Suggestions for an UBL ExtensibleContent area

Table Of Contents:

1. Introduction
2. Technical information on XML Schema
3. The arguments against Extensible Content
4. Possible Definition of an ExtensibleContent area
INTRODUCTION

The original discussions of the reason for the Danish usage and Requirements of an ExtensibleContent area are laid forward in the document “Position Paper on the

localization rules of UBL 1.0” at http://www.oasis-open.org/committees/download.php/14806/A%20PROPOSAL%20FOR%20UBL%20LOCALIZATION%20RULES.pdf in the section named “Use of xsd:any”.

This discussion has also been carried over a number of emails and phone meetings and as such I assume that the background of the suggestion is well known to everyone.

Processing models for XML Schema

Strict: Strict processing assumes that any variation from the format described by the schema shall be reported as an error.

Lax: Assumes that only variations from the structures defined in the schema will be reported as an error. Thus content that is unrecognized by the schema will be ignored

Skip: This assumes that anything marked as being skipped will be skipped, whether it is understood or not.

The above is well known, but it has some lesser-known consequences, as follows:

When validating an instance if the rules for strict validation are not met then lax validation may take place. In some processors if the user has not defined that they will be using the processor for strict validation, the processor will validate laxly if strict validation rules cannot be met.

In some cases (XSV is one example) the processor will default to lax validation when the User has not explicitly declared strict validation. I have also noticed at times that XMLSPY (Professional Version 3) seems to switch between lax and strict validation with no discernable cause. As I prefer to not use XMLSPY I have not done a detailed study of this peculiarity but I suppose it’s a bug and not a feature.

As an example the following instance:

<doc xmlns="http://www.example.org/nonvalidatable"

xmlns:a="http://www.example.org/validatable"

>

<a:a>hi</a:a>

</doc>

When validated with the following schema:

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://www.example.org/validatable" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<element name="a" type="string">

</element>

</schema>

Will, without setting validation to be strict, not report any errors in XSV. I think for our purposes we want either strict validation or skipped validation.

Reference http://www.w3.org/TR/xmlschema-1/#cvc-assess-elt
Arguments against having an ExtensibleContent

Obviously the existence of an optional ExtensibleContent element does not mean that all the other required elements will no longer be used, to recap for the purpose of this document the main arguments against having an ExtensibleContent area are as follows:

1. Will lead to a virtual Balkanization of the standard whereby Documents sent from one localized version of UBL or from one particular vendors application will be not understood by other versions or other vendors.

2. The format will be extended with semantics that are already supported by the format as a whole by application developers or others unaware of the abilities of the format for solving their particular problems.

It was asked recently how I would implement validation of such an area, I answered that it could be done as follows:

1. The ExtensibleContent area is required to be validated strictly and the namespace set to ##other meaning other than the target namespace of the schema defining the ExtensibleContent area. Schemas would be added for the other namespace either by xsi:schemaLocation or the common mechanism found in various processors of being able to define a library of schemas and the namespaces they are associated with.

2. Further validation can be added by Schematron as need be.

After thinking some more about this I think point #1 is absolutely a bad way to proceed, and would in fact create the Balkanization that is an argument against ExtensibleContent, unless there were a central repository providing schemas matching the namespaces so that if someone received a document extended with an unknown namespace it could be retrieved. Even if such a repository were provided I’m sure that we can see enough problems with it that it would be a far from an optimal solution. The original reason why it looked good to me was that we used a similar solution for a standard in Denmark, but this was for an in-country standard – not international.

The current Danish implementation sets processing on the ExtensibleContent area to be skip, and all implementers are told to ignore any content in these areas that they do not recognize. We have only received one complainant organization, using a personally developed solution, that said they had problems with ignoring the content of the ExtensibleContent area.

The rule of skipping content is a basic bit of logic placed on the existence of the element, but greater logic could be placed on it in order to provide implementers methods for determining the purpose of any extension

I do not understand how a clear rule on how to handle unknown content in a particular predefined area would create incompatibilities.

The following outlines some suggestions for possible syntax, semantics, and required application handling of an ExtensibleContent area for UBL documents, including how validation and XML Schema processing of such areas should be handled.

Possible Definition of an ExtensibleContent area:

An ExtensibleContent area is an element in the understood format document that contains another format not related to the overall document format.

The contents of the ExtensibleContent area can be further specified by those doing the extending via attributes on the element itself.

The attributes I propose are

ExtensionID – same semantics as schemeID

extensionAgencyID – same semantics as schemeAgencyID for Extensions

extensionAgencySchemeID – same semantics as schemeAgencySchemeID

extensionAgencySchemeAgencyID – same semantics as schemeAgencySchemeAgencyID

extensionReason – a codelist, I can think of

a. Legal – the extension contains information required by in an area covering the extending body for documents of the type being sent.

b. ReceiverRequested – the extension contains information that the receiver has been requested be provided.

c. ProvisionalTest – the extension is currently passing information that is being considered for inclusion into the next version of UBL, this would presume some sort of public repository of currently considered extensions. The sender is testing how the extension works in their system with trading partners. I’m not very wedded to this particular reason, as I’m not sure if it is something I would describe as a ‘reason’.

d. Application – the extension is a vendor specific extension

mustUnderstand – a Boolean, only allowed in contexts of the extensionReason being legal, the sending party is claiming that in order for their document to be received validly the receiving party must understand it. I realize of course that this raises the spectre of balkanization again, but it seems to me that this would only be used when actually required by law, given that who in their right mind would send a document and require someone to understand it if it meant that by not understanding the receiving party could refuse it.

extensionAgencyControllerID – in the context of the Danish UBL project the Danish Government ministry in charge of the technical wing of the project would be the Controller for any official extensions.

extensionAgencyURI – a dereferenceable uri where information about the extension can be found.

extensionDomain – the problem domain that the extender considers the extension to cover.

 Some evident domains –

a. Presentation, handled via SVG, XHTML?

b. Calculation, handled via MathML?

Of course these are more evidently application extensions than semantics extensions.

ExtensionDomainSchemeURI: a dereferenceable uri that will define the domain.

NOTES: I changed some of the attributes to reference the scheme attributes (schemeID, schemeAgencyID) as their semantic base because these seemed to be a better fit.

A weird scenario for extension usage:

A weird scenario occurred to me the other day where an ExtensibleContent area could actually hold UBL information. If we presume that the ExtensibleContent area allowed any namespace it could happen. This might arise in a situation where in a customization process someone has removed UBL semantics from the document considering that they did not need the functionality offered, however later on after the customization was finished it turns out that they did, for various reasons the customization cannot just be changed therefore it must be extended.

I suppose this might be defined as a sort of reason in the extensionReason attribute.

Application handling of extensions:

If, as following the Danish model the ExtensibleContent area is defined as being a skip area for the processor then it follows that with XML Schema processing the area must be clipped, loaded into another DOM or otherwise serialized as its own XML instance, and validated externally from the document it extends. The content of an ExtensibleContent area is supposed to be understood if

The namespace of the single allowed child of the ExtensibleContent area is one registered as one of any number of understood namespaces by the application.

This however does not prevent other validation methods from being run over the whole document.

It is a question whether the requirement would just be that the validation must ignore anything in the ExtensibleContent it does not understand (with the exception of a Legal extension that has been marked mustUnderstand, if this is considered to be doable by the UBL TC) or if this would just be a requirement for an XML Schema processor.

If the ExtensibleContent area contains content understood by the processor then it may do the following, if it is not an absolute requirement that all validation must ignore the ExtensibleContent area:

1. Load and run any validation that is considered to be whole document validation, Schematron is an example, pertinent to the extension.

2. Load XML Schema validation for the document.

3. Serialize the extension

4. Load validation for the extension that does not work for the whole document.

If it is assumed that all validation must ignore the ExtensibleContent element then it follows that the method would be as follows:

1. Load XML Schema validation of the document (ignores ExtensibleContent)

2. Load other validation of document (ignores ExtensibleContent)

3. Serialize the extension

4. Load validation for the extension.

Currently it has been assumed that the ExtensibleContent element would be found at two places, the header and the line level. If this assumption holds then it follows that what is being extended is either the document header or the document line. I have no particular suggestion as to how this might be mandated or validated, but I would observe that if one extends a document region it might make sense to be able to refer from elements within the extended area to elements in the region being extended, to in effect draw a graph over the tree connecting the disparate regions.

As an example of this let us suppose that one extended an Invoice with MathML, the Invoice had the semantics, the MathML asserted a calculation method whereby they had arrived at their various results. This could be useful for business rules validation of an invoice or for error reporting of a document.

These are the kinds of validation rules for which Schematron could be written.

Obviously in such a situation it is presumed that one allows whole document validation, and that ignoring of ExtensibleContent is not required by all validation mechanisms. If I were to make a choice I think that, as much as I might find it useful to be able to graph over the tree I would want to mandate that all validation of the document ignore all extensions and that all validation of extensions ignore the document found in. If this is the case however I do not think that one needs to be able to extend both the header and the line level, since what one does is extend the document message as a whole.

Any extended message will need to carry the extensions with it through the system. How this is done seems to me to be an application specific choice.

