
UBL Customization Guidelines Page 1 of 17 26 July 2008

UBL Guidelines for

Customization

v 0.6

26 July 2008

UBL Customization Guidelines Page 2 of 17 26 July 2008

Table of Contents

Table of Contents.. 2
Table of Figures .. 3
1 Introduction.. 4

1.1 Conformance vs. Compatibility .. 4
1.1.1 UBL Conformance... 4
1.1.2 UBL Compatibility .. 5

1.2 Customization Overview .. 5
1.3 Acknowledging OASIS Copyright ... 6

2 Designing for UBL Customization .. 7
2.1 Designing for Conformance.. 7

2.1.1 Subsets of the Document Model .. 7
2.1.2 Code List Constraints on Document Content .. 8
2.1.3 Other Constraints on Document Content... 8
2.1.4 Examples of Conformant Customizations ... 8

2.2 Designing for Compatibility ... 10
2.2.1 Reuse of UBL Objects ... 10
2.2.2 Compatible Extension of the UBL Model ... 11
2.2.3 Use UBL Principles for New BIEs .. 14
2.2.4 The Customization Ripple Effect... 14

3 Specification [placeholder for section to be written]... 17
3.1 XML Schema Extension/Restriction [placeholder] .. 17
3.2 Subset Schema [placeholder].. 17
3.3 UBLExtension Element [placeholder].. 17
3.4 XPath [placeholder] .. 17

4 Validation [placeholder for section to be written] ... 17
5 UBL Systems [placeholder for section to be written].. 17

5.1 Producer Systems [placeholder] ... 17
5.2 Consumer Systems [placeholder] ... 17

UBL Customization Guidelines Page 3 of 17 26 July 2008

Table of Figures

Figure 1. Conformant Schemas and Document Instances .. 5
Figure 2. Customization Overview... 6
Figure 3. NES Subset of the UBL Delivery ABIE ... 9
Figure 4. A Document as a Subset of a UBL Document .. 10
Figure 5. Extending an ABIE.. 13
Figure 6. Schematic of a UBL Content Model ... 15
Figure 7. Conformant Subsetting (No Changes in Namespace) ... 15
Figure 8. Ripple Effect — Custom ABIE/ASBIE .. 16
Figure 9. Ripple Effect — Custom BBIE ... 16

UBL Customization Guidelines Page 4 of 17 26 July 2008

1 Introduction
The OASIS Universal Business Language (UBL) Technical Committee (TC) has produced a
vocabulary that, for many user communities, can be used “as is.” However, the TC also
recognizes that some user communities must address use cases whose requirements are not met
by the UBL off-the-shelf solution. These Guidelines are intended to aid such users in developing
custom solutions based on UBL.

To assist with the scoping of this document, let us begin with some definitions:
• Customization: The alteration of something in order to better fit requirements.
• UBL Customization: The description of XML instances, or XML-based applications

acting on those instances, that are somehow based on or derived from the UBL Standard.

The goal of UBL customization is to maximize interoperability so that all parties understand the
meaning of information in the documents being exchanged.

The determining factors governing when to customize may be business-driven, technically
driven, or both. The decision should driven by real world needs balanced against perceived
economic benefits.

1.1 Conformance vs. Compatibility
Once the need to customize UBL has been determined, designers must decide whether the result
will be UBL conformant or UBL compatible. Although the UBL TC will not be involved in
determining whether customizations are conformant, compatible or otherwise, we supply these
definitions as a point of reference for those who might.

1.1.1 UBL Conformance
UBL conformance at the instance and schema level means there are no constraint violations
when validating the instance against a standard UBL schema. A UBL conformant instance is an
instance that validates against a standard UBL document schema. A UBL conformant schema is
a schema that will validate only UBL conformant instances.

UBL Customization Guidelines Page 5 of 17 26 July 2008

UBL schema

UBL customized schema
valid

valid

may be invalid

UBL
conformant
document
instance

Customized
conformant
document
instance

Non-UBL conformant
document instance

invalid

Figure 1. Conformant Schemas and Document Instances

A major advantage of UBL conformance is that it minimizes the need for custom software or
modifications to UBL applications.

1.1.2 UBL Compatibility
To be UBL compatible means to be consistent with the principles behind UBL's models or their
development. These principles are defined in the ebXML Core Component Technical
Specification (CCTS) and the UBL Naming and Design Rules (NDR). While we cannot assume
conformance and interoperability of these customized documents, we can expect some degree of
familiarity through the re-use of common objects.

1.2 Customization Overview
The UBL library and document schemas have been developed from conceptual models based on
the principles of the ebXML Core Component Technical Specification. These are then expressed
in W3C XML Schema, based upon the UBL Naming and Design Rules. It is these schemas that
may be used to both specify and validate UBL documents.
It is recommended that a similar approach be followed when customizing UBL. Therefore, the
following sections discuss conceptual design, then the specification of XML documents, and
finally the validation aspects of customization.

UBL Customization Guidelines Page 6 of 17 26 July 2008

Figure 2. Customization Overview

1.3 Acknowledging OASIS Copyright
OASIS policies support implementations, subsets, and extensions of OASIS works as long as
they acknowledge derivation from OASIS works and do not incorrectly claim compliance with
or identity with an OASIS work. If you modify the UBL Invoice schema, for example, you
cannot claim that it is still the UBL 2.0 Invoice schema, but you should acknowledge that the
new work was derived from the UBL 2.0 Invoice schema.
Specifications and models published for use by others that incorporate OASIS work should
include the following in an appropriate place, usually near the author's own copyright notice:
 Portions copyright (c) OASIS Open 200[8]. All Rights Reserved.
This text can be followed by the OASIS policy URI if the author wishes to provide that
reference:
 http://www.oasis-open.org/who/intellectualproperty.php
Those who publish such works should take note of the rights available under the OASIS IPR
Policy and their limitations, including any notices posted with respect to a specific work. In
specific cases there may be parties other than OASIS who, from time to time, post assertions that
a license is needed. For IPR notices relating to UBL, see
 http://www.oasis-open.org/committees/ubl/ipr.php
OASIS generally welcomes the creation of derivative works, and in appropriate cases, OASIS
may assist in publicizing the work in its own channels.

UBL Customization Guidelines Page 7 of 17 26 July 2008

2 Designing for UBL Customization
The design of the conceptual models for UBL and its customizations is not affected by the
syntactical issues of XML, schema lnguages, or validation tools. The UBL Technical Committee
uses spreadsheets and UML models for their design, but this is not mandatory.

The approach to customization will reflect the chosen goal of either conformance or
compatibility. Designing a customization may involve:

• Adding information items to meet requirements of a specific business context
• Omitting information items not needed in a specific context
• Refining the meaning of information items
• Creating constraints on possible values for information entities (such as code lists)
• Combining (or recombining) and assembling information items into new aggregations or

documents

2.1 Designing for Conformance
When designing for conformance (see 1.1.1), the key objective is to create custom schemas that
can be used to generate UBL-conformant instances. Consequently, with one exception,
conformance only allows for restrictions:

• Subsets of the document model – restricting the number of entities in a document
• Constraints on document content – restricting the possible values an entity can have

In either case, the restriction may be accomplished either by removing optional objects from the
UBL model or by checking for their existence in the value validation phase. Minimums can be
increased, maximums can be decreased and data types may be refined but not extended. Hence,
all schema-valid instances of a conformant customization are schema-valid instances of UBL as
well; however, this is not true the other way around. Not all schema-valid instances of a UBL
document will conform to every customization.

The one exception to this conformance “rule” is when the UBLExtension element is used. If new
objects are added to an existing document type exclusively in the extension area, instances
validating against the extended schema are still UBL conformant. But in these cases, schema
validation cannot ensure the semantic integrity of the new objects.

2.1.1 Subsets of the Document Model
The standard schemas have been designed to accommodate the broadest possible range of
business requirements. If all optional elements in a particular UBL document type were
instantiated, the resulting instance would be extremely verbose. For example, if a UBL Order
document contained just one instance of all the possible elements allowed by the UBL Order
schema, that document would contain approximately 800,000 elements. Communities may not
need all the information items provided by the standard schema. The use of subsets allows for
the removal from a document model of any optional information items that are not needed to
satisfy business requirements.

UBL Customization Guidelines Page 8 of 17 26 July 2008

It must be noted that subsetting can only be used to remove optional elements or change
cardinality in ways that do not reduce the required minimum number of occurrences or extend
the permitted maximum number of occurrences. Thus,

• 0..1 can become 1..1 or 0..0 (but not, for example, 1..2)
• 0..n can become 0..1, 1..n, m..n, or 0..0
• 1..n can become 1..1 or 1..m (where m<n)
• 1..1 cannot be changed

2.1.2 Code List Constraints on Document Content
Using a code list (or an enumerated list) for an information entity is a common customization.
Such lists impose value constraints. For example, “the Currency Code must be expressed using
ISO 4217 codes” is a constraint on the possible values for Currency Code.
In UBL, there are two levels of constraints for codes:

• Code lists without defined values
These are not empty lists, they are lists without constraints — in effect, infinite lists of
values constrained only by their lexical form.

• Code lists with defined values
These are explicit lists that constrain possible values for the content.

2.1.3 Other Constraints on Document Content
There are other cases in which the treatment of UBL instances requires customization in order to
limit or restrict content values. For example:

• “The Total Value of an Order cannot exceed $100,000.”
• “The length of an Address Line cannot exceed 40 characters.”

Additionally, there are other use cases relating to the dependencies between values of
components which also necessitate customization. For example:

• “The Shipping Address must be the same as the Billing Address.”
• “The Start Date must be earlier than the End Date.”

Methods for specifying and validating such constraints are discussed in Sections 3 and 4.

2.1.4 Examples of Conformant Customizations
The Northern European Subset group (NES) also produce subset models of UBL 2.0 documents
by selectively excluding components in the UBL library as described in the following graphic.

UBL Customization Guidelines Page 9 of 17 26 July 2008

Figure 3. NES Subset of the UBL Delivery ABIE

As an example of a subset document, the following Notification document is a true subset of the
UBL Receipt Advice document.

UBL Customization Guidelines Page 10 of 17 26 July 2008

class System

Shipment

- ID: int
- TotalTransportHandlingUnit: int

Notification

- ID: int

GoodsItem

- Description: int
- ID: int

Party

Consignment

- ID: int
Delivery

TransportHandlingUnit

- ItemIdentifier: int

Package

- PackageTypeCode: int

PartyAddress

Despatch

PartyAddress

TransportServ ices

- ServiceCode: int

DeliveryTerms

Class1

- Amount: int
- ID: int

PaymentMeans

- PaymentMeansCode: int

Financia lAccount

- BankingDetailsForCOD: int

Despatch

Consignor

Carrier

Actual

Delivery

Payee

Despatch

FinalAddress

OriginalAddress

Delivery

Figure 4. A Document as a Subset of a UBL Document

2.2 Designing for Compatibility
When designing for compatibility (see 1.1.2), the key objective is to re-use as much of the UBL
model as possible. Where this is not possible, the guiding principles of the UBL model should be
followed. Schema-valid instances of a compatible customization are not necessarily schema-
valid instances of UBL. However, schema-valid instances of UBL may be schema-valid
instances of a compatible customization. Unlike a conformant design, a compatible design allows
for extensions (supersets). One may add to the model any UBL objects that are needed to satisfy
business requirements.

2.2.1 Reuse of UBL Objects
Two categories of UBL objects are candidates for re-use:

• Business Information Entities (BIEs)
A key goal of compatibility is to re-use existing UBL BIEs at the highest possible level.
For example, it is better to re-use the UBL-declared BuyerParty element than to create a
competing element with a similar content model. Re-using standard UBL constructs

UBL Customization Guidelines Page 11 of 17 26 July 2008

keeps customization as closely aligned with UBL 2.0 as possible and prevents an
unnecessary proliferation of BIEs requiring maintenance.

• Data Types
The ebXML CCTS defines a set of Core Component Types that should be the basis for
all data types.

2.2.2 Compatible Extension of the UBL Model
If re-use of existing UBL constructs is not feasible, it is possible to customize by extending the
UBL model. Extension may be required in a case where the context of use for a particular object
differs from the UBL model. Indicating context of use is supported in the ebXML Core
Component Technical Specification by qualifying the Property Terms of Dictionary Entry
Names.

Example
In UBL, Address. Country Subentity Code. Code could be qualified as Address.
Canadian_ Country Subentity Code. Code could be a qualification denoting the context
of use is Canada.

If the new object has the same structure as the original object, it shares the same type. The
qualifying terms used to name the new object should describe the role of the new object

Example
If an Address is required for a Party’s local address that uses the normal address
structure, it could be modelled as Party. Local_ Address.

If the new object does not have the same structure as the original object, the new object should
include the original object as a child. The new object has a new name, not a qualified name. The
other children of the new object are the additional information items needed to describe the new
object.

Example
If an Address has additional properties when the Address is in Japan, then a new structure
called Japanese Address could be created. This is not a qualification, but a new term.
Ideally this should contain the original Address structure by association, plus the new
properties.

Changing the meaning of any object’s definition changes the object. Therefore, a new object
must be defined

Example
In UBL, Communication. Channel. Text is defined as “The method of communication
expressed as text.” If an entity is required to define the Skype name as a specific
communication channel then a new entity (perhaps called Communication. Skype Name.
Text) should be defined.

2.2.2.1 New BBIEs
In certain scenarios, a user community may require new properties for their Basic Business
Information Entities (BBIEs). This requires an extension of the existing UBL model to either
create a new property based on an existing UBL data type or to create a completely new data

UBL Customization Guidelines Page 12 of 17 26 July 2008

type. Any new BBIE will result in a new ABIE container. See the sections below for further
details.

2.2.2.1.1 Original Data Types
In cases where the representation term matches one of the existing UBL data types, a new
property can be created based on this data type.

2.2.2.1.2 Refined Data Types
In cases where the representation term does not match an existing UBL data type, a new
qualified data type may be required. You can create new qualified data types based on UBL
qualified data types or UN/CEFACT unqualified data types.
{jb: has the following comment been dealt with?} [TM: E.g.: currency code … is a CC and also
a qualified datatype, but its CC type is Code… we are further qualifying a qualified datatype to
make e.g. european currency code. At implementation level, we are creating a new XML
datatype (limited set of values). So “refining a ccts dt” and creating a new XML datatype are
really the same thing. No one will need to create a new CCTS datatype (name, code, text, etc.);
every element is one of those. We are always “refining,” never “creating new”.]

2.2.2.1.3 Refined Code Types
In UBL, a BBIE with a representation term of Code can have two data types assigned:

• Without defined values (the unqualified code data type)
For example, CountrySubentityCode (in Address) is assigned the CodeType data type.

• With defined values (the code data type is qualified)
For example, IdentificationCode (in Country) is assigned the
CountryIdentificationCodeType data type.

Assigning a qualified code list to a BBIE that was previously unqualified restricts the infinite list
into a finite list. This restriction on possible content values defines a subset. Therefore,
assigning a qualified code list to a BBIE that was previously unqualified is a conformant
restriction.
Assigning a new qualified code data type to a BBIE already having assigned values will only be
a conformant customization if the new qualified code list values are a subset of original qualified
data type.

2.2.2.2 New ASBIEs
Aggregate Business Information Entities (ABIEs) are included in a document by associating
them with their parent ABIE. This means defining a new Association Business Information
Entity (ASBIE).

If the required aggregation has the same structure as an existing ABIE, a new ASBIE should be
created with the existing ABIE.

The new ASBIE represents a new use of the ABIE and so qualifying terms can be used to
describe the new role.

UBL Customization Guidelines Page 13 of 17 26 July 2008

For example, Address is re-used in contexts such as Postal_ Address, Delivery_ Address, and
Pickup_ Address. They all share the same structure as Address with “Postal,” “Delivery,” and
“Pickup” providing the qualifying terms.

2.2.2.3 New ABIEs
If the required aggregation is an extension of an existing ABIE, making it no longer conformant,
a new ABIE should be created with a new name (not a qualified name). The new ABIE includes
the extended ABIE as a child (by association) with additional BIEs where required (see 2.2.2
above).

Example
In UBL, CustomerParty is a new ABIE that has a different structure than Party. The Party
structure is re-used by inclusion in the CustomerParty ABIE. In addition, CustomerParty
also contains additional BIEs. In this case, the name CustomerParty is not a qualification
of the name Party, but an addition to the UBL model to create a new ABIE.

Figure 5. Extending an ABIE

2.2.2.4 New Data Types
Qualification of data types is another example of re-use by association. Qualified data types can
be based on CCTS Unqualified data types or UBL qualified data types. For example, Currency_
Code. Type is a restriction on the Code data type which qualifies a CCTS unqualified data type.
European Currency_ Code. Type is a restriction on the Currency_ Code Data Type which
qualifies a UBL unqualified data type. {jb: The word “which” in the final two sentences
introduces an ambiguity. Does the first sentence mean: “Currency_ Code. Type is a restriction
on the Code data type, and the Code data type qualifies a CCTS unqualified data type,” or
does it mean “Currency_ Code. Type, which qualifies a CCTS unqualified data type, is a
restriction on the Code data type”? Does the second sentence mean “European Currency_
Code. Type is a restriction on the Currency_ Code Data Type, and the Currency_ Code Data
Type qualifies a UBL unqualified data type,” or does it mean “European Currency_ Code.
Type, which qualifies a UBL unqualified data type, is a restriction on the Currency_ Code
Data Type”?}

2.2.2.5 New Document Models
Where existing UBL document models do not meet requirements, it is necessary to create a new
document model. The key steps in new document assembly are to select/create the document
ABIE and assemble the required BBIEs and ASBIEs, applying cardinality constraints. The
process then continues recursively through other BIEs.

UBL Customization Guidelines Page 14 of 17 26 July 2008

2.2.3 Use UBL Principles for New BIEs
The minimum requirement for compatibility is to adhere to the UBL principles when creating or
defining new BIEs.

• Creating aggregates
When different BIEs have shared functional dependencies, they should be combined into
aggregates. This means that the only things that belong in an ABIE are ASBIEs or
BBIEs that are functionally dependent on it.
For example, the description of an item depends on what that item is. If the item
changes, then the description changes. We then say the description is functionally
dependent on the item, and in this case, the BBIE Description should be aggregated into
the ABIE Item.
If the price of a cup of coffee is based on whether it is to take out, drink at the table or
drink at the bar, then we say the price is functionally dependent on the location. In this
case, the BBIE Price should be aggregated into an ABIE called PriceLocation.

• Re-use common BIEs
Aggregates should re-use common ABIEs (as ASBIEs) and Data Types (as BBIEs).

• Re-use patterns
Aggregates should re-use existing patterns for common structures.

• Use CCTS
CCTS should be used when defining BIEs [check the first citation of CCTS]

• Use UBL NDR for any schema
The UBL Naming and Design Rules should be used when implementing the model as an
XML schema.

2.2.4 The Customization Ripple Effect
{jb: The following paragraph has been substantially edited and needs technical review.} The
creation of a new BIE or data type affects all BIEs and data types in its parental path. This is
known as the ripple effect. Every UBL construct has a distinct, unique identity; any change made
within it changes the identity of the whole construct and everything above it.
For example, a UBL Address is always the same structure. If any BIE is added to, or required
BIE is removed from, a UBL Address, it can no longer be identified as the UBL Address. And
this change of identity bubbles or ripples upward through any parent of Address. This rule
guarantees that UBL-consuming code is never “surprised” by an unexpected difference hiding
inside an incoming data structure wrongly identified as standard UBL. This difference is
generally signaled by a change in XML namespace.

2.2.4.1 Custom ABIEs using subsetting
Consider the following diagram of a UBL content model, which will be used to illustrate the
ripple effect. Every construct is in the ubl: namespace.

UBL Customization Guidelines Page 15 of 17 26 July 2008

ubl : xxx

ubl:xxx

ubl:xxx

ubl : xxx ubl : xxx

ubl : xxx

ubl:xxx ubl:xxx

ubl : xxx ubl : xxx ubl:xxx ubl : xxx

Figure 6. Schematic of a UBL Content Model

When a customization is a proper subset of UBL document model (only optional objects are
removed), there is no ripple effect; everything keeps the ubl: namespace.

ubl:xxx

ubl:xxx

ubl:xxx ubl:xxx

ubl:xxx

ubl:xxx ubl:xxx

Figure 7. Conformant Subsetting (No Changes in Namespace)

2.2.4.2 Custom ABIE Using Standard UBL Properties
When a new ABIE/ASBIE is added to a customization, all of its ancestors must also be modified
to reflect the new information item. In the example below, a custom ABIE is created using

UBL Customization Guidelines Page 16 of 17 26 July 2008

standard UBL properties. Its parent must then be customized to allow this custom ABIE in its
content model. Accordingly, the document ABIE must also be customized.

ubl:xxx

cus:xxx

ubl:xxx

ubl:xxx cus:xxx

cus:xxx

ubl:xxx ubl:xxx

ubl:xxx ubl:xxx ubl:xxx ubl:xxx

Figure 8. Ripple Effect — Custom ABIE/ASBIE

2.2.4.3 Custom ABIE Using Custom Properties
When a new BBIE is added to a customization, all of its ancestors must also be modified to
reflect the new information item. In the example below, a customized ABIE is created by adding
a custom BBIE. Its parent must then be customized to allow this custom BBIE in its content
model. Accordingly, the document ABIE must also be customized.

ubl:xxx

cus:xxx

ubl:xxx

ubl:xxx cus:xxx

cus:xxx

ubl:xxx ubl:xxx

ubl:xxx ubl:xxx ubl:xxx ubl:xxxcus:xxx

Figure 9. Ripple Effect — Custom BBIE

To sum up:
• Customizing a Data Type creates a new BBIE
• Customizing a BBIE creates a new ABIE

UBL Customization Guidelines Page 17 of 17 26 July 2008

• Customizing an ABIE means creating a new ABIE and new ASBIEs that refer to it
• Customizing an ASBIE creates a new ABIE
• Any new ABIE means a new document model

3 Specification [placeholder for section to be written]
This section will discuss the options for the specification of a customization.

3.1 XML Schema Extension/Restriction [placeholder]
This section will describe the original UBL customization method.
[[MJG: Moved from 3.2.1.2 – didn’t want to lose it…]]
For example, a customization may contain a purchaser object instead of the UBL BuyerParty
object. For compatibility, at a minimum, the UBL CAC BuyerPartyType should be the basis for
deriving your PurchaserType. The advantage of re-using UBL constructs is that there is a
semblance of traceability back to the original UBL model.

3.2 Subset Schema [placeholder]
This section will describe how to create a schema that is a proper subset of the UBL schema.

3.3 UBLExtension Element [placeholder]
Note that if new items are added to an existing document type only in the extension area,
instances validating against the extended schema are still UBL conformant (not just UBL
compatible). [etc.]

3.4 XPath [placeholder]
This section will explain the XPath approach to customization specification.

4 Validation [placeholder for section to be written]
This section will discuss validation.

5 UBL Systems [placeholder for section to be written]
 Although UBL will not be involved in determining whether systems are conformant, compatible
or otherwise, we supply these definitions as a point of reference for those who might.

5.1 Producer Systems [placeholder]
The system will produce an instance that will validate against any UBL schema whose minor
version number (within the indicated major range) is equal to or greater than the version to
which the system claims conformance.

5.2 Consumer Systems [placeholder]
The system will accept instances that validate against any UBL schema whose minor version
number (within the indicated major range) is equal to or less than the version to which the
system claims conformance.

