
{Specification Title Version X.X}
Committee Draft in Progress wd03, {8 July 2010}
Document identifier:

spectools-docbook-template-wd03

Technical committee:
OASIS {official name of technical committee} TC [http://www.oasis-open.org/committees/]

Chairs:
Jon Bosak, Pinax <bosak@pinax.com>
Tim McGrath, Document Engineering Ser-
vices <tim.mcgrath@documentengineeringservices.com>

Editors:
Mike Grimley, US Navy <MJGrimley@acm.org>
Mavis Cournane, Cognitran Limited <mavis.Cournane@cognitran.com>

Declared XML Namespaces:
http://docs.oasis-open.org/

Abstract:
{This specification defines...}

Related Work:
This specification replaces or supersedes:

• {specification replaced by this standard}
• {specification replaced by this standard}

This specification is related to:

• {related specifications}
• {related specifications}

Status:
{Describe the status and stability of the specification here.}

This document was last revised or approved by the {TC name | membership of OASIS} on the above
date. The level of approval is also listed above. Check the current location noted above for possible
later revisions of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee's
email list. Others should send comments to the Technical Committee by using the "Send A Comment"
button on the Technical Committee's web page at http://www.oasis-open.org/committees/{short name}.

1

http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/
mailto:bosak@pinax.com
mailto:tim.mcgrath@documentengineeringservices.com
mailto:MJGrimley@acm.org
mailto:mavis.Cournane@cognitran.com
http://docs.oasis-open.org/
http://www.oasis-open.org/committees/{short name}

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the Technical Committee web page (http://www.oasis-open.org/committees/{TC short
name}ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/commit-
tees/{TC short name}.

Notices:
Copyright © OASIS® Open 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DIS-
CLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNER-
SHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses
to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee
that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a
patent holder that is not willing to provide a license to such patent claims in a manner consistent with
the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include
such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permis-
sion for the use of such proprietary rights by implementers or users of this OASIS Committee Specific-
ation or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no repres-
entation that any information or list of intellectual property rights will at any time be complete, or that
any claims in such list are, in fact, Essential Claims.

2

{Specification Title Version X.X}

http://www.oasis-open.org/committees/{TC short name}ipr.php
http://www.oasis-open.org/committees/{TC short name}ipr.php
http://www.oasis-open.org/committees/{TC short name}
http://www.oasis-open.org/committees/{TC short name}

The name "OASIS" is a trademark of OASIS [http://www.oasis-open.org], the owner and developer of
this specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

3

{Specification Title Version X.X}

http://www.oasis-open.org
http://www.oasis-open.org
http://www.oasis-open.org/who/trademark.php

Table of Contents
1. Introduction .. 5

1.1. Audiences .. 5
1.2. Scope .. 5
1.3. Terminology and Notation ... 5
1.4. Guiding Principles ... 6

2. Relationship to ebXML Core Components .. 6
2.1. Mapping Business Information Entities to XSD ... 9

3. General XML Constructs ... 11
3.1. Overall Schema Structure .. 11
3.2. Naming and Modeling Constraints .. 13
3.3. Reusability Scheme .. 14
3.4. Extension Scheme .. 15
3.5. Namespace Scheme .. 16
3.6. Versioning Scheme ... 17
3.7. Modularity Strategy .. 19

4. Modeling .. 25
4.1. Data Types for BBIEs ... 25
4.2. CCTS 2.01 Core Component Types ... 25
4.3. Naming Conventions .. 25
4.4. Oxford English .. 25
4.5. Acronyms and Abbreviations .. 25
4.6. Which and Why ... 25
4.7. Singular Nouns Where Applicable ... 25
4.8. Namespaces .. 25
4.9. Style Guide ... 25
4.10. Multiplicity and Preserving Functional Dependency .. 25
4.11. Patterns and Prohibitions .. 26

5. Spreadsheets .. 26
5.1. Mandatory Columns ... 26
5.2. Optional Columns .. 26
5.3. Fixed Calculation Columns .. 26
5.4. eDoCreator ... 26
5.5. Rows with Expressed Enumerated Code Lists .. 26

6. Naming and Design Rules .. 26
6.1. Aggregate Schema Declarations .. 26
6.2. Basic Schema Declarations .. 26
6.3. Schema Declarations Created from Spreadsheets .. 26
6.4. Context Value Associationss Created from Spreadsheets .. 27

7. Schema Dependencies ... 27
7.1. Common Schema Fragments .. 27

8. Code Lists ... 27
8.1. Genericode ... 27

9. Conformance ... 27

Appendixes

A. Normative Annex ... 27
B. Non-normative Annex (Non-Normative) ... 27
C. Acknowledgements (Non-Normative) .. 27
D. Revision History (Non-Normative) .. 28

4

{Specification Title Version X.X}

1. Introduction
XML is often described as the lingua franca of e-commerce. The implication is that by standardizing on XML, enterprises
will be able to trade with anyone, any time, without the need for the costly custom integration work that has been ne-
cessary in the past. But this vision of XML-based "plug-and-play" commerce is overly simplistic. Of course XML can
be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the other documents needed to
conduct business. But XML by itself doesn't guarantee that these documents can be understood by any business other
than the one that creates them. XML is only the foundation on which additional standards can be defined to achieve
the goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in achieving this
goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have already in-
vested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct
electronic business. Furthermore, every company has different requirements for the information exchanged in a specific
business process, such as procurement or supply-chain optimization. A standard business language must strike a difficult
balance, adapting to the specific needs of a given company while remaining general enough to let different companies
in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML) initiative.
UBL is organized as an OASIS Technical Committee to guarantee a rigorous, open process for the standardization of
the XML business language. The development of UBL within OASIS also helps ensure a fit with other essential ebXML
specifications.

This specification documents the rules and guidelines for the naming and design of XML components for the UBL
library. It contains only rules that have been agreed on by the OASIS UBL Technical Committee. Consumers of the
Naming and Design Rules Specification should consult previous UBL position papers that are available at http://www.oas-
is-open.org/committees/ubl/ndrsc/. These provide a useful background to the development of the current rule set.

1.1. Audiences
This document has several primary and secondary targets that together constitute its intended audience. Our primary
target audience is the members of the UBL Technical Committee. Specifically, the UBL Technical Committee uses
the rules in this document to create normative form schemas for business transactions. Other XML schema developers
may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion into, their
own approaches to XML schema development.

1.2. Scope
This specification conveys a normative set of XML schema design rules and naming conventions for the creation of
UBL schemas for business documents being exchanged between two parties using XML constructs defined in accordance
with the ebXML Core Components Technical Specification.

1.3. Terminology and Notation
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMEN-
DED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task Force
(IETF) Request for Comments (RFC) 2119. Non-capitalized forms of these words are used in the regular English sense.

Definition A formal definition of a term. Definitions are normative.

Example An example of a definition or a rule. Examples are informative.

5

{Specification Title Version X.X}

http://www.oasis-open.org/committees/ubl/ndrsc/
http://www.oasis-open.org/committees/ubl/ndrsc/

Note Explanatory information. Notes are informative.

RRRn Identifier of a rule to which an XML schema must comply in order to be UBL
conformant. The value RRR is a prefix to categorize the type of rule where the
value of RRR is as defined in Table 1, “Rule Prefix Value”, and n (1..n) is the se-
quential number of the rule within its category. To ensure continuity across versions
of the specification, rule numbers that are deleted in future versions will not be re-
issued, and any new rules will be assigned the next higher number — regardless
of location in the text. Only rules and definitions are normative; all other text is
explanatory.

Table 1. Rule Prefix Value

ValueRule Prefix

Code ListCDL

ComplexType DefinitionCTD

ComplexType Naming RulesCTN

DocumentationDOC

Element DeclarationELD

Element NamingELN

General NamingGNR

General Type DefinitionGTD

General XML SchemaGXS

Modeling ConstraintsMDC

Naming ConstraintsNMC

NamespaceNMS

Root Element DeclarationRED

Schema Structure ModularitySSM

VersioningVER

The term "XSD" is used throughout this document to refer to Parts 1 and 2 of the W3C XML Schema Definition Language
(XSD) Recommendation.

1.4. Guiding Principles
The UBL NDR primary objectives are to provide the UBL TC with a set of unambiguous, consistent rules for the de-
velopment of extensible, reusable UBL schemas.

2. Relationship to ebXML Core Components
UBL employs the methodology and model described in ISO TS 15000-5:2005 -- ebXML Core Components Technical
Specification, Version 2.01 [CCTS] to build the UBL Component Library. CCTS defines a new paradigm in the design
and implementation of reusable, syntactically neutral information building blocks. Syntax-neutral Core Components
are intended to form the basis of business information standardization efforts and to be realized in syntactically specific
instantiations such as ANSI ASC X12, UN/EDIFACT, and various XML representations such as UBL.

6

{Specification Title Version X.X}

Context-neutral and context-specific building blocks are the essence of the Core Components specification. The context-
neutral components are called Core Components. A Core Component is defined in CCTS as "a building block for the
creation of a semantically correct and meaningful information exchange package. It contains only the information
pieces necessary to describe a specific concept". Figure 1 illustrates the various pieces of the overall Core Components
metamodel.

The context-specific components are called Business Information Entities (BIEs). A BIE is defined in CCTS as "a
piece of business data or a group of pieces of business data with a unique Business Semantic definition". Figure 2 il-
lustrates the various pieces of the overall BIE metamodel and its relationship to the Core Components metamodel. As
shown here, there are different types of Core Components and BIEs, each of which has specific relationships to the
other components and entities. The context-neutral Core Components establish the formal relationship between the
various context-specific BIEs.

7

{Specification Title Version X.X}

Figure 1. Core Components and Datatypes Metamodel

8

{Specification Title Version X.X}

Figure 2. Business Information Entities Basic Definition Model

2.1. Mapping Business Information Entities to XSD
UBL consists of a library of CCTS BIEs, each of which is mapped to an XSD construct (See Figure 3).

9

{Specification Title Version X.X}

Figure 3. UBL Document Metamodel

A BIE can be a CCTS Aggregate Business Information Entity (ABIE), a CCTS Basic Business Information Entity
(BBIE), or a CCTS Association Business Information Entity (ASBIE). In understanding the logic of the UBL binding
of BIEs to XSD expressions, it is important to understand the basic constructs of the BIEs and their relationships as
shown in Figure 2. The ABIEs are treated as objects and are defined as xsd:complexTypes. The BBIEs are treated as
properties of the ABIE and are found in the content model of the ABIE as a referenced xsd:element. The BBIEs are
based on reusable CCTS Basic Business Information Entity Properties (BBIE Properties), which are defined as
xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a data type.

CCTS defines an approved set of primary and secondary representation terms. However, these representation terms
are simply naming conventions to identify the data type of an object, not actual constructs.

10

{Specification Title Version X.X}

There are two kinds of BIE Properties — Basic and Association. A CCTS Association BIE Property (ASBIE Property)
represents an extrinsic property — in other words, an association from one ABIE instance to another ABIE instance.
It is the ASBIE Property that expresses the relationship between ABIEs.

Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes; rather, they are either
declared as elements that are then bound to the xsd:complexType of the associated ABIE, or they are reclassified as
ABIEs.

BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in that they contain
no other BIEs.

A BBIE must have a CCTS Core Component Type. All CCTS Core Component Types are low-level types such as
Identifiers and Dates. A CCTS Core Component Type describes these low-level types for use by CCTS Core Components,
and (in parallel) a CCTS data type, corresponding to that CCTS Core Component Type, describes these low-level types
for use by BBIEs. Every CCTS Core Component Type has a single CCTS Content Component and one or more CCTS
Supplementary Components. A CCTS Content Component is of some Primitive Type. All CCTS Core Component
Types and their corresponding content and supplementary components are predefined in CCTS.

UBL has developed an XSD schema module that declares each of the predefined CCTS Core Component Types as an
xsd:complexType or xsd:simpleType and declares each CCTS Supplementary Component as an xsd:attribute or uses
the predefined facets of the built-in XSD datatypes for those that are used as the base expression for an xsd:simpleType.

3. General XML Constructs
This chapter defines UBL rules related to general XML constructs, including overall schema structure, naming and
modeling constraints, reusability, namespaces, versioning, modularity, and documentation.

3.1. Overall Schema Structure
A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is essential to
provide a mechanism that will guarantee that each occurrence of a UBL conformant schema will have the same look
and feel.

[GXS1] Except in the case of extension, where the "UBL Extensions" element is used, UBL schemas
SHOULD conform to the following physical layout as applicable: See Figure 4.

11

{Specification Title Version X.X}

Figure 4. Physical layout

COMMENT:

BH: Is this the correct graphic?

As shown above, A UBL schema should contain a comment block at the top of the schema that functions as a "schema
header".

12

{Specification Title Version X.X}

3.1.1. Element Declarations within Document Schemas

A document schema is a schema within a specific namespace that conveys the business document functionality of that
namespace. The document schema declares a target namespace and is likely to include (xsd:include) internal schema
modules or import (xsd:import) external schema modules. Each namespace will have one, and only one, major version
of a document schema. as well as any related minor versions.

COMMENT:

BH: We have deleted the minor versions in namespaces so there shouldn't be any minor versions in
namespaces.

3.1.2. Root Element

In order to facilitate the management and reuse of UBL constructs, all global elements, excluding the root element of
the document schema, must be declared in either the Common Aggregate Components (CAC) or Common Basic
Components (CBC) schema modules and referenced from within the document schema.

Only a single global element is declared inside a UBL document schema. The single global element is the root element
of every conforming instance.

[RED2] The root element MUST be the only global element declared in the document schema.

COMMENT:

BH: Should another rule be included here that states: One global complexType MUST be included
which with the same name as the Root element with the word "Type" appended to the name. The
complexType defines the structure of the document instance.

3.2. Naming and Modeling Constraints
UBL has the following naming and modeling constraints.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation is its spreadsheet models. The entries in these spreadsheet models
fully define the constructs available for use in UBL business documents. The spreadsheet entries contain fully conformant
CCTS Dictionary Entry Names (DENs) as well as truncated UBL XML element names developed in conformance
with the rules in Section 4. The XML element name is the short form of the DEN. The rules for element naming differ
from the rules for DEN naming.

[NMC1] Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP)
for an element or attribute.

The FQP anchors the use of the element or attribute to a particular location in a business message. Any semantic de-
pendencies that the element or attribute has on other elements and attributes within the UBL library that are not otherwise
enforced or made explicit in its structural definition can be found in its prose definition.

3.2.1.1. Modeling Constraints

Modeling constraints are limited to those necessary to ensure consistency in development of the UBL library.

13

{Specification Title Version X.X}

3.2.1.1.1. Defining Classes

UBL is based on instantiating ebXML CCTS BIEs. UBL models and the XML expressions of those models are class
driven. Specifically, the UBL library defines classes for each CCTS ABIE and the UBL schemas instantiate those
classes. The properties of those classes consist of CCTS BBIEs and ASBIEs.

3.2.1.1.2. Core Component Types

Each BBIE is associated with one of an approved set of CCTS Core Component Types.

[MDC1] UBL libraries and schemas MUST only use CCTS Core Component Types, except in the
case of extension, where the UBLExtensions element is used.

3.2.1.1.3. XML Mixed Content

UBL documents are designed to effect data-centric electronic commerce transactions. IncludingAllowing XML mixed
content in business documents is undesirable because business transactions are based on exchange of discrete pieces
of data. The white space aspects of XML mixed content make processing unnecessarily difficult and add a layer of
complexity not desirable in business exchanges.

[MDC2] XML mixed content MUST NOT be used except where contained in an xsd:documentation
element.

3.2.1.1.4. Sequencing
COMMENT:

BH: I don't understand what this rule is trying to express?

In the UBL model, the prescribed order for the contents of an ABIE is that ASBIEs follow BBIEs. However, this is,
strictly speaking, a rule of the modeling methodology rather than an NDR. The NDR in this case is that the sequential
order of entities in the model must be preserved.

[MDC0] The sequence of the business information entities that is expressed in the UBL model MUST
be preserved in the schema.

3.3. Reusability Scheme
To promote effective management of the UBL library, all element declarations are unique. Consequently, UBL elements
are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the Address element is directly reusable as a
modular component.

14

{Specification Title Version X.X}

Example 1.

<xsd:element name="Party" type="PartyType"/>
 <xsd:complexType name="PartyType">
 <xsd:annotation>
 <!-- Documentation goes here -->
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="PartyIdentification" minOccurs="0" maxOccurs="unbounded">
 ...
 </xsd:element>
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="Address" type="AddressType"/>

 <xsd:complexType name="AddressType">
 ...
 <xsd:sequence>
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

Software written to work with UBL's standard library should work with new assemblies of the same components, since
global elements will remain consistent and unchanged. The globally declared <Address> element is fully reusable
without regard to the reusability of types and provides a solid mechanism for ensuring that extensions to the UBL core
library will provide consistency and semantic clarity regardless of their placement within a particular type.

[ELD2] All element declarations MUST be global.

3.4. Extension Scheme
Some organizations are required by law to send additional information not covered by the UBL document structure,
thus requiring an extension to the UBL message. The xsd:any construct is seen as the most efficient way to implement
this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the introduction of unknown elements into
an XML instance. However, limiting its use to a single, predefined element mitigates this risk. For meaningful validation
of UBL document instances, the value of the xsd:processContents attribute of the element must be set to "skip", thereby
removing the potential for errors in the validation layer. Extension imposes cardinality constraints.

The following rules apply in the order below.
COMMENT:

15

{Specification Title Version X.X}

BH: Can someone provide an example of these rules. I don't understand how an extension is built.
What is a UBLProfileId and UBLSubsetId. I may be reading it wrong but Rule ELD12 contradicts
rule RED1 - where there is only 1 global element declared in a document schema. How can we rec-
tify this in the NDR?

[ELD12] The UBL Extensions element MUST be declared as the first child of the document element
with xsd:minOccurs="0".

[ELD13] The UBLProfileID element MUST be declared immediately following the UBL Extensions
element with xsd:minOccurs="0".

[ELD14] The UBLSubsetID element MUST be declared immediately following the UBLProfileID
element with xsd:minOccurs="0".

3.5. Namespace Scheme
The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The use of XML
namespace is specified in the W3C XML Schema (XSD) Recommendation. A namespace is declared in the root element
of a schema using a namespace identifier. Namespace declarations can also identify an associated prefix "shorthand
identifier" that allows for compression of the namespace name. For each UBL namespace, a normative token is defined
as its prefix. These tokens (currently udt, qdt, cac, cbc, ext) are defined in Section 3.7.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD requires the use of namespaces. However, the use of namespaces is essential to managing
the complex UBL library. UBL uses UBL-defined schemas (created by the UBL TC) and UBL-used schemas (created
by external activities), and both require a consistent approach to namespace declarations.

[NMS1] Every UBL-defined or -used schema module, except internal schema modules, MUST declare
a namespace using the xsd:targetNamespace attribute.

Each UBL schema module consists of a logical grouping of lower level artefacts that can be used in a variety of UBL
schemas. These schema modules are grouped into a schema set. Each schema set is assigned a namespace that identifies
that group of schema modules. As constructs are changed, new versions are to be created. The schema set is the versioned
entity; all schema modules within that package are of the same version, and each major version has a unique namespace.

Schema set A collection of schemas that constitute a specific UBL namespace.

Schema validation ensures that an instance conforms to its declared schema. In keeping with Rule NMS1, each UBL
schema module is part of a versioned namespace.

[NMS2] Every UBL-defined or -used major version schema set MUST have its own unique namespace.

UBL's extension methodology encourages a wide variety in the number of schema modules that are created as derivations
from UBL schema modules. Customized schemas should not be confused with those developed by UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

3.5.2. Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI that conforms to RFC 2396. UBL has adopted the Uniform Resource Name
(URN) scheme as the standard for URIs for UBL namespaces, in conformance with IETF's RFC 3121.

16

{Specification Title Version X.X}

Rule NMS2 requires separate namespaces for each UBL major version schema set. In accordance with OASIS procedures,
the UBL namespace rules differentiate between committee draft and OASIS Standard status. For each schema holding
draft status, a UBL namespace must be declared and named.

[NMS4] The namespace names for UBL schemas holding committee draft status MUST be of the
form

urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

xmlns:cac="urn:oasis:names:tc:ubl:schema:xsd:CommonAggregateComponents-2"

The format for document-id is found in Section 3.6.

For each UBL schema holding OASIS Committee Specification or Standard status, a UBL namespace must be declared
and named using the same notation, but with the value "specification" replacing the value "tc".

[NMS5] The namespace names for UBL schemas holding OASIS Standard status MUST be of the
form

urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>

xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2"

3.5.3. Schema Location

UBL schemas use a URN namespace scheme. In contrast, schema locations are defined as a Uniform Resource Locator
(URL). UBL schemas must be available both at design time and run time. Therefore, the UBL schema locations will
differ from the UBL namespace declarations. UBL uses an OASIS URL for hosting retrievable copies of UBL
schemas.

3.5.4. Persistence

UBL namespaces use URNs to provide name persistence. UBL namespaces must never change once they have been
declared. Conversely, changes to a schema may result in a new namespace declaration. Thus, a published schema
version and its namespace association will always be inviolate.

[NMS6] UBL published namespaces MUST never be changed.

3.6. Versioning Scheme
UBL distinguishes between major versions and minor versions. Major versions are not backwards compatible. Minor
versions do not break backwards compatibility. In other words, a document instance that validates against version 1
of the schema must also validate against version 1.1 of the schema, where version 1.1 is a minor version change based
on version 1. However, the same document instances would not necessarily be valid against version 2 of the schema,
where version 2 is a major version change.

Versioning information is indicated both in the namespace URI and in the version attribute of the schema module.
However, this information is represented somewhat differently in these two locations.

3.6.1. Versioning Information in the Namespace URI

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121 [http://tools.ietf.org/html/rfc3121].
All UBL namespace URIs have the form:

urn:oasis:names:specification:ubl:schema:xsd:<modulename>-<major>

17

{Specification Title Version X.X}

http://tools.ietf.org/html/rfc3121
http://tools.ietf.org/html/rfc3121

where <modulename> is the name of the schema module and <major> is a positive integer representing the major
version. The field containing <modulename>-<major> is called the document-id.

[VER2] Every UBL schema module major version MUST have an RFC 3121 document-id of the
form

<modulename>-<major>

[VER6] Every UBL schema module major version number MUST be a sequentially assigned integer
greater than zero.

The value of <major> is "1" for the first release of a namespace. For example, the namespace URI for the first major
release of the Invoice domain has the form:

urn:oasis:names:specification:ubl:schema:xsd:Invoice-1

Subsequent major releases increment the value by 1. For example, the second major release of the Invoice domain has
the URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

The rule for minor version releases is as follows:

[VER4] Every minor version release of a UBL schema module MUST have a document-id of the
form

<modulename>-<major>

For example, the fifth minor version of the release based on the second major release mentioned above will have the
URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

As can be seen, both the rule and the example for the minor version releases is exactly the same as that for the major
version. There is even a rule stating this directly.

[VER5] For UBL minor version changes, the namespace name MUST not change.

However, minor versioning is handled differently in the xsd:schema element.

3.6.2. Versioning representation in the xsd:schema element

UBL uses the version attribute in the xsd:schema element to convey minor version releases of the schema module.

[VER12] Every major version release of a UBL schema module MUST capture its version number
in the xsd:version attribute of the xsd:schema element in the form

<major>.0

EXAMPLE: version="2.0"

[VER14] Every minor version release of a UBL schema module MUST capture its version information
in the xsd:version attribute in the form

<major>.<non-zero>

18

{Specification Title Version X.X}

EXAMPLE: version="2.1"

[VER7] Every UBL schema module minor version number MUST be a sequentially assigned, non-
negative integer.

3.6.3. Instance Versioning

UBL version information can also be captured in instances of UBL document schemas via the ubl:UBLVersionID
element.

[VER15] Every UBL document schema MUST declare an optional element named UBLVersionID
immediately following the optional UBL Extensions element.

<BillOfLading
 xmlns="urn:oasis:names:specification:ubl:schema:xsd:BillOfLading-2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

<ID xmlns="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2"/>
</BillOfLading>

3.7. Modularity Strategy
There are many possible mappings of XML schema constructs to namespaces and to files. In addition to the logical
taming of complexity that namespaces provide, dividing the physical realization of schemas into multiple schema
modules provides a mechanism whereby reusable components can be imported as needed without the need to import
complete schemas.

[SSM1] UBL schema expressions MAY be split into multiple schema modules.

Schema module A schema document containing type definitions and element declarations intended
to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather, there are a
number of UBL document schemas used to perform different business functions. UBL is structured so that users can
reuse individual document schemas without having to import the entire UBL document schema library. A document
schema can import individual modules without having to import all UBL schema modules. Each document schema
defines its own dependencies. The UBL schema modularity approach reflects logical associations that exist between
document and internal schema modules,and it ensures that individual modules can be reused to the maximum extent
possible. If the contents of a namespace are small enough then they can be completely specified within a single document.
Document and internal schema modules are shown in Figure 5.

19

{Specification Title Version X.X}

Figure 5. UBL Schema Modularity Model

Figure 5 shows the one-to-one correspondence between document schemas and namespaces. It also shows the one-to-
one correspondence between files and schema modules. As shown here, there are two types of schemas in the UBL
library — document schemas and schema modules. Both types of schemas are conformant with XSD.

Each document schema occupies its own namespace and may include zero or more internal modules. The namespace
for a document schema includes any of its internal modules. Schema modules that are not internal to a document occupy
a different namespace, as in the qdt, cbc, and cac schema modules.

20

{Specification Title Version X.X}

Figure 6. Schema Modules

Another way to visualize the structure is by example. Figure 6 depicts instances of the various schema modules from
the previous diagram.

Figure 7 shows how the Order and Invoice document schemas import the CommonAggregateComponents and Com-
monBasicComponents external schema modules. It also shows how the Order document schema may include internal

21

{Specification Title Version X.X}

schema modules — modules local to that namespace. The clear boxes show how the various schema modules are
grouped into namespaces.

Any UBL schema module, be it a document schema or an internal module, may import other document schemas from
other namespaces.

COMMENT:

BH: I am missing this graphic. Does anyone have this or should be it recreated.

Figure 7. Order and Invoice Schema Import of Common Component Schema Modules

If two namespaces are mutually dependent, then importing one will cause the other to be imported as well. For this
reason there must not exist circular dependencies between UBL schema modules. By extension, there must not exist
circular dependencies between namespaces. A namespace called A which is dependent upon type definitions or element
declarations defined in another namespace called B must import B's document schema.

[SSM2] A schema in one UBL namespace that is dependent upon type definitions or element declar-
ations in another schema namespace MUST only import that schema.

An additional rule is necessary to address potentially circular dependencies as well — schema A must not import in-
ternal schema modules of schema B.

[SSM3] A schema in one UBL namespace that is dependent upon type definitions or element declar-
ations defined in another schema namespace MUST NOT import the internal schema modules of
that schema.

3.7.2. Internal and External Schema Modules

As illustrated in figures 5 and 6, UBL schema modules are either internal or external.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace of their parent
schema. All internal schema modules are accessed using xsd:include.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their corresponding
document schema.

UBL internal schema modules must have semantically meaningful names. Internal schema module names identify the
parent schema module, the internal schema module function, and the schema module itself.

[SSM7] Each UBL internal schema module MUST be named <ParentSchemaModuleName><Intern-
alSchemaModuleFunction>

Example: ExtensionContentDatatype

3.7.4. External Schema Modules

External schema modules are used to group complex types and global elements that are used in multiple document
schemas.

[SSM8] UBL schema modules MAY be created for reusable components.

22

{Specification Title Version X.X}

UBL external schema modules organize the reusable components into logical groupings. At a minimum, UBL defines
the following external schema modules:

1. UBL CommonAggregateComponents

2. UBL CommonBasicComponents

3. UBL Qualified Datatypes

In addition, UBL 2.1 imports the following schema module provided by UN/CEFACT.

1. CCTS Core Component Types

[NMS19] The CCTS Core Component Type schema module must be represented by the namespace
prefix "ccts-cct".

Furthermore, where extensions are used, an extension schema module must be provided. This schema module must
be named:

COMMENT:

BH: Should the filename be named 'CommonExtensionCompnents' or does this only refer to the in-
ternal documentation name?

CommonExtensionComponents

[SSM21] The UBL extension schema module MUST be identified as CommonExtensionComponents
in the document name within the schema header.

[SSM22] The UBL Qualified Datatypes schema module MUST import the UBL Unqualified Datatypes
schema module.

To ensure consistency in expressing the CommonExtensionComponents schema module, a namespace prefix that will
be used in all UBL schemas must be defined.

[NMS18] The CommonExtensionComponents schema module namespace MUST be represented by
the namespace prefix "ext" when referenced in other schemas.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library contains a wide variety of CCTS ABIEs, each defined as an xsd:complexType. Although some of
these complex types may be used in only one UBL schema, many will be reused in multiple UBL schema modules.
For ease of reuse, all the ABIE xsd:complexType definitions used in more than one UBL schema module are grouped
into a single schema module of their own.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified as Com-
monAggregateComponents in the document name within the schema header.

[NMS7] The UBL Common Aggregate Components schema module MUST reside in its own
namespace.

23

{Specification Title Version X.X}

[NMS8] The UBL Common Aggregate Components schema module namespace MUST be represented
by the namespace prefix "cac" when referenced in other schemas.

3.7.4.2. UBL CommonBasicComponents Schema Module

The UBL library contains a wide variety of CCTS BBIEs based on CCTS BBIE Properties. BBIE Properties are reusable
in multiple BBIEs, and each is defined as an xsd:complexType. Although some of these complex types may be used
in only one UBL schema, many will be reused in multiple UBL schema modules. For ease of reuse, all the BBIE
Property xsd:complexType definitions used in more than one UBL schema module are grouped into a single schema
module of their own.

[SSM11] A schema module defining all UBL Common Basic Components MUST be created.

[SSM12] The UBL Common Basic Components schema module MUST be identified as Common-
BasicComponents in the document name within the schema header.

[NMS9] The UBL Common Basic Components schema module MUST reside in its own namespace.

[NMS10] The UBL Common Basic Components schema module namespace MUST be represented
by the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

CCTS defines an authorized set of Core Component Types that convey content and supplementary information related
to exchanged data. As the basis for all higher level CCTS models, these Core Component Types are reusable in every
UBL schema. The complex type definitions for all CCTS Core Component Types are collected in the Core Component
Type schema module published by UN/CEFACT.

3.7.4.4. UBL Unqualified Datatypes Schema Module

The UBL Unqualified Datatypes Schema Module imports the CCTS CoreComponentType Schema Module.

[NMS20] The UBL Unqualified Datatypes schema module namespace MUST be represented by the
prefix "udt" when referenced in other schemas.

3.7.4.5. UBL Qualified Datatypes Schema Module

UBL Qualified Datatypes are not expressed in the schema. Rather, data type qualifcations are expressed in the cva file.

[SSM18] A schema module without any declarations must exist.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes
in the document name in the schema header.

[NMS15] The UBL Qualified Datatypes schema module MUST reside in its own namespace.

To ensure consistency in expressing the UBL Qualified Datatypes schema module, a namespace prefix that will be
used in all UBL schemas must be defined.

24

{Specification Title Version X.X}

[NMS16] The UBL Qualified Datatypes schema module namespace MUST be represented by the
namespace prefix "qdt" when referenced in other schemas.

4. Modeling

4.1. Data Types for BBIEs
This level goes into the table of contents.

4.2. CCTS 2.01 Core Component Types
This level goes into the table of contents.

4.3. Naming Conventions
This level goes into the table of contents.

4.4. Oxford English
This level goes into the table of contents.

4.5. Acronyms and Abbreviations
This level goes into the table of contents.

4.6. Which and Why
This level goes into the table of contents.

4.7. Singular Nouns Where Applicable
This level goes into the table of contents.

4.8. Namespaces
This level goes into the table of contents.

4.9. Style Guide
This level goes into the table of contents.

4.10. Multiplicity and Preserving Functional Dependency
This level goes into the table of contents.

25

{Specification Title Version X.X}

4.11. Patterns and Prohibitions
This level goes into the table of contents.

5. Spreadsheets
3. Spreadsheets - which columns are mandatory requiring data entry? - which columns are optional not requiring data
entry? - which columns are fixed calculations of other columns and have no data entry? - note that eDoCreator has
only one such column and I think there are others - which rows are expressed as enumerated code lists?

5.1. Mandatory Columns
This level goes into the table of contents.

5.2. Optional Columns
This level goes into the table of contents.

5.3. Fixed Calculation Columns
This level goes into the table of contents.

5.4. eDoCreator
This level goes into the table of contents.

5.5. Rows with Expressed Enumerated Code Lists
This level goes into the table of contents.

6. Naming and Design Rules
Naming and Design Rules - which aggregate schema declarations are created from the spreadsheets? - which basic
schema declarations are created from the spreadsheets? - which document type schema declarations are created from
the spreadsheets? - which context value associations are created from the spreadsheets?

6.1. Aggregate Schema Declarations
This level goes into the table of contents.

6.2. Basic Schema Declarations
This level goes into the table of contents.

6.3. Schema Declarations Created from Spreadsheets
This level goes into the table of contents.

26

{Specification Title Version X.X}

6.4. Context Value Associationss Created from Spread-
sheets
This level goes into the table of contents.

7. Schema Dependencies
Schema dependencies - which common schema fragments support the declarations from the spreadsheets? (see the
SGTG strategy document to populate this section)

7.1. Common Schema Fragments

8. Code Lists

8.1. Genericode

9. Conformance
The last section contains the conformance clauses/statements.

A. Normative Annex
Normative appendices are not marked as non-normative using an attribute.

B. Non-normative Annex (Non-Normative)
Non-normative appendices are marked as such using an attribute.

C. Acknowledgements (Non-Normative)
In a typical OASIS work product one might wish to list committee participants in a non-normative annex (markup
shown above in the normative annex example) using wording along the line of "The following individuals have parti-
cipated in the creation of this specification and are gratefully acknowledged:"

• Mary Baker, Associate Member
• Jane Doe, Example Corporation Member
• John Able, Other Example Corporation Member

Note that the itemized list uses spacing="compact" to remove the space between list items in the printed result,
not the HTML result).

27

{Specification Title Version X.X}

D. Revision History (Non-Normative)
[optional; should NOT be included in OASIS standards]

gkh8 July 2010Revision 0.5
New template structure and filename conventions; mimic latest XHTML template

gkh03 Feb 2006Revision 0.4
New IPR and use of revised 0.4 specification publishing environment; mimic latest Word and Open Office templates

ndw15 Aug 2002Revision 03
Changed copyright holder.

ndw28 May 2002Revision 02
Added IPR section.

ndw26 Apr 2002Revision 01
Reworked after conversations with Eve.

ndw25 Apr 2002Revision 00
First draft.

28

{Specification Title Version X.X}

