normalizedString"> 241
 <xsd:enumeration value="AED"> 242
 <xsd:annotation> 243
 <xsd:documentation> 244
 <CodeName>Dirham</CodeName> 245
 </xsd:documentation> 246
 </xsd:annotation> 247
 </xsd:enumeration> 248
 <xsd:enumeration value="AFN"> 249
 <xsd:annotation> 250
 <xsd:documentation> 251
 <CodeName>Afghani</CodeName> 252
 </xsd:documentation> 253
 </xsd:annotation> 254
 </xsd:enumeration> 255
 <xsd:enumeration value="ALL"> 256
 <xsd:annotation> 257
 <xsd:documentation> 258

 <CodeName>Lek</CodeName> 259
 </xsd:documentation> 260
 </xsd:annotation> 261
 </xsd:enumeration> 262
 … 263
 264
 <xsd:enumeration value="ZMK"> 265
 <xsd:annotation> 266
 <xsd:documentation> 267
 <CodeName>Kwacha</CodeName> 268
 </xsd:documentation> 269
 </xsd:annotation> 270
 </xsd:enumeration> 271
 <xsd:enumeration value="ZWD"> 272
 <xsd:annotation> 273
 <xsd:documentation> 274
 <CodeName>Zimbabwe Dollar</CodeName> 275
 </xsd:documentation> 276
 </xsd:annotation> 277
 </xsd:enumeration> 278
 </xsd:restriction> 279
 </xsd:simpleType> 280
 281
 <xsd:complexType name="CurrencyCodeType"> 282
 <xsd:annotation> 283
 <xsd:documentation> 284
 <ccts:Component> 285
 <ccts:ComponentType>DT</ccts:ComponentType> 286
 <ccts:DictionaryEntryName>Currency_ Code. 287
Type</ccts:DictionaryEntryName> 288
 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm> 289
 <ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier> 290
 <ccts:DataType>Code. Type</ccts:DataType> 291
 </ccts:Component> 292
 <ccts:Instance> 293
 <ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID> 294
 <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID> 295
 <ccts:CodeListAgencyName>United Nations Economic Commission 296
for Europe</ccts:CodeListAgencyName> 297
 <ccts:CodeListName>Currency</ccts:CodeListName> 298
 <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID> 299
 <ccts:CodeListURI>http://www.bsi-300
global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc</ccts:C301
odeListURI> 302
 303
 <ccts:CodeListSchemeURI>urn:oasis:names:specification:ubl:schema:xsd:Currency304
Code-1.0</ccts:CodeListSchemeURI> 305
 <ccts:LanguageID>en</ccts:LanguageID> 306
 </ccts:Instance> 307
 </xsd:documentation> 308
 </xsd:annotation> 309
 <xsd:simpleContent> 310
 <xsd:extension base="CurrencyCodeContentType"> 311
 <xsd:attribute name="codeListID" type="xsd:normalizedString" 312
 use="optional" fixed="ISO 4217 Alpha"/> 313
 <xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" 314
 use="optional" fixed="6"/> 315
 <xsd:attribute name="codeListAgencyName" type="xsd:string" 316
 use="optional" 317
 fixed="United Nations Economic Commission for Europe"/> 318
 <xsd:attribute name="codeListName" type="xsd:string" 319
 use="optional" fixed="Currency"/> 320
 <xsd:attribute name="codeListVersionID" 321
 type="xsd:normalizedString" 322
 use="optional" fixed="0.3"/> 323
 <xsd:attribute name="name" type="xsd:string" use="optional"/> 324
 <xsd:attribute name="languageID" type="xsd:language" 325
 use="optional" fixed="en"/> 326
 <xsd:attribute name="codeListURI" type="xsd:anyURI" 327
 use="optional" 328

 fixed="http://www.bsi-global.com/Technical%2 329
 BInformation/Publications/_Publications/tig90x.doc"/> 330
 <xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" 331
 use="optional" 332
 fixed="urn:oasis:names:specification:ubl: 333
 schema:xsd:CurrencyCode-1.0"/> 334
 </xsd:extension> 335
 </xsd:simpleContent> 336
 </xsd:complexType> 337
 338
 <xsd:attribute name="CurrencyCode" type="CurrencyCodeContentType"/> 339
 340
 <xsd:element name="CurrencyCode" type="CurrencyCodeType"/> 341
 342
</xsd:schema> 343
 344

345

346

347
348

349
350
351

352

353
354
355
356
357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

2.3 Code List Schema Components
This section and its associated subsections:

• Describes the various xml schema components that must (schema filename, xml header, xml
schema header, end of schema) be used in the creation of a currency code list schema.

• Presents several possible approaches for currency code list attribute definition in an xml
schema. Any particular instance of a currency code list schema can be assembled using one
or more of these approaches.

• Provides schema code fragment examples.

Section 3 will discuss applying each of several possible code list schema extensibility and
restriction mechanisms to the schema components in this section. Note that the following are the
components individually described. For each actual code list implementation, a subset of these
components are required. For example in the previous section, a sample possible code list
schema is presented. It is composed of the following components described in this section:

 Schema File Name

 XML Header

 XML Schema Header

 Simple Type to Contain Enumerated Values

 Complex Type to Hold Enumerated Values and Supplemental Components

 Global Attribute to Allow Usage of Code Lists as an Attribute

 Global Element to Allow Usage of Code List as an Element

 End of Schema

The code list schema components summarized in the following subsections are:

 Schema File Name

 XML Header

 XML Schema Header

 Unrestricted Element

 Simple Type to Contain Enumerated Values

 Complex Type to Hold Enumerated Values and Supplemental Components 373

374

375

376

377

378

 Global Attributes to Allow Usage of Code Lists as an Attribute

 Global Element to Allow Usage of Code List as an Element

 End of Schema

2.3.1 Schema File Name
The name of this schema file should be:

UBL-CodeList-{CodeListName}-{CodeListVersionID}.xsd 379
380 For example:

UBL-CodeList-CurrencyCode-1.0.xsd 381

382

383
384

2.3.2 XML Header
The xml header specifies the xml version number and, optionally, the character encoding used by
an xml document. It must be the first line of such an xml document. An example is given below.
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Universal Business Language (UBL) Schema 1.0-draft-10.1

 Copyright (C) OASIS Open (2004). All Rights Reserved.
…
 …
-->

2.3.3 XML Schema Header 385

386
387

The xml schema header declares the namespaces to be used in a schema document. See below
for an example.

 388
<xs:schema
 targetNamespace=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”
 xmlns=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

2.3.4 Unrestricted Element 389

390
391
392
393

An unrestricted element of type normalizedString is a placeholder that is not constrained in an
instance document by a specific list of enumerated codes. A concrete member of element’s
Substitution Group is used in its place within instance documents validated with a schema
containing it. The schema syntax used for an unrestricted currency code element could be:

 394
<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" />

2.3.5 Simple Type to Contain the Enumerated Values 395

396
397

An xml simple type can be used to enumerate a list of currency codes permitted to appear in an
instance document. The following schema fragment contains such a list:

 398
 <xs:simpleType name=”CurrencyCodeContentType”>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”AED”>
 <xs:annotation>
 <xs:documentation>
 <CodeName>UAE Dirham</CodeName>
 </xs:documentation>
 </xs:annotation>
 </ xs:enumeration>
 <xs:enumeration value=”ALL”>
 <xs:annotation>
 <xs:documentation>
 <CodeName>Albanian Lek</CodeName>
 </xs:documentation>
 </xs:annotation>
 </xs:xs:enumeration>
 <xs:enumeration value=”AMD”
 <xs:annotation>
 <xs:documentation>
 <CodeName>Armenian Dram</CodeName>
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value=”ANG”/>
 <xs:enumeration value=”AOA”/>
 <xs:enumeration value=”XDR”/>
 …
 <xs:enumeration value=”ZAR”/>
 <xs:enumeration value=”ZMK”/>
 <xs:enumeration value=”ZWD”/>
 </xs:restriction>
 </xs:simpleType>

2.3.6 Complex Type to Hold Enumerated Values and Supplemental
Components

399
400

401
402

 An xml complex type could be used to define a type that would hold currency code values. The
xml schema fragment below contains the definition for such a complex type.

 403

 <xs:complexType name="CurrencyCodeType">
 <xs:annotation>
 <xsd:documentation>
 <ccts:Component>
 <ccts:ComponentType>DT</ccts:ComponentType>
 <ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>
 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm>
 <ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>
 <ccts:DataType>Code. Type</ccts:DataType>
 </ccts:Component>
 <ccts:Instance>
 <ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID>
 <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>
 <ccts:CodeListAgencyName>United Nations Economic Commission for
Europe</ccts:CodeListAgencyName>
 <ccts:CodeListName>Currency</ccts:CodeListName>
 <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>
 <ccts:CodeListUniformResourceID>
 http://www.bsi-global.com/Technical%2BInformation

/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourceID>
 <ccts:CodeListSchemeUniformResourceID>
 urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1
 </ccts:CodeListSchemeUniformResourceID>
 <ccts:LanguageID>en</ccts:LanguageID>
 </ccts:Instance>
 </xsd:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="CurrencyCodeContentType">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"
 fixed="ISO 4217 Alpha"/>
 <xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional"
 fixed="6"/>
 <xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"
 fixed="United Nations Economic Commission for Europe"/>
 <xsd:attribute name="codeListName" type="xsd:string" use="optional"
 fixed="Currency"/>
 <xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional"
 fixed="0.3"/>
 <xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"
 fixed="http://www.bsi-global.com/
 Technical%2BInformation/Publications/_Publications/tig90x.doc"/>
 <xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional"
 fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/>
 <xsd:attribute name="languageID" type="xsd:language" use="optional" fixed="en"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

2.3.7 Global Attributes to Allow Usage of Code Lists as an Attribute 404

405
406

A currency code list could also be treated as a global attribute in an xml schema. The schema
fragment below provides a sample implementation for such an approach.

 407

 <xs:attribute name=”CurrencyCode” type=”CurrencyCodeContentType”/>
 <xs:attribute name="name" type="xs:normalizedString" fixed="cur"/>
 <xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”ISO 4217 Alpha”/>
 <xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”6”/>
 <xs:attribute name=”codeListAgencyName” type=”xs:string ”
 fixed=”United Nations Economic Commission for Europe”/>
 <xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”0.3”/>
 <xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/>
 <xs:attribute name="codeListURI" type="xs:anyURI"
 fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/>
 <xs:attribute name="codeListSchemeURI" type="xs:anyURI"
 fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>
 <xs:attribute name="languageID" type="xs:language" fixed="en"/>

2.3.8 Global Element to Allow Usage of Code List as an Element 408

409 A currency code list can also be handled using a global element.

 410
<xs:element name=”CurrencyCode” type=”CurrencyCodeType”
 substitutionGroup=”CurrencyCodeAbstract”/>

2.3.9 End of Schema 411

412
413

All xml schema documents must be terminated with an end of schema statement. An example is
provided below.

 414
</xs:schema>

3 Methods 415

416
417
418
419

420

421
422
423
424

425
426
427
428
429
430

431
432
433

434
435

436

437
438

The methods described below have been proposed by participants to extend or restrict code lists.
However each method has strengths and weaknesses with regard to its use for schema creation,
use, extension and restriction. This section summarizes the attributes of each such method while
section 3.5.3 considers the impact on a schema of these attributes.

3.1 Substitution Groups
In order to promote maximum reusability and ease code list maintenance, code list designers are
expected to build new code lists from existing lists. They could for example combine several code
lists or restrict an existing code list when creating a new one. These new code lists must be
usable in UBL elements in the same manner in which “basic” code lists are used.

Substitution Groups can be used when modifying an existing code list to create a new list.
Substitution Groups rely on the fact that a new global element definition used in a code list
schema can be substituted for an existing element definition in a schema that is or has been in
use. The result of this for instance documents using this schema is that the instance documents
will be validated according to the revised schema. Note that this approach is valid only for
elements that use any revised global element(s) by reference.

One example of the use of Substitution Groups could be the replacement of a preexisting list of
values (i.e. an enumeration) with an extended list. The result in this example would be a change
to the permissible values that can be assigned to a line item.

The subsections below consider the use of Substitution Groups for both extension and restriction
of an existing code list.

3.1.1 Extending a Code List Using Substitution Groups
The following schema fragment could be used to extend a code list with Substitution Groups so
that it contains the new Iraqi currency symbolized by the FRQ code:

<xs:schema targetNamespace="cust" 439
 xmlns:std="std" 440
 xmlns="cust" 441
 xmlns:cust="custom" 442
 xmlns:xs=http://www.w3.org/2001/XMLSchema 443
 elementFormDefault="qualified" 444
 attributeFormDefault="unqualified"> 445
 446
<xs:import namespace="std" 447
 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 448
 449
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 450
 <xs:annotation> 451
 <xs:documentation>A substitute for the abstract LocaleCodeA 452
 that extends the enumeration 453
 </xs:documentation> 454
 </xs:annotation> 455
 <xs:simpleType> 456
 <xs:union memberTypes="std:aStdEnum"> 457
 <xs:simpleType> 458
 <xs:restriction base="xs:token"> 459
 <xs:enumeration value="IL"/> 460
 <xs:enumeration value="GR"/> 461

 </xs:restriction> 462
 </xs:simpleType> 463
 </xs:union> 464
 </xs:simpleType> 465
</xs:element> 466
</xs:schema> 467

468

469
470

3.1.2 Restricting a Code List Using Substitution Groups
The following schema fragment could use Substitution Groups to restrict a code list so that Euros
are the only acceptable currency code:

<xs:import namespace="std" 471
 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 472
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 473
 <xs:annotation> 474
 <xs:documentation> 475
 A substitute for the abstract LocaleCodeA that restricts 476
 the enumeration 477
 </xs:documentation> 478
 </xs:annotation> 479
 <xs:simpleType> 480
 <xs:restriction base="xs:token"> 481
 <xs:enumeration value="DE"/> 482
 <xs:enumeration value="US"/> 483
 </xs:restriction> 484
 </xs:simpleType> 485
</xs:element> 486

487

488
489
490

491
492

3.1.3 Issues in applying this method
The principal issue concerning the use of code list is the fact that substitution groups and abstract
types are currently prohibited by NDR rules. There is a technical attempt underway to see if these
can be eliminated from the code list schema itself but used in extension/restriction schemas.

Below find some email snippets that contain relevant discussion:

 493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

7/24/05

I'll leave technical details to Marty, but I had a look over the
weekend at the issue of providing "hooks" for substitution groups for
code lists, and I came to the following conclusion:

Supporting substitution groups as a mechanism for customising UBL code
lists means that UBL will have to *passively contain* substitution
group definitions, one for each code list. However, it is important to
understand that the UBL Schemas will not *actively use* substitution
groups, that they will only passively contain them. What that means is
that the UBL Schemas will contain substitution group definitions in a
way which *does not change* the way documents are validated by the UBL
Schemas.

I believe this is an acceptable compromise. The one negative aspect to
this is that the UBL Schemas will require XML Schema validators to
behave consistently when faced with this trivial passive usage of
substitution groups. Although we haven't tested this yet, I believe we
will have no trouble testing this as part of our normal testing, and I
think the risks are minimal. That said, we need to finalise that

actual proposed code list Schema structure and test it ASAP, to give
people confidence.

515
516
517
518

 519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

7/24/05

Yes, I think you are right. It look to me as though (as I'm sure you've said before), if
you want to be able to *extend* a code list, the only option is

(i) define an empty abstract type as the head of the substitution group for the code
list;
(ii) extend that abstract type for the actual code list type;
(iii) declare the code list element as being part of the substitution group.

I think the thing to be navigated is the question of what it means to "use" substitution
groups. With this approach, the UBL Schemas themselves don't make any *real* use of
substitution groups, i.e. no substitutions are provided, there is only ever one choice.
Formally the Schema validators need to handle the substitution group definitions, so
there is a question of validator conformance to overcome. However, there is still, I
think, a case for saying that (i)-(iii) constitutes "support" rather than actual "use" of
substitution groups in UBL. Thoughts?

Cheers, Tony.

On Sat, 23 Jul 2005 15:04:57 +0100, <Burnsmarty@aol.com> wrote:

> Tony,
> Good work. I will try to digest details. I have a nasty suspicion that
> the
> problem is the fact that the derived type is not the same as the
> substitution
> head. This is the reason I orginally had an abstract type as the head
> with the
> actual code list as a substitution group for the abstract head.
> I still hope with more testing we can resolve this problem.
> Marty
> In a message dated 7/23/2005 9:54:38 A.M. Eastern Daylight Time,
> abcoates@londonmarketsystems.com writes:
>
> Marty, I had a problem with some back-slashes in the paths in your
> Schema
> (don't work under Linux). Once I fixed those, the follow problems
> remain
> (both Windows & Linux, using oXygen/Xerces-J):
>
> Location: 23:82
> Description: E e-props-correct.4: The {type definition} of element
> 'PricingCurrencyCode' is not validly derived from the {type definition}
> of
> the substitutionHead ':PricingCurrencyCode', or the {substitution group
> exclusions} property of ':PricingCurrencyCode' does not allow this
> derivation.
> URL: http://www.w3.org/TR/xmlschema-1/#e-props-correct 568

569
570
571
572
573
574
575
576

>
> Location: 42:116
> Description: E derivation-ok-restriction.2.1.2: Error for type
> '#AnonType_LineExtensionAmount'. The attribute use 'amountCurrencyID'
> in
> this type has type 'null', which is not validly derived from
> 'CurrencyCodeContentType', the type of the matching attribute use in the
> base type.
> URL: http://www.w3.org/TR/xmlschema-1/#derivation-ok-restriction 577

578
579
580
581
582
583

>
> Location: 38:86
> Description: E e-props-correct.4: The {type definition} of element
> 'LineExtensionAmount' is not validly derived from the {type definition}
> of
> the substitutionHead 'cbc:LineExtensionAmount', or the {substitution

> group 584
585
586

> exclusions} property of 'cbc:LineExtensionAmount' does not allow this
> derivation.
> URL: http://www.w3.org/TR/xmlschema-1/#e-props-correct 587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

>
> Cheers, Tony.
>
> On Fri, 22 Jul 2005 20:15:09 +0100, <Burnsmarty@aol.com> wrote:
>
>> Thanks Tony. Yeah it worked in XMLSpy for me and not MSXML.
>> Marty
>> In a message dated 7/22/2005 2:58:03 P.M. Eastern Daylight Time,
>> abcoates@londonmarketsystems.com writes:
>>
>> Hi Marty. I tested your example with the latest version of XML Spy,
>> and
>> it's fine. However, it doesn't work with the latest version of
>> 'oXygen'
>> (which uses Xerces-J). I haven't had a chance to track down the
>> issue;
>> I'll let you know when I work out what it is.

 606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

7/20/05

As seen in the Atlantic call minutes, we have been directed to confirm the extensibility
of code lists via substitution groups, without the need for substitution groups or
abstract elements within the code list schemas themselves.

At issue is whether the global element and attributes declared in the code list schema
itself can have the code values based on the initial enumerated list, and then be
substituted for. If we can confirm that this so, we have a clear winner methodology.

We have agreed to use the NIST validation service as a litmus test for the method. This
service can be reached at http://www.mel.nist.gov/msid/validation/.

Attached is a draft of UBL 1.0 Schemas with substitution groups used to extend it.
Stephen has also circulated some examples based on UBL "2.0" schemas.

The specific issue (if there is one) is whether the code list content must be derived
from xsd:normalizedString in order to allow for union based substitutions of an existing
list and the extensions. In this case, the standard code list has a substitution group in
the code list schema that declares the specific standard list of codes as a substitute
for the generic (i.e. normalized string) code.

The more desirable case is that the code list content itself be the definition in the
code list document. The key question is whether the test parsers will permit substitution
of elements based on this type (the enumerated list) as opposed to the generic type (just
normalizedString).

Please comment and test away... See if we can make this work for all the parsers. Note
that the attached schema passes XML spy but not msxml4.

 637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

7/19/05

Are you arguing with the desirability of:

 Extensibility?
 Substitution Groups?
 Both?

The use of substitution groups complements the suggested use of unions in extending code
lists in wd-ubl-cmsc-cmguidelines-1.0.html. I think that without substitution groups,
this mechanism doesn't work.

When a user community needs to extend or restrict UBL for their own reasons, it is
desirable to use a mechanism that forces the implementer to declare the extensions

explicitly. Substitution groups does this because in order to validate an instance the
definition of the substituting type must be present. Also, the designer of the base
schemas ensures the type consistency of the substitutable information.

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

668

669

670

671
672

673

674

675
676

677
678

679

680
681
682
683

684

685

I believe what is being proposed is not that substitution groups are necessarily used
extensively within UBL schemas. What is being proposed is that the schemas be designed so
that the substitution group mechanism can be utilized in extending the schemas in a clean
and traceable way (that is the extensions are explicit in the referenced schema in the
instance document). If substitution groups are used in UBL schemas they would only need
to be used in the code list schemas themselves to allow an unconstrained or enumeration
constrained set of values to be used in the code list.

What this requires of UBL primarily is the extensive use of global elements (the ones
that are substitutable), and, code list schema design and usage that facilitates the
extension mechanism.

3.2 Redefine
Redefine is used to change the description of an element’s type in an xml schema.

3.2.1 Extending a Code List Using Redefinition
The following schema fragment could be used to extend a code list with redefinition so that it
contains the new Iraqi currency symbolized by the FRQ code:

ADD NEW SCHEMA FRAGMENT HERE THAT EXTENDS CODE LIST USING REDEFINITION

3.2.2 Restricting a Code List Using Redefinition
The following schema fragment could be used to restrict with redefinition a code list so that it
uses Euros as the only acceptable currency code:

ADD NEW SCHEMA FRAGMENT HERE THAT RESTRICTS CODE LIST USING
REDEFINITION

3.2.3 Issues in applying this method
Redefine is a promising technique because it allows redefinition of a type. The challenge to
making redefine work involves the order of inclusion of schemas throughout the UBL hierarchy.
Somehow it has to be arranged that the redefinition be imported in all schemas that import the
base class.

We have not been able to get this to work yet.

Below find some email snippets that contain relevant discussion:

 686
687
688
689
690
691
692
693
694
695
696
697

7/1/05

So there are interop issues here, but also one trivial point:

Processors are allowed to ignore second and subsequent imports of the
same namespace. Accordingly, in order to get your example to work
with XSV, I had to _reverse_ the order of the imports in
myUBLExtensions.xsd, so the import of the redefining schema comes
first. You might try that.

There's certainly no _error_ in your schema docs.

ht

698
699
700

 701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

5/3/05
Henry,

I am trying to apply your method. I have started with the current UBL
schemas. I am having some difficulty making this work.

What I tried was:

1) UBL code list schema contains type xsd:normalizedString code list
but no values.
2) Created separate schema that contains a redefine of code list with
standard set of enumerated values.
3) Created schema that includes all subsidiary schemas in addition to
the one with the desired enumerated values. Some of these included
schemas themselves have included the code list schema.

Problem: Parser chokes on the redefine because the base code list was
imported or included in the other UBL schema documents -- that is where
code lists are used in document designs.

Do I have a cockpit problem here or do you see a workaround?

This is by far the potentially most elegant solution to code list
extensibility because the customizer would need to import a list of
pointers to his selected code list enumerations to be used in
validation of instance documents.

I have attached some working files in case there is a simple error.

 732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

3/10/05

I've worked a trivial example to fill out and illustrate the redefine
approach I sent earlier.

Here's the base schema, published by the namespace owner:

curEnumBase.xsd:

<xs:schema targetNamespace="http://www.example.com/fakeUBL"
 xmlns="http://www.example.com/fakeUBL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Example base schema for extensible enumerations --> <xs:element
name="currency" type="currencyCodeType"/>

 <xs:simpleType name="currencyCodeType">
 <xs:restriction base="xs:NMTOKEN"/>
 </xs:simpleType>
</xs:schema>

Here's the vanilla driver schema, likewise published by the namespace 753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

owner:

curEnumDriver.xsd:

<xs:schema targetNamespace="http://www.example.com/fakeUBL"
 xmlns="http://www.example.com/fakeUBL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Example driver schema for extensible enumerations -->

 <xs:redefine schemaLocation="curEnumBase.xsd">
 <xs:simpleType name="currencyCodeType">
 <xs:restriction base="currencyCodeType">
 <xs:enumeration value="UKL"/>
 <xs:enumeration value="USD"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
</xs:schema>

And here's a valid instance:

<currency xmlns="http://www.example.com/fakeUBL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/fakeUBL
 curEnumDriver.xsd">
 UKL
</currency>

And an invalid one:

<currency xmlns="http://www.example.com/fakeUBL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/fakeUBL
 curEnumDriver.xsd">
 CAD
</currency>

To make it valid, we make our own extended driver:

curEnumExt.xsd:

<xs:schema targetNamespace="http://www.example.com/fakeUBL"
 xmlns="http://www.example.com/fakeUBL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Example extended schema for extensible enumerations -->

 <xs:redefine schemaLocation="curEnumBase.xsd">
 <xs:simpleType name="currencyCodeType">
 <xs:restriction base="currencyCodeType">
 <xs:enumeration value="UKL"/>
 <xs:enumeration value="USD"/>
 <xs:enumeration value="CAD"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
</xs:schema>

 810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

and if we change the xsi:schemaLocation of our example to point to this
driver, it's valid.

As it happens, Dan Vint and colleagues had arrived at this solution
long before I proposed it. He described it in much more detail in a
recent post to xmlschema-dev [1], including the following, which says
it all, IMO:

 1) Produce a base schema that references a type for each list with no
 enumerations [e.g. curEnumBase].
 2) Produce a second schema that redefines those list types to the
 enumerated values [e.g. curEnumDriver].

 Anyone needing to modify those lists modifies the second redefining
 schema [e.g. curEnumExt]. Now when I release the next version, all
 that has to happen is the modifier reviews the new redefining schema
 for new lists. These changes have to be copied into the file they
 originally modified. They also have to find any changes to the
 existing lists as well.

 They then use the newly produced base schema and point their modified
 redefine schema to point at the this file instead of the original
base
 schema.

 This has the advantage of creating one single file with all the
 modifications. It still is not a perfect solution, but it is the best
 compromise that we could come up with.

 We also made the type of the lists to be QNAME and we require that
 anyone adding a value to a list use an appropriate namespace prefix
to
 identify their additions.

 ['e.g.'s added]

Some further observations:

 1) The publisher could make this approach easier if they used an
 external general entity to include the enumerations in the
 redefining schema document:

 curEnumDriver.xsd:

 <!DOCTYPE xs:schema [
 <!ENTITY currencyEnumeration SYSTEM

"http://www.example.com/fakeUBL/currencies.xnt"> 858

859
860
861
862
863
864
865
866

]>
 <xs:schema targetNamespace="http://www.example.com/fakeUBL"
 xmlns="http://www.example.com/fakeUBL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Example driver schema for extensible enumerations -->

 <xs:redefine schemaLocation="curEnumBase.xsd">
 <xs:simpleType name="currencyCodeType">

 <xs:restriction base="currencyCodeType"> 867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

 ¤cyEnumeration;
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
 </xs:schema>

 Then the extension can track the official list and changes thereto
 more easily:

 curEnumExt.xsd:

 <!DOCTYPE xs:schema [
 <!ENTITY currencyEnumeration SYSTEM

"http://www.example.com/fakeUBL/currencies.xnt"> 882

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

]>
 <xs:schema targetNamespace="http://www.example.com/fakeUBL"
 xmlns="http://www.example.com/fakeUBL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Example driver schema for extensible enumerations -->

 <xs:redefine schemaLocation="curEnumBase.xsd">
 <xs:simpleType name="currencyCodeType">
 <xs:restriction base="currencyCodeType">
 ¤cyEnumeration;
 <xs:enumeration value="CAD"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
 </xs:schema>

 2) This approach works directly for types used for attributes _or_
 elements, whereas any approach using substitution groups (which
 are very useful for many things, but not this problem, in my
 opinion) only works directly for elements.

Hope this helps -- if you think it does, please pass it on to the UBL
list. . .

ht

[1] http://lists.w3.org/Archives/Public/xmlschema-dev/2005Mar/0008.html 909

910
911
912
913
914
915

--
 Henry S. Thompson, HCRC Language Technology Group, University of
Edinburgh
 Half-time member of W3C Team
 2 Buccleuch Place, Edinburgh EH8 9LW, SCOTLAND -- (44) 131 650-4440
 Fax: (44) 131 650-4587, e-mail: ht@inf.ed.ac.uk
 URL: http://www.ltg.ed.ac.uk/~ht/ [mail really from
me _always_ has this .sig -- mail without it is forged spam]

916
917
918
919

The xml-dev list is sponsored by XML.org <http://www.xml.org>, an
initiative of OASIS <

920
http://www.oasis-open.org> 921

922
The list archives are at http://lists.xml.org/archives/xml-dev/ 923

 924
925 To subscribe or unsubscribe from this list use the subscription

manager: <http://www.oasis-open.org/mlmanage/index.php> 926
927
928

929

930
931
932

933

934
935

936

937

938
939

940

941

942

943
944
945
946
947
948

949

950
951

952
953

954

955
956

957
958

3.3 xsi:type
The xsi:type construct identifies a derived type in an instance document. This approach can
be used to either extend or restrict a code list by replacing content as appropriate. Each of these
is discussed in its own subsection below.

3.3.1 Extending a Code List Using xsi:type
The following schema fragment could be used to extend a code list with the xsi:type construct
so that it contains the new Iraqi currency symbolized by the FRQ code:

ADD NEW SCHEMA FRAGMENT HERE THAT EXTENDS CODE LIST USING xsi:type

3.3.2 Restricting a Code List Using xsi:type
The following schema fragment could be used to restrict with the xsi:type construct a code list
so that it uses Euros as the only acceptable currency code:

ADD NEW SCHEMA FRAGMENT HERE THAT RESTRICTS CODE LIST USING xsi:type

3.3.3 Issues in applying this method

3.4 Union with Any Type Plus Lax
The xml “union with any type” construct permits an element or value to be any valid type and thus
does not constrain content for such elements in instance document. Use of the lax value for an
attribute in an xml schema instructs the parser to validate elements and attributes in an instance
document if associated schema content is present but to suppress generation of errors if content
is not present. This approach can be used to either extend or restrict a code list by replacing
content as appropriate. Each of these is discussed in its own subsection below.

3.4.1 Extending a Code List Using Union with Any Type Plus Lax
The following schema fragment could be used to extend a code list using union with any type plus
lax so that it contains the new Iraqi currency symbolized by the FRQ code:

ADD NEW SCHEMA FRAGMENT HERE THAT EXTENDS CODE LIST USING UNION WITH
ANY TYPE PLUS LAX

3.4.2 Restricting a Code List Using Union with Any Type Plus Lax
The following schema fragment could be used to restrict a code list using union with any type plus
lax so that it uses Euros as the only acceptable currency code:

ADD NEW SCHEMA FRAGMENT HERE THAT RESTRICTS CODE LIST USING UNION WITH
ANY TYPE PLUS LAX

3.4.3 Issues in applying this method 959

960

961
962
963
964
965

966

967
968

969

970

971
972

973

974

975

976

3.5 AEX 2
The Automating Equipment Information Exchange (AEX) project is sponsored by FIATECH, an
industry consortium of facility owners, construction contractors, government agencies and
suppliers associated with building construction. The AEX project seeks to develop automated
data exchange specifications for use with the design, procurement, installation, maintenance and
operation of capital equipment.

3.5.1 Extending a Code List Using AEX 2
The following schema fragment could be used to extend a code list using AEX 2 so that it
contains the new Iraqi currency symbolized by the FRQ code:

ADD NEW SCHEMA FRAGMENT HERE THAT EXTENDS CODE LIST USING AEX 2

3.5.2 Restricting a Code List Using AEX 2
The following schema fragment could be used to restrict a code list using AEX 2 so that it uses
Euros as the only acceptable currency code:

ADD NEW SCHEMA FRAGMENT HERE THAT RESTRICTS CODE LIST USING AEX 2

3.5.3 Issues in applying this method

4 Impacts 977

978

979

Summary TBD

 substitution
groups

redefine xsi:type any + lax AEX 2

Design of code list

design of schemas
using code lists

NDR

Instance documents

4.1 NDR Rules 980

981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008

4.1.1 NDR’s that are important to Code List discussion
[ELD9] The xsd:any element MUST NOT be used.
[ATD3] If a UBL Schema Expression contains one or more common attributes that

apply to all UBL elements contained or included or imported therein, the
common attributes MUST be declared as part of a global attribute group.

[ATD6] Each xsd:schemaLocation attribute declaration MUST contain a system-
resolvable URL, which at the time of release from OASIS shall be a relative URL
referencing the location of the schema or schema module in the release
package.
[ATD8] The xsd:anyAttribute MUST NOT be used.
[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code List.
[CDL2] The UBL Library SHOULD identify and use external standardized code lists
rather than develop its own UBL-native code lists.
[CDL3] The UBL Library MAY design and use an internal code list where an existing
external code list needs to be extended, or where no suitable external code list exists.
[CDL4] All UBL maintained or used Code Lists MUST be enumerated using the UBL
Code List Schema Module.
[CDL5] The name of each UBL Code List Schema Module MUST be of the form:
{Owning Organization}{Code List Name}{Code List Schema Module}
[CDL6] An xsd:import element MUST be declared for every code list required in a
UBL schema.
[CDL7] Users of the UBL Library MAY identify any subset they wish from an identified
code list for their own trading community conformance requirements.
[CDL8] The xsd:schemaLocation MUST include the complete URI used to identify
the relevant code list schema.
[GXS5] The xsd:substitutionGroup feature MUST NOT be used.
[GXS10] The xsd:include feature MUST only be used within a document schema.
[GXS11] The xsd:union technique MUST NOT be used except for Code Lists. The

xsd:union technique MAY be used for Code Lists. 1009
1010
1011

1012

1013

1014

[GXS13] Complex Type extension or restriction MAY be used where appropriate.
[IND1] All UBL instance documents MUST validate to a corresponding schema.

4.1.2 All NDR’s
This is a summary of all current NDR rules for reference.

A.1 Attribute Declaration Rules
[ATD1]

User defined attributes SHOULD NOT be used. When used, user defined
attributes MUST only convey CCT:SupplementaryComponent
information.

[ATD2] The CCT:SupplementaryComponents for the ID
CCT:CoreComponentMUST be declared in the following order:
Identifier. Content Identification Scheme. Identifier
Identification Scheme. Name. Text Identification Scheme.
Agency. Identifier Identification Scheme. Agency Name.
Text Identification Scheme. Version. Identifier
Identification Scheme. Uniform Resource. Identifier
Identification Scheme Data. Uniform Resource. Identifier

[ATD3]
If a UBL Schema Expression contains one or more common attributes that
apply to all UBL elements contained or included or imported therein, the
common attributes MUST be declared as part of a global attribute group.

[ATD4]
Within the ccts:CCT xsd:extension element an xsd:attribute
MUST be declared for each ccts:SupplementaryComponent pertaining
to that ccts:CCT.

[ATD5]
For each ccts:CCT simpleType xsd:restriction element, an
xsd:base attribute MUST be declared and set to the appropriate
xsd:Datatype.

[ATD6]
Each xsd:schemaLocation attribute declaration MUST contain a system-
resolvable URL, which at the time of release from OASIS shall be a relative
URL referencing the location of the schema or schema module in the release
package.

[ATD7] The xsd built in nillable attribute MUST NOT be used for any UBL declared
 element.

[ATD8] The xsd:anyAttribute MUST NOT be used.

 1015

A.2 Attribute Naming Rules
[ATN1]

Each CCT:SupplementaryComponent xsd:attribute "name" MUST be the
dictionary entry name object class, property term and representation term of the
ccts:SupplementaryComponent with the separators removed.

 1016

A.3 Code List Rules

[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code
List.

[CDL2] The UBL Library SHOULD identify and use external standardized code
lists rather than develop its own UBL-native code lists.

[CDL3]
The UBL Library MAY design and use an internal code list where an
existing external code list needs to be extended, or where no suitable
external code list exists.

[CDL4] All UBL maintained or used Code Lists MUST be enumerated using the
UBL Code List Schema Module.

[CDL5]
The name of each UBL Code List Schema Module MUST be of the form:
{Owning Organization}{Code List Name}{Code List Schema
Module}

[CDL6] An xsd:import element MUST be declared for every code list required
in a UBL schema.

 1017

A.3 Code List Rules
[CDL7]

Users of the UBL Library MAY identify any subset they wish from an
identified code list for their own trading community conformance
requirements.

[CDL8] The xsd:schemaLocation MUST include the complete URI used to
identify the relevant code list schema.

 1018

A.4 ComplexType Definition Rules

[CTD1] For every class identified in the UBL model, a named xsd:complexType
MUST be defined.

[CTD2]
Every ccts:ABIE xsd:complexType definition content model MUST
use the xsd:sequence element with appropriate global element
references, or local element declarations in the case of ID and Code, to
reflect each property of its class as defined in the corresponding UBL
model.

[CTD3] Every ccts:BBIEProperty xsd:complexType definition content
model MUST use the xsd:simpleContent element.

[CTD4]
Every ccts:BBIEProperty xsd:complexType content model
xsd:simpleContent element MUST consist of an xsd:extension
element.

[CTD5]
Every ccts:BBIEProperty xsd:complexType content model
xsd:base attribute value MUST be the ccts:CCT of the unspecialized or
specialized UBL datatype as appropriate.

[CTD6] For every datatype used in the UBL model, a named xsd:complexType
or xsd:simpleType MUST be defined.

 1019

A.4 ComplexType Definition Rules
[CTD7]

Every unspecialized Datatype must be based on a ccts:CCT represented
in the CCT schema module and must represent an approved primary or
secondary representation term identified in the CCTS.

[CTD8] Each unspecialized Datatype xsd:complexType must be based on its
corresponding CCT xsd:complexType.

[CTD9]

Every unspecialized Datatype that represents a primary representation term
whose corresponding ccts:CCT is defined as an
xsd:simpleTypeMUST also be defined as an xsd:simpleType and
MUST be based on the same xsd:simpleType.

[CTD10]
Every unspecialized Datatype that represents a secondary representation
term whose corresponding ccts:CCT is defined as an xsd:simpleType
MUST also be defined as an xsd:simpleType and MUST be based on
the same xsd:simpleType.

[CTD11] Each unspecialized Datatype xsd:complexType definition must contain
one xsd:simpleContent element.

[CTD12]
The unspecialized Primary Representation Term Datatype
xsd:complextType definition xsd:simpleContent element must
contain one xsd:restriction element with an xsd:base attribute
whose value is equal to the corresponding cct:ComplexType.

[CTD13]
For every ccts:CCT whose supplementary components are not equivalent
to the properties of a built-in xsd:Datatype, the ccts:CCT MUST be
defined as a named xsd:complexType in the ccts:CCT schema module.

[CTD14] Each ccts:CCT xsd:complexType definition MUST contain one
xsd:simpleContent element

[CTD15]
The ccts:CCT xsd:complexType definition xsd:simpleContent
element MUST contain one xsd:extension element. This
xsd:extension element MUST include an xsd:base attribute that
defines the specific xsd:Built-inDatatype required for the
ccts:ContentComponent of the ccts:CCT.

 1020

A.4 ComplexType Definition Rules
[CTD16]

Each CCT:SupplementaryComponent xsd:attribute "type" MUST
define the specific xsd:Built-inDatatype or the user defined
xsd:simpleType for the ccts:SupplementaryComponent of the
ccts:CCT.

[CTD17]
Each ccts:SupplementaryComponent xsd:attribute user-defined
xsd:simpleType MUST only be used when the
ccts:SupplementaryComponent is based on a standardized code list
for which a UBL conformant code list schema module has been created.

[CTD18]
Each ccts:SupplementaryComponent xsd:attribute user defined
xsd:simpleType MUST be the same xsd:simpleType from the
appropriate UBL conformant code list schema module for that type.

[CTD19] Each ccts:Supplementary Component xsd:attribute "use"
MUST define the occurrence of that
ccts:SupplementaryComponentas either "required", or
"optional".

 1021

A.5 ComplexType Naming Rules
[CTN1]

A UBL xsd:complexType name based on an
ccts:AggregateBusinessInformationEntity MUST be the
ccts:DictionaryEntryName with the separators removed and with the
"Details" suffix replaced with "Type".

[CTN2] A UBL xsd:complexType name based on a
ccts:BasicBusinessInformationEntityProperty MUST be the
ccts:DictionaryEntryName shared property term and its qualifiers and the
representation term of the shared ccts:BasicBusinessInformationEntity,
with the separators removed and with the "Type" suffix appended after the
representation term.

 1022

A.5 ComplexType Naming Rules
[CTN3]

A UBL xsd:complexType for a cct:UnspecializedDatatype used in the
UBL model MUST have the name of the corresponding
ccts:CoreComponentType, with the separators removed and with the "Type"
suffix appended.

[CTN4]
A UBL xsd:complexType for a cct:UnspecializedDatatype based on a
ccts:SecondaryRepresentationTerm used in the UBL model MUST have
the name of the corresponding ccts:SecondaryRepresentationTerm, with
the separators removed and with the "Type" suffix appended.

[CTN5]
A UBL xsd:complexType name based on a ccts:CoreComponentType
MUST be the Dictionary entry name of the ccts:CoreComponentType, with the
separators removed.

 1023
1024
1025

.

A.6 Documentation Rules
[DOC1] The xsd:documentation element for every Datatype MUST contain a

structured set of annotations in the following sequence and pattern:

. • ComponentType (mandatory): The type of component to which the
object belongs. For Datatypes this must be “DT”.
. • DictionaryEntryName (mandatory): The official name of a
Datatype.
. • Version (optional): An indication of the evolution over time of the
Datatype.
. • Definition(mandatory): The semantic meaning of a Datatype.
. • ObjectClassQualifier (optional): The qualifier for the object class.
. • ObjectClass(optional): The Object Class represented by the
Datatype.
. • RepresentationTerm (mandatory): A Representation Term is an
element of the name which describes the form in which the property is
represented.
. • DataTypeQualifier (optional): semantically meaningful name that
differentiates the Datatype from its underlying Core Component Type.
• DataType (optional): Defines the underlying Core Component Type.

[DOC2] A Datatype definition MAY contain one or more Content Component Restrictions
to provide additional information on the relationship between the Datatype and its
corresponding Core Component Type. If used the Content Component
Restrictions must contain a structured set of annotations in the following patterns:
• RestrictionType (mandatory): Defines the type of format restriction that applies
to the Content Component. • RestrictionValue (mandatory): The actual value of
the format restriction that applies to the Content Component. • ExpressionType
(optional): Defines the type of the regular expression of the restriction value.

[DOC3] A Datatype definition MAY contain one or more Supplementary Component
Restrictions to provide additional information on the relationship between the
Datatype and its corresponding Core Component Type. If used the Supplementary
Component Restrictions must contain a structured set of annotations in the
following patterns: • SupplementaryComponentName (mandatory): Identifies the
Supplementary Component on which the restriction applies. • RestrictionValue
(mandatory, repetitive): The actual value(s) that is (are) valid for the
Supplementary Component

[DOC4] The xsd:documentation element for every Basic Business Information Entity

MUST contain a structured set of annotations in the following sequence and
pattern:
. • ComponentType (mandatory): The type of component to which the

object belongs. For Basic Business Information Entities this must
be “BBIE”. • DictionaryEntryName (mandatory): The official
name of a Basic Business Information Entity. • Version (optional):
An indication of the evolution over time of the Basic Business
Information Entity. • Definition(mandatory): The semantic
meaning of a Basic Business Information Entity.

. • Cardinality(mandatory): Indication whether the Basic Business
Information Entity represents a not-applicable, optional, mandatory
and/or repetitive characteristic of the Aggregate Business
Information Entity.

. • ObjectClassQualifier (optional): The qualifier for the object class.

. • ObjectClass(mandatory): The Object Class containing the Basic
Business Information Entity.

. • PropertyTermQualifier (optional): A qualifier is a word or words
which help define and differentiate a Basic Business Information
Entity.

. • PropertyTerm(mandatory): Property Term represents the
distinguishing characteristic or Property of the Object Class and
shall occur naturally in the definition of the Basic Business
Information Entity.

. • RepresentationTerm (mandatory): A Representation Term
describes the form in which the Basic Business Information Entity
is represented.

. • DataTypeQualifier (optional): semantically meaningful name that
differentiates the Datatype of the Basic Business Information
Entity from its underlying Core Component Type.

. • DataType (mandatory): Defines the Datatype used for the Basic
Business Information Entity.

. • AlternativeBusinessTerms (optional): Any synonym terms under
which the Basic Business Information Entity is commonly known
and used in the business.

. • Examples (optional): Examples of possible values for the Basic
Business Information Entity.

 1026

1027

1028
1029
1030
1031

A.6 Documentation Rules
.

.

A.6 Documentation Rules

[DOC5] The xsd:documentation element for every Aggregate Business Information
Entity MUST contain a structured set of annotations in the following sequence
and pattern:

. • ComponentType (mandatory): The type of component to which
the object belongs. For Aggregate Business Information Entities this must be
“ABIE”.
. • DictionaryEntryName (mandatory): The official name of the
Aggregate Business Information Entity .
. • Version (optional): An indication of the evolution over time of the
Aggregate Business Information Entity.
. • Definition(mandatory): The semantic meaning of the Aggregate
Business Information Entity.
. • ObjectClassQualifier (optional): The qualifier for the object class.
. • ObjectClass(mandatory): The Object Class represented by the
Aggregate Business Information Entity.
• AlternativeBusinessTerms (optional): Any synonym terms under which
the Aggregate Business Information Entity is commonly known and used in the
business.

[DOC6] The xsd:documentation element for every Association Business Information
Entity element declaration MUST contain a structured set of annotations in the
following sequence and pattern:

. • ComponentType (mandatory): The type of component to which
the object belongs. For Association Business Information Entities this must be
“ASBIE”.
. • DictionaryEntryName (mandatory): The official name of the
Association Business Information Entity.
. • Version (optional): An indication of the evolution over time of the
Association Business Information Entity.
. • Definition(mandatory): The semantic meaning of the Association
Business Information Entity.
. • Cardinality(mandatory): Indication whether the Association
Business Information Entity represents an optional, mandatory and/or repetitive
assocation.
. • ObjectClass(mandatory): The Object Class containing the
Association Business Information Entity.
. • PropertyTermQualifier (optional): A qualifier is a word or words
which help define and differentiate the Association Business Information Entity.
. • PropertyTerm(mandatory): Property Term represents the
Aggregate Business Information Entity contained by the Association Business
Information Entity.
. • AssociatedObjectClassQualifier (optional): Associated Object
Class Qualifiers describe the 'context' of the relationship with another ABIE.
That is, it is the role the contained Aggregate Business Information Entity plays
within its association with the containing Aggregate Business Information Entity.
• AssociatedObjectClass (mandatory); Associated Object Class is the

Object Class at the other end of this association. It represents the Aggregate
Business Information Entity contained by the Association Business Information
Entity.

[DOC7] The xsd:documentation element for every Core Component Type MUST
contain a structured set of annotations in the following sequence and pattern:

. • ComponentType (mandatory): The type of component to which
the object belongs. For Core Component Types this must be “CCT”.
. • DictionaryEntryName (mandatory): The official name of the Core
Component Type, as defined by [CCTS].
. • Version (optional): An indication of the evolution over time of the
Core Component Type.
. • Definition(mandatory): The semantic meaning of the Core
Component Type, as defined by [CCTS].
. • ObjectClass(mandatory): The Object Class represented by the
Core Component Type, as defined by [CCTS].
• PropertyTerm(mandatory): The Property Term represented by the Core
Component Type, as defined by [CCTS].

 1032

1033
1034

.

A.7 Element Declaration Rules
[ELD1] Each UBL:DocumentSchema MUST identify one and only one global element

declaration that defines the document
ccts:AggregateBusinessInformationEntity being conveyed in the
Schema expression. That global element MUST include an xsd:annotation child
element which MUST further contain an xsd:documentation child element
that declares "This element MUST be conveyed as the root element
in any instance document based on this Schema expression."

[ELD2] All element declarations MUST be global with the exception of ID and Code
which MUST be local.

[ELD3] For every class identified in the UBL model, a global element bound to the
corresponding xsd:complexType MUST be declared.

 1035

A.7 Element Declaration Rules

[ELD4]
When a ccts:ASBIE is unqualified, it is bound via reference to the global
ccts:ABIE element to which it is associated. When an ccts:ABIE is qualified,
a new element MUST be declared and bound to the xsd:complexType of its
associated ccts:AggregateBusinessInformationEntity.

[ELD5] For each ccts:CCT simpleType, an xsd:restriction element MUST be
declared.

[ELD6] The code list xsd:import element MUST contain the namespace and schema
location attributes.

[ELD7] Empty elements MUST not be declared.

[ELD8]
Global elements declared for Qualified BBIE Properties must be of the same
type as its corresponding Unqualified BBIE Property. (i.e. Property Term +
Representation Term.)

[ELD9] The xsd:any element MUST NOT be used.

 1036

A.8 Element Naming Rules
[ELN1]

A UBL global element name based on a ccts:ABIE MUST be the same as the
name of the corresponding xsd:complexType to which it is bound, with the
word "Type" removed.

[ELN2]
A UBL global element name based on an unqualified
ccts:BBIEPropertyMUST be the same as the name of the corresponding
xsd:complexType to which it is bound, with the word "Type" removed.

 1037

A.8 Element Naming Rules
[ELN3] A UBL global element name based on a qualified ccts:ASBIE MUST be the

ccts:ASBIE dictionary entry name property term and its qualifiers; and the
object class term and qualifiers of its associated ccts:ABIE. All
ccts:DictionaryEntryName separators MUST be removed. Redundant
words in the ccts:ASBIE property term or its qualifiers and the associated
ccts:ABIE object class term or its qualifiers MUST be dropped.

[ELN4]
A UBL global element name based on a Qualified ccts:BBIEProperty MUST
be the same as the name of the corresponding xsd:complexType to which it is
bound, with the qualifier prefixed and with the word "Type" removed.

 1038

A.9 General Naming Rules

[GNR1] UBL XML element, attribute and type names MUST be in the English language,
using the primary English spellings provided in the Oxford English Dictionary.

[GNR2] UBL XML element, attribute and type names MUST be consistently derived
from CCTS conformant dictionary entry names.

[GNR3]
UBL XML element, attribute and type names constructed from
ccts:DictionaryEntryNames MUST NOT include periods, spaces, other
separators, or characters not allowed by W3C XML 1.0 for XML names.

[GNR4]
UBL XML element, attribute, and simple and complex type names MUST NOT
use acronyms, abbreviations, or other word truncations, except those in the list of
exceptions published in Appendix B.

[GNR5]
Acronyms and abbreviations MUST only be added to the UBL approved acronym
and abbreviation list after careful consideration for maximum understanding and
reuse.

[GNR6] The acronyms and abbreviations listed in Appendix B MUST always be used.

 1039

[GNR7] UBL XML element, attribute and type names MUST be in singular form unless
 the concept itself is plural.

[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming elements
 and types.

[GNR9] The lowerCamelCase (LCC) convention MUST be used for naming attributes.

 1040

A.10 General Type Definition Rules

[GTD1] All types MUST be named.

[GTD2] The xsd:anyType MUST NOT be used.

 1041

1042

1043

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

A.11 General XML Schema Rules

[GXS1]

UBL Schema MUST conform to the following physical layout as applicable:

. • XML Declaration

. • <!-- ===== Copyright Notice ===== -->

. • “Copyright © 2001-2004 The Organization for the Advancement of
Structured Information Standards (OASIS). All rights reserved.
. • <!-- ===== xsd:schema Element With Namespaces Declarations ===== --
>
. • xsd:schema element to include version attribute and namespace
declarations in the following order:
. • xmlns:xsd
. • Target namespace
. • Default namespace

A.11 General XML Schema Rules
. • CommonAggregateComponents
. • CommonBasicComponents
. • CoreComponentTypes
. • Datatypes
. • Identifier Schemes
. • Code Lists
. • Attribute Declarations – elementFormDefault=”qualified”
attributeFormDefault=”unqualified”
. • <!-- ===== Imports ===== -->CommonAggregateComponents schema
module
. • CommonBasicComponents schema module
. • Representation Term schema module (to include CCT module)
. • Unspecialized Types schema module
. • Specialized Types schema module
. • <!-- ===== Global Attributes ===== -->
. • Global Attributes and Attribute Groups
. • <!-- ===== Root Element ===== -->
. • Root Element Declaration
. • Root Element Type Definition
. • <!-- ===== Element Declarations ===== -->
. • alphabetized order

. • <!-- ===== Type Definitions ===== --> 1079
1080

A.11 General XML Schema Rules
 • All type definitions segregated by basic and aggregates as follows • <!-- =====

Aggregate Business Information Entity Type Definitions ===== --> • alphabetized
order of ccts:AggregateBusinessInformationEntity xsd:TypeDefinitions • <!--

=====Basic Business Information Entity Type Definitions ===== --> •
alphabetized order of ccts:BasicBusinessInformationEntities • <!-- ===== Copyright

Notice ===== --> • Required OASIS full copyright notice.
[GXS2]

UBL MUST provide two normative schemas for each transaction. One schema shall
be fully annotated. One schema shall be a run-time schema devoid of
documentation.

[GXS3] Built-in xsd:simpleType SHOULD be used wherever possible.

[GXS4]
All W3C XML Schema constructs in UBL Schema and schema modules MUST
contain the following namespace declaration on the xsd schema element:
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

[GXS5] The xsd:SubstitutionGroups feature MUST NOT be used.

[GXS6] The xsd:final attribute MUST be used to control extensions.

[GXS7] xsd:notations MUST NOT be used.

[GXS8] The xsd:all element MUST NOT be used.

[GXS9] The xsd:choice element SHOULD NOT be used where customisation and
extensibility are a concern.

 1081

A.11 General XML Schema Rules

[GXS10] The xsd:include feature MUST only be used within a document schema.

[GXS11] The xsd:union technique MUST NOT be used except for Code Lists. The
xsd:union technique MAY be used for Code Lists.

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used,
xsd:appinfoMUST only be used to convey non-normative information.

[GXS13] Complex Type extension or restriction MAY be used where appropriate.

 1082

A.12 Instance Document Rules

[IND1] All UBL instance documents MUST validate to a corresponding schema.

[IND2] All UBL instance documents MUST always identify their character encoding with
the XML declaration.

[IND3]
In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding
Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to
by OASIS, all UBL XML SHOULD be expressed using UTF-8.

[IND4] All UBL instance documents MUST contain the following namespace declaration in
the root element: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

[IND5] UBL conformant instance documents MUST NOT contain an element devoid of
content or null values.

[IND6] The absence of a construct or data in a UBL instance document MUST NOT carry
meaning.

 1083

A.13 Modeling Constraints Rules

[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component approved
ccts:CoreComponentTypes.

[MDC2] Mixed content MUST NOT be used except where contained in an
xsd:documentation element.

 1084

A.14 Naming Constraints Rules

[NMC1] Each dictionary entry name MUST define one and only one fully qualified path
(FQP) for an element or attribute.

 1085

A.15 Namespace Rules

[NMS1] Every UBL-defined or -used schema module MUST have a namespace declared
using the xsd:targetNamespace attribute.

[NMS2] Every UBL defined or used schema set version MUST have its own unique
namespace.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

[NMS4]
The namespace names for UBL Schemas holding committee draft status MUST be
of the form: urn:oasis:names:tc:ubl:schema:<subtype>:<document-
id>

[NMS5]
The namespace names for UBL Schemas holding OASIS Standard status MUST be
of the form:
urn:oasis:names:specification:ubl:schema:<subtype>:<document-
id>

 1086

A.15 Namespace Rules

[NMS6] UBL published namespaces MUST never be changed.

[NMS7] The ubl:CommonAggregateComponents schema module MUST reside in its
own namespace.

[NMS8] The ubl:CommonAggregateComponents schema module MUST be
represented by the token "cac".

[NMS9] The ubl:CommonBasicComponents schema module MUST reside in its own
namespace.

[NMS10] The UBL:CommonBasicComponents schema module MUST be represented by
the token "cbc".

[NMS11] The ccts:CoreComponentType schema module MUST reside in its own
namespace.

[NMS12] The ccts:CoreComponentType schema module namespace MUST be
represented by the token "cct".

[NMS13] The ccts:UnspecializedDatatype schema module MUST reside in its own
namespace.

[NMS14] The ccts:UnspecializedDatatype schema module namespace MUST be
represented by the token "udt".

[NMS15] The ubl:SpecializedDatatypes schema module MUST reside in its own
namespace.

[NMS16] The ubl:SpecializedDatatypes schema module namespace MUST be
represented by the token "sdt".

[NMS17] Each UBL:CodeList schema module MUST be maintained in a separate
namespace.

 1087

1088

1089
1090

A.16 Root Element Declaration Rules

[RED1] Every UBL instance document must use the global element defined as
the root element in the schema as its root element.

A.17 Schema Structure Modularity Rules

[SSM1] UBL Schema expressions MAY be split into multiple schema modules.

[SSM2]
A document schema in one UBL namespace that is dependent upon type definitions
or element declarations defined in another namespace MUST only import the
document schema from that namespace.

[SSM3]
A UBL document schema in one UBL namespace that is dependant upon type
definitions or element declarations defined in another namespace MUST NOT
import internal schema modules from that namespace.

[SSM4] Imported schema modules MUST be fully conformant with UBL naming and design
rules.

[SSM5] UBL schema modules MUST either be treated as external schema modules or as
internal schema modules of the document schema.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their
corresponding document schema.

[SSM7]
Each UBL internal schema module MUST be named
{ParentSchemaModuleName}{InternalSchemaModuleFunction}{schema
module}

[SSM8] A UBL schema module MAY be created for reusable components.

[SSM9] A schema module defining all ubl:CommonAggregateComponents MUST be
created.

 1091

A.17 Schema Structure Modularity Rules

[SSM10] The ubl:CommonAggregateComponents schema module MUST be named
"ubl:CommonAggregateComponents Schema Module"

[SSM11] A schema module defining all ubl:CommonBasicComponents MUST be created.

[SSM12] The ubl:CommonBasicComponents schema module MUST be named
"ubl:CommonBasicComponents Schema Module"

[SSM13] A schema module defining all ccts:CoreComponentTypes MUST be created.

[SSM14] The ccts:CoreComponentType schema module MUST be named
"ccts:CoreComponentType Schema Module"

[SSM15] The xsd:facet feature MUST not be used in the
ccts:CoreComponentTypeschema module.

[SSM16] A schema module defining all ccts:UnspecializedDatatypes MUST be
created.

[SSM17] The ccts:UnspecializedDatatype schema module MUST be named
"ccts:UnspecializedDatatype Schema Module"

[SSM18] A schema module defining all ubl:SpecializedDatatypes MUST be created.

[SSM19] The ubl:SpecializedDatatypes schema module MUST be named
"ubl:SpecializedDatatypes schema module"

 1092

1093

1094
1095
1096
1097

1098

1099

1100
1101

1102

1103

1104

1105
1106
1107

A.18 Standards Adherence rules

[STA1] All UBL schema design rules MUST be based on the W3C XML Schema
Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.
[STA2] All UBL schema and messages MUST be based on the W3C suite of technical
specifications holding recommendation status.

A.19 SimpleType Naming Rules

[STN1] Each ccts:CCT xsd:simpleType definition name MUST be the ccts:CCT
dictionary entry name with the separators removed.

2142

A.20 SimpleType Definition Rules

[STD1] For every ccts:CCT whose supplementary components map directly
onto the properties of a built-in xsd:DataType, the ccts:CCT MUST be
defined as a named xsd:simpleType in the ccts:CCT schema module.

A.21 Versioning Rules
[VER1]

Every UBL Schema and schema module major version committee draft MUST
have an RFC 3121 document-id of the form <name>-
<major>.0[.<revision>]

[VER2]

Every UBL Schema and schema module major version OASIS Standard MUST
have an RFC 3121 document-id of the form <name>-<major>.0

[VER3]
Every minor version release of a UBL schema or schema module draft MUST have
an RFC 3121 document-id of the form <name>-<major >.<non-
zero>[.<revision>]

 1108

A.21 Versioning Rules
[VER4]

Every minor version release of a UBL schema or schema module OASIS Standard
MUST have an RFC 3121 document-id of the form <name>-<major >.<non-
zero>

[VER5] For UBL Minor version changes, the name of the version construct MUST NOT
change.

[VER6] Every UBL Schema and schema module major version number MUST be a
sequentially assigned, incremental number greater than zero.

[VER7] Every UBL Schema and schema module minor version number MUST be a
sequentially assigned, incremental non-negative integer.

[VER8] A UBL minor version document schema MUST import its immediately preceding
version document schema.

[VER9] UBL Schema and schema module minor version changes MUST be limited to the
use of xsd:extension or xsd:restriction to alter existing types or add new constructs.

[VER10] UBL Schema and schema module minor version changes MUST not break
semantic compatibility with prior versions.

 1109

1110

5 Samples 1111

6 References 1112

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

[3166-XSD] UN/ECE XSD code list module for ISO 3166-1,
[CCTS2.01] UN/CEFACT Core Components Technical Specification – Part 8 of the ebXML

Framework, 15 November 2003, Version 2.01.
[CLSC] OASIS UBL Code List Subcommittee. Portal: http://www.oasis-

open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive:
http://lists.oasis-open.org/archives/ubl-clsc/.

[SPENCER] http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/5195/Spencer-CodeList-PositionPaper1-0.pdf

[STUHEC] <need reference>
[COATES] http://www.oasis-open.org/apps/org/workgroup/ubl-

clsc/download.php/4522/draft-coates-codeListDataModels-0p2.doc
[CLTemplate] OASIS UBL Naming and Design Rules code list module template,

http://www.oasis-open.org/committees/ubl/ndrsc/archive/.
[eBSC] “eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.
[eBSCMemo] M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”,

http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4503/nistTOUbl20031119.zip

[NDR] M. Cournane et al., Universal Business Language (UBL) Naming and Design
Rules, OASIS, 15 November 2004, http://docs.oasis-open.org//ubl/cd-UBL-NDR-
1.0.1.

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[CL5] http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4502/wd-ublndrsc-codelist-05_las_20030702.doc

[ISO 11179]
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHa
ndler?scope=CATALOGUE&keyword=&isoNumber=11179

[UBL1-SD] http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg
[UNTDED 3055] <need reference>
[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.

http://www.unece.org/etrades/unedocs/repository/codelist.htm.
[CLR] Editor M. Burns, Universal Business Language (UBL) Code List Representation,

Version: 1.1 draft 5 April 2005

Appendix A. Revision History 1147

Revision Editor Description

2004-01-13 Marty Burns First complete version converted from NDR revision
05

2004-01-14 Marty Burns Minor edit of chapter heading 3 & 4

2004-01-20 Marty Burns Incorporated descriptions from AS and KH

2004-02-06 Marty Burns Cleaned up requirements and other sections –
removed some redundant content from merge of
contributions. Explicitly identified Data Model and
Metadata models separately from XML
representations of the same.

2004-02-11 Marty Burns Added comments from 2/11 conference call

2004-02-29 Marty Burns Added resolutions from February Face to Face
meeting

2004-03-03 Marty Burns Incorporated Tim McGrath’s corrections of data
model

2004-03-09 Marty Burns Addressed Eve Maler’s comments
Addressed Tony Coates comments
Addressed 2004-03-03 telecon comments
Added some elaboration of the model usage in ubl

2004-03-15 Marty Burns Added example mapping schema paper to section
4.6

2004-03-23 Marty Burns Added data model for supplementary components,
Marked future features for UBL 1.1 as (future)
Added comment about UBL1.0 release vs. future.

2004-04-01 Marty Burns Clean up for UBL version 1.0

2004-04-14 Marty Burns Incorporated suggested edits from GKH

2005-01-02 Marty Burns Incorporated elaborations of requirements for better
clarity to kick off the UBL 1.1 revisions. Incorporated
comments from Tony Coates.

Appendix B. Notices 1148

1149
1150
1151
1152
1153
1154
1155
1156

1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168

1169
1170

1171
1172
1173
1174

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

