OASIS 13

{Specification Title Version X.X}
Committee Draft in Progress wd03, {8 July 2010}

Document identifier:
spectools-docbook-template-wd03

Technical committee:
OASIS {official name of technical committee} TC [http://www.0asis-open.org/committees/]

Chairs:

Jon Bosak, Pinax <bosak @i nax. conp
Tim McGrath, Document Engineering Ser-
vices <ti m ntgr at h@ocunent engi neeri ngservi ces. conp

Editors:
Mike Grimley, US Navy <MIGri ml ey@cm or g>
Mavis Cournane, Cognitran Limited <mavi s. Cour nane@ogni tr an. conp

Declared XML Namespaces:
http://docs.oasis-open.org/

Abstract:

{This specification defines...}

Related Work:

This specification replaces or supersedes:

 {specification replaced by this standard}
 {specification replaced by this standard}

This specification is related to:

 {related specifications}
 {related specifications}

Status:
{Describe the status and stability of the specification here.}

This document was last revised or approved by the {TC name | membership of OASIS} on the above
date. The level of approval is also listed above. Check the current location noted above for possible
later revisions of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee's
email list. Others should send comments to the Technical Committee by using the "Send A Comment"
button on the Technical Committee's web page at http://www.oasis-open.org/committees/{short name}.

http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/
mailto:bosak@pinax.com
mailto:tim.mcgrath@documentengineeringservices.com
mailto:MJGrimley@acm.org
mailto:mavis.Cournane@cognitran.com
http://docs.oasis-open.org/
http://www.oasis-open.org/committees/{short name}

{ Specification Title Version X.X}

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the Technical Committee web page (http://www.oasis-open.org/committees/{TC short
namelipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/commit-
tees/{TC short name}.

Notices:
Copyright © OASIS® Open 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DIS-
CLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNER-
SHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses
to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee
that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a
patent holder that is not willing to provide a license to such patent claims in a manner consistent with
the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include
such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permis-
sion for the use of such proprietary rights by implementers or users of this OASIS Committee Specific-
ation or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no repres-
entation that any information or list of intellectual property rights will at any time be complete, or that
any claims in such list are, in fact, Essential Claims.

http://www.oasis-open.org/committees/{TC short name}ipr.php
http://www.oasis-open.org/committees/{TC short name}ipr.php
http://www.oasis-open.org/committees/{TC short name}
http://www.oasis-open.org/committees/{TC short name}

{ Specification Title Version X.X}

The name "OASIS" is a trademark of OASIS [http://www.0asis-open.org], the owner and developer of
this specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

http://www.oasis-open.org
http://www.oasis-open.org
http://www.oasis-open.org/who/trademark.php

{ Specification Title Version X.X}

Table of Contents

O 10 (oo (Vwix o] o TSSO PP TPPPPTTRPPPN 5
L1 AUTIENCES ..ottt ettt etk e et e e et e et e et et e e e e et 5
S ol o PP 5
1.3. Terminology and NOTBLIONcuuuneieii ettt ettt e et e et eeeena s 5
1.4, GUITING PIINCIPIES ...ttt ettt e et et e et et e e e era e eeneas 6
2. Relationship to ebXML COre COMPOMNENTSeeierteeieti e eeti e ettt e ettt e e e et e e et e et et e e et e eerea s 6
2.1. Mapping Business Information ENtitieSt0 XSDciiiiiiiiiiii e 9
3. GENEIEl XIML CONSIIUCES ...t eeeetie ettt ettt ettt e ettt e ettt e et e e e et e e e et e et e et ena e e e enanns 11
3.1, OVErall SCREMEA SITUCKUIEeeett ettt ettt ettt e e et e et e e e e e e e e e enanns 11
3.2. Naming and Modeling CONSIIAINTSueiiiiieieiii ettt ettt e et e e e e e enanns 13
3.3. RaUSADITILY SChEIME ... et 14
34 EXEENSION SCHEIME ...ttt e e e e e 15
3.5, NAMESPACE SCNEIMIE ... ettt et e e e e e s 16
3.6. VEISIONING SCHEME ... ettt e e e s 17
3.7 MOAUIBITEY SIFBLEGY .. eeevrneeeentn ettt ettt et e et et e et e et e e ettt e et e eb e e et eb e e e e rb e e e eban s 19
|V T L= [T oo RO PP TPPPPT 25
4.1, Data TYPESTOr BBIES ...ttt 25
4.2. CCTS 2.01 Core COMPONENE TYPESueireeieieerteeet ettt et ettt e e et et e e e et e e e eaeaeenes 25
4.3. NAMING COMVENTIONSeeetteeeett ettt et e et e et et e e e e e e et e et e tb e et eebn e e e esaneeeenan e eeenan s 25
A4, OXFOrA ENGIISN ...ttt e 25
4.5. Acronyms and ADDIEVIBLIONScouuuieiiii ettt e 25
4.6. WHhIiCh 8N WHRYoei ettt e e 25
4.7. Singular NoUNSWhere ApPliCabIecooiieee e 25
A.8. NBIMESDBCES ..c..eeerueeti ettt ettt et et e ettt e et ettt et et e e et et et n et e e et et et et e et e et et e ean e re 25
A9, SIYIE GUITE ...ttt ettt 25
4.10. Multiplicity and Preserving Functional DEPeNdENCYveeeerunieiiiiiieeeiii et 25
4.11. Patterns and PronibitioNSuu i 26
B SPIBAOSNEALS ... et 26
5.1 MaNAELONY COIUMNS ... ettt ettt ettt e e e et e et et e et e e e e e e rba e e e ennans 26
5.2. OPtONAl COIUMNS ...ttt ettt ettt e e et e et e e e e e e aa e e e erb e e e ennnns 26
5.3. Fixed CalCulation COIUMNSiiiieieieiii ettt et et e e et e et e e e ab e e enen s 26
5.4, EDOCTEALONivteeete ettt ettt 26
5.5. Rows with Expressed Enumerated CoOE LiSSuiiiiriieeieiiieeie et 26
6. Naming and DESIGN RUIESooueiiiiei ettt ettt e e 26
6.1. Aggregate SChema DECIAratioNSiiiiii et 26
6.2. BasiC SChemMa DECIAratioNSiiieiiii et e 26
6.3. Schema Declarations Created from SPreadSneatSocvuiiiiiii e 26
6.4. Context Value Associationss Created from SPreadSheatSuviviiiiieiii e 27
7. SCNEMA DEPENUEINCIES ... ceeeti ettt et ettt ettt ettt et ettt e et et n e ettt e et et r e et enaneeeenan s 27
7.1. COMMON SChEMA FTEOMENES ... ittt ettt ettt e et e et e e e 27
8. 00 LiSES .ttt ettt ettt et e e s 27
L B €T o 1< oo o TP PPPPTPRPPPIN 27
L O] p1 {11 7= 1 (o TSP PTTRPPPPTT 27
Appendixes
AL INOIMBEIVE ANINEX ..ttt ettt ettt ettt et e e et e et ettt e et e et e e et e nt e e et e nt e e e e et e e e e e e eeen 27
B. Non-normative ANNEX (NON-NOMMELIVE)ceuiiieiiieie e e e e e e e e e e e e e e e e eanaes 27
C. Acknowledgements (NON-NOIMELIVE)uiiniiiie e e e e e e e e e e e e e e e e e et e e e eteannas 27
D. Revision History (NON-NOMMELIVE)iieiiiiei e e e e e e e e e e e e e et e e e e e e eaaeenaes 28

{ Specification Title Version X.X}

1. Introduction

XML isoften described asthe linguafrancaof e-commerce. Theimplication isthat by standardizing on XML, enterprises
will be able to trade with anyone, any time, without the need for the costly custom integration work that has been ne-
cessary in the past. But thisvision of XML-based "plug-and-play” commerceisoverly simplistic. Of course XML can
be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the other documents needed to
conduct business. But XML by itself doesn't guarantee that these documents can be understood by any business other
than the one that creates them. XML is only the foundation on which additional standards can be defined to achieve
the goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in achieving this
goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have already in-
vested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct
electronic business. Furthermore, every company has different requirements for the information exchanged in aspecific
business process, such as procurement or supply-chain optimization. A standard business language must strike adifficult
balance, adapting to the specific needs of a given company while remaining general enough to let different companies
in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML) initiative.
UBL isorganized as an OASIS Technica Committee to guarantee a rigorous, open process for the standardization of
the XML businesslanguage. The development of UBL within OASIS also helps ensure afit with other essential ebXML
specifications.

1.1. Audiences

This document has several primary and secondary targets that together constitute its intended audience. Our primary
target audience is the members of the UBL Technical Committee. Specifically, the UBL Technical Committee uses
the rulesin this document to create normative form schemas for business transactions. Other XML schema devel opers
may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion into, their
own approachesto XML schema devel opment.

1.2. Scope

This specification conveys a normative set of XML schema design rules and naming conventions for the creation of
UBL schemasfor business documents being exchanged between two partiesusing XML constructs defined in accordance
with the ebXML Core Components Technical Specification.

1.3. Terminology and Notation

Thekey wordsMUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMEN-
DED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task Force
(IETF) Reguest for Comments (RFC) 2119. Non-capitalized forms of thesewordsare used in the regular English sense.

Definition A formal definition of aterm. Definitions are normative.

Example An example of adefinition or arule. Examples are informative.

http://www.oasis-open.org/committees/ubl/ndrsc/
http://www.oasis-open.org/committees/ubl/ndrsc/

{ Specification Title Version X.X}

Note Explanatory information. Notes are informative.

RRRn Identifier of arule to which an XML schema must comply in order to be UBL
conformant. The value RRR is a prefix to categorize the type of rule where the
value of RRR isas defined in Table 1, “Rule Prefix Value’, and n (1..n) isthe se-
quentia number of the rule within its category. To ensure continuity acrossversions
of the specification, rule numbersthat are deleted in future versions will not be re-
issued, and any new rules will be assigned the next higher number — regardless
of location in the text. Only rules and definitions are normative; al other text is

explanatory.

Table 1. Rule Prefix Value

Rule Prefix Value

CDL Code List

CTD ComplexType Definition
CTN ComplexType Naming Rules
DOC Documentation

ELD Element Declaration

ELN Element Naming

GNR General Naming

GTD General Type Definition
GXS General XML Schema

MDC Modeling Constraints

NMC Naming Constraints

NMS Namespace

RED Root Element Declaration
SSM Schema Structure Modularity
VER Versioning

Theterm "X SD" isused throughout this document to refer to Parts 1 and 2 of the W3C XML Schema Definition Language
(XSD) Recommendation.

1.4. Guiding Principles

The UBL NDR primary objectives are to provide the UBL TC with a set of unambiguous, consistent rules for the de-
velopment of extensible, reusable UBL schemas.

2. Relationship to ebXML Core Components

UBL employs the methodology and model described in ISO TS 15000-5: 2005 -- ebXML Core Components Technical
Soecification, Version 2.01 [CCTS to build the UBL Component Library. CCTS defines anew paradigm in the design
and implementation of reusable, syntactically neutral information building blocks. Syntax-neutral Core Components
areintended to form the basis of businessinformation standardization efforts and to be realized in syntactically specific
instantiations such asANSI ASC X12, UN/EDIFACT, and various XML representations such as UBL .

{ Specification Title Version X.X}

Context-neutral and context-specific building blocks are the essence of the Core Components specification. The context-
neutral components are called Core Components. A Core Component is defined in CCTS as "a building block for the
creation of a semantically correct and meaningful information exchange package. It contains only the information

pieces necessary to describe a specific concept”. Figure 1 illustrates the various pieces of the overall Core Components
metamodel.

The context-specific components are called Business Information Entities (BIES). A BIE is defined in CCTS as "a
piece of business data or a group of pieces of business data with a unique Business Semantic definition". Figure 2 il-
lustrates the various pieces of the overall BIE metamodel and its relationship to the Core Components metamodel. As
shown here, there are different types of Core Components and BIEs, each of which has specific relationships to the
other components and entities. The context-neutral Core Components establish the formal relationship between the
various context-specific BIEs.

{ Specification Title Version X.X}

Figure 1. Core Components and Datatypes M etamodel

Registry Class

[{Definition[1]

Unigue |dentfiar[1]
[Version[1]
Dictionary Entry Mame{1]

Usage Rule[l.."]

Core Component
Business Term[.."]

£ LN

Aggregate Core Component (ACC)

Object Class Term[1]

CC Property

Froperty Term{1]
Cardinality[1]

P

lﬂ.swuiatiun Core Component (ASCC) |

n—‘ 1

Association CC Pruperl.]r|

IEasl:: Core Component

Basic CC Frap-artjrll

n“*

[
Data Type

(Cualfier Terml. 1]

¢

basis Core Component Type
Frimary representation Term[1]

oo |

1 Secondary Representation Term[0, %]

0.

Supplementary Component Restriction

Restriction Valuea]1.."]

Supplementary Component Mame[1] 0.

" J
Content Component
Mame[1]
X Definition]1] 1+
Primitive Type(1] g
Supplementary C t
Content Component Restriction 5 pp[ﬂm i tinn
o Elul
Restriction Type{1] Diefinition[1]
Reslnc'tu_::n Walue[1] Frimitive Type[1]
Expression Type(D..1] Possible Value[D..*]

{ Specification Title Version X.X}

Figure 2. Business I nformation Entities Basic Definition M odel

Registry Class

|Business Context |—-_[>

x B context

Unigue Identifier1]
Dictionary Entry Mame{1]

0.*

AN

Definition[1]

Business Information Entity {BIE)

basis

e
E!usmatss Tem[D..*] 063 Lompanon
T i 0. 1
Aggregate Business Information Entity (ABIE) hasis
Aggregate Core Component (ACC)
Cualifier Tarm{d..1] E Object Class Term[1]
Cardinality[1] 0. 1
1
1 J
-I ®
o
ngiss CC Property
pa P:upnrt_v I opery Termﬁ]
(Qualifier Term[0..1] - 1 [|Cardinality[1)]

0.

i

QAssudatian BIE Pmparty|

1
1

1

ASBIE)

Association Business Information Enlit:,r {

|Bas-|c BIE Property |

1

1

PR

[Basic Business Information Entity uaBlE:-}

0.

a.:*

—7

[A.mclatlan CC Property

1

| Association Gore Component (ASGG) |

|nas|r. cc Pmperty|

i

0.:* 1

1_‘1

Data Type

(Gualifier Term(0.1]

1
basiz

—

0.~

{Basiu Core Component {BCC}'

2.1. Mapping Business Information Entities to XSD

UBL consists of alibrary of CCTS BIEs, each of which is mapped to an XSD construct (See Figure 3).

{ Specification Title Version X.X}

Figure 3. UBL Document M etamodel

Core Companent
Type
{CCT}

¥ed:complexType of

¥sdsimpleType
Specifies restrictions on
Data Type Further Data Type
{DT) resiricis {DT)] wsd element
Fac:eompsexType | (Deciared as BBIE
| (as BBIE Property) Brogierty)
Defines a set of values of Sefins 4'568 of
walues of
Basic Cora : Basic Business
Component q—'s sy Information Entity xsd:element
(BCC) ak {BBIE)
A5 property A5 property
aggregated aggregated
in in
Association Cora T Association Business |
Component q—'E —— T Information Entity wedicomplexType wzd elament
(ASCC) on (ASBIE) |
Aggregate Core Aggregate Business
Component *—mﬁ-ﬂ%gfm— Information Entity ‘
(ACC) I {ABIE)
Assambly A tad
Componant ggr?r?a .
| Aggregated
in
Adds exira
irformation
Message Assembly o—

A BIE can be a CCTS Aggregate Business Information Entity (ABIE), a CCTS Basic Business Information Entity
(BBIE), or aCCTSAssociation Business Information Entity (ASBIE). In understanding the logic of the UBL hinding
of BIEsto XSD expressions, it is important to understand the basic constructs of the BIESs and their relationships as
shown in Figure 2. The ABIES are treated as objects and are defined as xsd:complexTypes. The BBIEs are treated as
properties of the ABIE and are found in the content model of the ABIE as a referenced xsd:element. The BBIES are
based on reusable CCTS Basic Business Information Entity Properties (BBIE Properties), which are defined as

xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a data type.

CCTS defines an approved set of primary and secondary representation terms. However, these representation terms
are simply naming conventions to identify the data type of an object, not actual constructs.

10

{ Specification Title Version X.X}

There aretwo kinds of BIE Properties— Basic and Association. A CCTSAssociation BIE Property (ASBIE Property)
represents an extrinsic property — in other words, an association from one ABIE instance to another ABIE instance.
It isthe ASBIE Property that expresses the relationship between ABIEs.

Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes; rather, they are either
declared as elements that are then bound to the xsd:complexType of the associated ABIE, or they are reclassified as
ABIEs.

BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in that they contain
no other BIEs.

A BBIE must have a CCTS Core Component Type. All CCTS Core Component Types are low-level types such as
Identifiersand Dates. A CCTS Core Component Type describesthese low-leve typesfor useby CCTS Core Components,
and (in parallel) aCCTSdatatype, corresponding to that CCTS Core Component Type, describesthese low-level types
for use by BBIEs. Every CCTS Core Component Type has asingle CCTS Content Component and one or more CCTS
Supplementary Components. A CCTS Content Component is of some Primitive Type. All CCTS Core Component
Types and their corresponding content and supplementary components are predefined in CCTS.

UBL has developed an X SD schema modul e that declares each of the predefined CCTS Core Component Types as an
xsd:complexType or xsd:simpleType and declares each CCTS Supplementary Component as an xsd:attribute or uses
the predefined facets of the built-in X SD datatypesfor those that are used as the base expression for an xsd:simpleType.

3. General XML Constructs

This chapter defines UBL rules related to general XML constructs, including overall schema structure, naming and
modeling constraints, reusability, namespaces, versioning, modularity, and documentation.

3.1. Overall Schema Structure

A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is essential to
provide a mechanism that will guarantee that each occurrence of a UBL conformant schemawill have the same |ook
and feel.

[GXSL1] Except in the case of extension, wherethe"UBL Extensions' element isused, UBL schemas
SHOULD conform to the following physical layout as applicable: See Figure 4.

11

{ Specification Title Version X.X}

Figure 4. Physical layout

File

W3C XML Schema

/
/

Document Schema

Schema
Module

in‘qlﬂnsﬁ
included

U--i

Internal Schema Module

*
N\

Shaded area is a
"schema sat”

AN

Intemal Schema Modules
are in same NAaMESpPACE &5

Document Schema

T

Exiernalschen

5.

udt = Unspecialized Datatype, 2dt = Specialized Datatype, cbe = Common Basic Comgonents, cac = Common Ag

COMMENT:

BH: Isthisthe correct graphic?

Asshown-abeve-A UBL schemashould contain acomment block at the top of the schemathat functionsasa"schema

header".

12

{ Specification Title Version X.X}

3.1.1. Element Declarations within Document Schemas

A document schemais a schema within a specific namespace that conveys the business document functionality of that
namespace. The document schema declares a target namespace and is likely to include (xsd:include) internal schema
modules or import (xsd:import) external schemamodules. Each namespace will have one, and only one, major version

of adocument schema. aswel-as-any-relatedminerversiens:
COMMENT:

BH: We have deleted the minor versions in namespaces so there shouldn't be any minor versionsin
namespaces.

3.1.2. Root Element

In order to facilitate the management and reuse of UBL constructs, all global elements, excluding the root element of
the document schema, must be declared in either the Common Aggregate Components (CAC) or Common Basic
Components (CBC) schema modules and referenced from within the document schema.

Only asingleglobal element is declared insideaUBL document schema. The single global element isthe root element
of every conforming instance.

[RED2] The root element MUST be the only global element declared in the document schema.
COMMENT:

BH: Should another rule be included here that states: One global complexType MUST be included
which with the same name as the Root element with the word "Type" appended to the name. The
complexType defines the structure of the document instance.

3.2. Naming and Modeling Constraints

UBL has the following naming and modeling constraints.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation isits spreadsheet models. The entriesin these spreadsheet models
fully definethe constructs availablefor usein UBL business documents. The spreadsheet entries contain fully conformant
CCTS Dictionary Entry Names (DENS) as well as truncated UBL XML element names developed in conformance
with therulesin Section 4. The XML element nameis the short form of the DEN. The rules for element naming differ
from the rules for DEN naming.

[NMC1] Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP)
for an element or attribute.

The FQP anchors the use of the element or attribute to a particular location in a business message. Any semantic de-
pendenciesthat the el ement or attribute has on other elements and attributeswithin the UBL library that are not otherwise
enforced or made explicit in its structural definition can be found in its prose definition.

3.2.1.1. Modeling Constraints

Modeling constraints are limited to those necessary to ensure consistency in development of the UBL library.

13

{ Specification Title Version X.X}

3.2.1.1.1. Defining Classes

UBL isbased on instantiating ebXML CCTS BIEs. UBL models and the XML expressions of those models are class
driven. Specifically, the UBL library defines classes for each CCTS ABIE and the UBL schemas instantiate those
classes. The properties of those classes consist of CCTS BBIEs and ASBIEs.

3.2.1.1.2. Core Component Types
Each BBIE is associated with one of an approved set of CCTS Core Component Types.

[MDC1] UBL libraries and schemas MUST only use CCTS Core Component Types, except in the
case of extension, where the UBL Extensions element is used.

3.2.1.1.3. XML Mixed Content

UBL documents are designed to effect data-centric electronic commerce transactions. taetudingAllowing XML mixed
content in business documents is undesirable because business transactions are based on exchange of discrete pieces
of data. The white space aspects of XML mixed content make processing unnecessarily difficult and add a layer of
complexity not desirable in business exchanges.

[MDC2] XML mixed content MUST NOT be used except where contained in an xsd:documentation
element.

3.2.1.1.4. Sequencing
COMMENT:

BH: | don't understand what this ruleistrying to express?

In the UBL model, the prescribed order for the contents of an ABIE is that ASBIEs follow BBIEs. However, thisis,
strictly speaking, arule of the modeling methodology rather than an NDR. The NDR in this caseis that the sequential
order of entities in the model must be preserved.

[MDCQ] The sequence of the businessinformation entitiesthat isexpressed in the UBL model MUST
be preserved in the schema.

3.3. Reusability Scheme

To promote effective management of the UBL library, all element declarations are unique. Consequently, UBL elements
are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the Address element is directly reusable as a
modular component.

14

{ Specification Title Version X.X}

Example 1.

<xsd: el ement name="Party" type="PartyType"/>
<xsd: conpl exType nane="PartyType">
<xsd: annot at i on>
<!-- Docunentati on goes here -->
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement ref="cbc: MarkCarel ndi cator" m nCccurs="0" nmaxCccurs="1">

</ xsd: el enent >
<xsd: el enent ref="chc: MarkAttentionlndi cator” m nCccurs="0" nmaxQccurs="1">

</ xsd: el ement >
<xsd: el ement ref="Partyldentification" m nCccurs="0" maxCccurs="unbounded" >

</ xsd: el ement >
<xsd: el ement ref="PartyNane" m nCccurs="0" naxCQccurs="1">

</ xsd: el enent >
<xsd: el ement ref="Address" m nCccurs="0" maxCccurs="1">

</ xsd: el enent >

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el ement nanme="Address" type="AddressType"/>
<xsd: conpl exType nane="AddressType" >

<xsd: sequence>
<xsd: el ement ref="cbc: G tyName" mi nCccurs="0" maxCccurs="1">

</ xsd: el enent >
<xsd: el enent ref="chc: Post al Zone" m nCccurs="0" maxCccurs="1">

</ xsd: el enent >

</ xsd: sequence>
</ xsd: conpl exType>

Software written to work with UBL's standard library should work with new assemblies of the same components, since
global elements will remain consistent and unchanged. The globally declared <Address> element is fully reusable
without regard to the reusahility of types and provides a solid mechanism for ensuring that extensionsto the UBL core
library will provide consistency and semantic clarity regardless of their placement within a particular type.

[ELD2] All element declarations MUST be global.

3.4. Extension Scheme

Some organizations are required by law to send additional information not covered by the UBL document structure,
thus requiring an extension to the UBL message. The xsd:any construct is seen as the most efficient way to implement
this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the introduction of unknown elements into
an XML instance. However, limiting its use to asingle, predefined element mitigates thisrisk. For meaningful validation
of UBL document instances, the value of the xsd: processContents attribute of the element must be set to "skip"”, thereby
removing the potential for errors in the validation layer. Extension imposes cardinality constraints.

The following rules apply in the order below.
COMMENT:

15

{ Specification Title Version X.X}

BH: Can someone provide an example of these rules. | don't understand how an extension is built.
What isa UBLProfileld and UBL Subsetld. | may be reading it wrong but Rule ELD12 contradicts
rule RED1 - wherethereisonly 1 global element declared in a document schema. How can we rec-
tify thisin the NDR?

[ELD12] The UBL Extensions element MUST be declared asthefirst child of the document element

with xsd:minOccurs="0".

[ELD13] The UBL Profilel D element MUST be declared immediately following the UBL Extensions
element with xsd:minOccurs="0".

[ELD14] The UBL SubsetlD element MUST be declared immediately following the UBL Profilel D
element with xsd:minOccurs="0".

3.5. Namespace Scheme

The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The use of XML
namespaceis specified inthe W3C XML Schema (X SD) Recommendation. A namespaceis declared in theroot element
of a schema using a namespace identifier. Namespace declarations can also identify an associated prefix "shorthand
identifier" that allowsfor compression of the namespace name. For each UBL namespace, a normative token isdefined
asits prefix. These tokens (currently udt, qdt, cac, cbc, ext) are defined in Section 3.7.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD requires the use of namespaces. However, the use of namespacesis essential to managing
the complex UBL library. UBL uses UBL-defined schemas (created by the UBL TC) and UBL -used schemas (created
by external activities), and both require a consistent approach to namespace declarations.

[NMSL] Every UBL-defined or -used schemamodule, except internal schemamodules, MUST declare
a namespace using the xsd:targetNamespace attribute.

Each UBL schema module consists of alogical grouping of lower level artefacts that can be used in avariety of UBL
schemas. These schemamodul es are grouped into aschema set. Each schemaset i s assigned anamespace that identifies
that group of schemamodules. Asconstructs are changed, new versionsare to be crested. The schemaset isthe versioned
entity; all schemamoduleswithin that package are of the same version, and each major version has a unique namespace.

Schema set A collection of schemas that constitute a specific UBL namespace.

Schema validation ensures that an instance conforms to its declared schema. In keeping with Rule NMS1, each UBL
schemamoduleis part of aversioned namespace.

[NMS2] Every UBL -defined or -used major version schemaset MUST haveits own unique namespace.

UBL 'sextension methodol ogy encourages awide variety in the number of schemamodulesthat are created asderivations
from UBL schema modules. Customized schemas should not be confused with those developed by UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

3.5.2. Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI that conforms to RFC 2396. UBL has adopted the Uniform Resource Name
(URN) scheme as the standard for URIs for UBL namespaces, in conformance with IETF's RFC 3121.

16

{ Specification Title Version X.X}

Rule NM S2 requires separate namespaces for each UBL major version schemaset. In accordance with OA SIS procedures,
the UBL namespace rules differentiate between committee draft and OASIS Standard status. For each schemaholding
draft status, a UBL namespace must be declared and named.

[NM$4] The namespace names for UBL schemas holding committee draft status MUST be of the
form

urn:oasis:names:tc:ubl :schema: <subtype>:<document-id>
xm ns: cac="urn: oasi s: hanes: t c: ubl : schema: xsd: ConmbnAggr egat eConponent s- 2"
The format for document-id is found in Section 3.6.

For each UBL schemaholding OA SIS Committee Specification or Standard status, a UBL namespace must be declared
and named using the same notation, but with the value "specification” replacing the value "tc".

[NMS5] The namespace names for UBL schemas holding OASIS Standard status MUST be of the
form

urn:oasis:names: specification; ubl: schema: <subtype>: <document-id>

xm ns: cac="urn: oasi s: nanes: speci fi cati on: ubl : schema: xsd: ConmonAggr egat eConponent s- 2"

3.5.3. Schema Location

UBL schemas use aURN namespace scheme. In contrast, schemalocations are defined as aUniform Resource L ocator
(URL). UBL schemas must be available both at design time and run time. Therefore, the UBL schema locations will
differ from the UBL namespace declarations. UBL uses an OASIS URL for hosting retrievable copies of UBL
schemas.

3.5.4. Persistence

UBL namespaces use URNSs to provide name persistence. UBL namespaces must never change once they have been
declared. Conversely, changes to a schema may result in a new namespace declaration. Thus, a published schema
version and its namespace association will aways be inviolate.

[NMS6] UBL published namespaces MUST never be changed.

3.6.Versioning Scheme

UBL distinguishes between major versions and minor versions. Mgjor versions are not backwards compatible. Minor
versions do not break backwards compatibility. In other words, a document instance that validates against version 1
of the schema must also validate against version 1.1 of the schema, where version 1.1 isaminor version change based
on version 1. However, the same document instances would not necessarily be valid against version 2 of the schema,
where version 2 isamajor version change.

Versioning information is indicated both in the namespace URI and in the version attribute of the schema module.
However, thisinformation is represented somewhat differently in these two locations.

3.6.1. Versioning Information in the Namespace URI

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121 [http://tools.ietf.org/html/rfc3121].
All UBL namespace URIs have the form:

urn: oasi s: nanes: speci fi cati on: ubl : schema: xsd: <nodul enanme>- <nmaj or >

17

http://tools.ietf.org/html/rfc3121
http://tools.ietf.org/html/rfc3121

{ Specification Title Version X.X}

where <modulename> is the name of the schema module and <major> is a positive integer representing the major
version. The field containing <modulename>-<major> is called the document-id.

[VER2] Every UBL schema module major version MUST have an RFC 3121 document-id of the
form

<nmodul enanme>- <ngj or >

[VERG] Every UBL schemamodule major version number MUST be a sequentially assigned integer
greater than zero.

The value of <major>is"1" for the first release of a namespace. For example, the namespace URI for the first major
release of the Invoice domain has the form:

urn: oasi s: nanmes: speci fi cati on: ubl : schema: xsd: | nvoi ce- 1

Subsequent major releases increment the value by 1. For example, the second major release of the Invoice domain has
the URI

urn: oasi s: nanmes: speci fi cati on: ubl : schema: xsd: | nvoi ce- 2
The rule for minor version releasesis as follows:

[VER4] Every minor version release of a UBL schema module MUST have a document-id of the
form

<nmodul enane>- <ngj or >

For example, the fifth minor version of the release based on the second major release mentioned above will have the
URI

urn: oasi s: nanes: speci fi cati on: ubl : schema: xsd: | nvoi ce- 2

As can be seen, both the rule and the example for the minor version releasesis exactly the same as that for the major
version. Thereis even arule stating this directly.

[VER5] For UBL minor version changes, the namespace name MUST not change.

However, minor versioning is handled differently in the xsd:schema el ement.

3.6.2. Versioning representation in the xsd:schema element
UBL usesthe version attribute in the xsd:schema element to convey minor version releases of the schema module.

[VER12] Every major version release of a UBL schema module MUST capture its version number
in the xsd:version attribute of the xsd:schema element in the form

<maj or>. 0

EXAVMPLE: version="2.0"

[VER14] Every minor version release of aUBL schemamodule MUST captureitsversion information
in the xsd:version attribute in the form

<maj or >. <non- zer 0>

18

{ Specification Title Version X.X}

EXAMPLE: version="2.1"

[VERTY] Every UBL schema module minor version number MUST be a sequentially assigned, non-
negative integer.

3.6.3. Instance Versioning

UBL version information can also be captured in instances of UBL document schemas via the ubl:UBLVersionID
element.

[VER15] Every UBL document schema MUST declare an optional element named UBLVersionlD
immediately following the optional UBL Extensions element.

<Bi | | O Ladi ng
xm ns="ur n: oasi s: nanmes: speci fi cati on: ubl : schema: xsd: Bi | | O Ladi ng- 2"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
<I D xm ns="ur n: oasi s: nanes: speci fi cati on: ubl : schema: xsd: CommonBasi cConponent s- 2"/ >
</ Bi || O Ladi ng>

3.7. Modularity Strategy

There are many possible mappings of XML schema constructs to namespaces and to files. In addition to the logical
taming of complexity that namespaces provide, dividing the physical realization of schemas into multiple schema
modules provides a mechanism whereby reusable components can be imported as needed without the need to import
complete schemas.

[SSM1] UBL schemaexpressions MAY be split into multiple schema modules.

Schema module A schemadocument containing type definitions and el ement decl arationsintended
to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather, there are a
number of UBL document schemas used to perform different business functions. UBL is structured so that users can
reuse individual document schemas without having to import the entire UBL document schema library. A document
schema can import individual modules without having to import all UBL schema modules. Each document schema
defines its own dependencies. The UBL schema modularity approach reflects logical associations that exist between
document and internal schema modules,and it ensures that individual modules can be reused to the maximum extent
possible. If the contents of a namespace are small enough then they can be compl etely specified within asingle document.
Document and internal schema modules are shown in Figure 5.

19

{ Specification Title Version X.X}

Figure 5. UBL Schema Modularity Model

Message Assembly

‘ Document Schema Module ‘

wwwwwwww

Module(s)

External Schema Modules

Figure 5 shows the one-to-one correspondence between document schemas and namespaces. It also shows the one-to-
one correspondence between files and schema modules. As shown here, there are two types of schemas in the UBL
library — document schemas and schema modules. Both types of schemas are conformant with XSD.

Each document schema occupies its own namespace and may include zero or more internal modules. The namespace
for adocument schemaincludes any of itsinternal modules. Schemamodulesthat are not internal to adocument occupy
adifferent namespace, asin the qdt, cbc, and cac schema modules.

20

{ Specification Title Version X.X}

Figure 6. Schema M odules

wesnkraropTosioubl i beralrde T e reeee perflesiono bl sobe ws s e 1

e T—

e by S e -

e
s e m
=
@ |
4 Jowee
a Fraarad e bpmirdgda®
—_— L o]

CITE T Y TSt]

o
U P
Linbsypan

Another way to visualize the structure is by example. Figure 6 depicts instances of the various schema modules from
the previous diagram.

Figure 7 shows how the Order and I nvoice document schemas import the CommonA ggregateComponents and Com-
monBasicComponents external schema modules. It also shows how the Order document schema may include internal

21

{ Specification Title Version X.X}

schema modules — modules local to that namespace. The clear boxes show how the various schema modules are
grouped into namespaces.

Any UBL schemamodule, be it a document schema or an internal module, may import other document schemas from
other namespaces.
COMMENT:

BH: | am missing this graphic. Does anyone have this or should be it recreated.

Figure 7. Order and Invoice Schema Import of Common Component Schema M odules

il

If two namespaces are mutually dependent, then importing one will cause the other to be imported as well. For this
reason there must not exist circular dependencies between UBL schema modules. By extension, there must not exist
circular dependencies between namespaces. A hamespace called A which is dependent upon type definitions or element
declarations defined in another namespace called B must import B's document schema.

[SSM2] A schemain one UBL namespace that is dependent upon type definitions or el ement declar-
ations in another schema namespace MUST only import that schema.

An additional rule is necessary to address potentially circular dependencies as well — schema A must not import in-
ternal schema modules of schemaB.

[SSM3] A schemain one UBL namespace that is dependent upon type definitions or el ement declar-
ations defined in another schema namespace MUST NOT import the internal schema modules of
that schema.

3.7.2. Internal and External Schema Modules

Asillustrated in figures 5 and 6, UBL schema modules are either internal or external.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace of their parent
schema. All internal schema modules are accessed using xsd:include.

[SSM6] All UBL internal schemamodules MUST be in the same namespace as their corresponding
document schema.

UBL internal schemamodules must have semantically meaningful names. Internal schema module names identify the
parent schema module, the internal schema module function, and the schema module itself.

[SSM7] Each UBL internal schemamodule MUST be named <ParentSchemaM oduleName><Intern-
al SchemaM odul eFunction>

Exanpl e: Ext ensi onCont ent Dat at ype
3.7.4. External Schema Modules

External schema modules are used to group complex types and global elements that are used in multiple document
schemas.

[SSM8] UBL schemamodules MAY be created for reusable components.

22

{ Specification Title Version X.X}

UBL external schema modules organize the reusable componentsinto logical groupings. At aminimum, UBL defines
the following external schema modules:

1. UBL CommonAggregateComponents

2. UBL CommonBasicComponents

3. UBL Qualified Datatypes

In addition, UBL 2.1 imports the following schema module provided by UN/CEFACT.

1. CCTS Core Component Types
[NMSL9] The CCTS Core Component Type schema module must be represented by the namespace
prefix "ccts-cct”.

Furthermore, where extensions are used, an extension schema module must be provided. This schema module must
be named:
COMMENT:

BH: Should the filename be named 'CommonExtensionCompnents' or does this only refer to thein-
ternal documentation name?

CommonExt ensi onConponent s

[SSM21] The UBL extension schemamodule MUST beidentified as CommonExtensionComponents
in the document name within the schema header.

[SSVI22] The UBL Qualified Datatypes schemamodule MUST import the UBL Unqualified Datatypes
schema module.

To ensure consistency in expressing the CommonExtensionComponents schema modul e, a namespace prefix that will
be used in all UBL schemas must be defined.

[NMSL8] The CommonExtensionComponents schemamodule namespace MUST be represented by
the namespace prefix "ext" when referenced in other schemas.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library contains a wide variety of CCTS ABIEs, each defined as an xsd:complexType. Although some of
these complex types may be used in only one UBL schema, many will be reused in multiple UBL schema modules.
For ease of reuse, all the ABIE xsd:complexType definitions used in more than one UBL schema module are grouped
into a single schema module of their own.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified as Com-
monAggregateComponents in the document name within the schema header.

[NMS7] The UBL Common Aggregate Components schema module MUST reside in its own
namespace.

23

{ Specification Title Version X.X}

[NMS8] The UBL Common Aggregate Components schemamodul e namespace MUST be represented
by the namespace prefix "cac" when referenced in other schemas.

3.7.4.2. UBL CommonBasicComponents Schema Module

TheUBL library containsawide variety of CCTS BBIEsbased on CCTS BBIE Properties. BBIE Propertiesare reusable
in multiple BBIEs, and each is defined as an xsd:complexType. Although some of these complex types may be used
in only one UBL schema, many will be reused in multiple UBL schema modules. For ease of reuse, al the BBIE
Property xsd:complexType definitions used in more than one UBL schema module are grouped into a single schema
module of their own.

[SSM11] A schema module defining all UBL Common Basic Components MUST be created.

[SSM12] The UBL Common Basic Components schema module MUST be identified as Common-
BasicComponents in the document name within the schema header.

[NMS8] The UBL Common Basic Components schemamodule MUST residein its own namespace.
[NMSL10] The UBL Common Basic Components schema module namespace MUST be represented

by the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

CCTSdefines an authorized set of Core Component Types that convey content and supplementary information related
to exchanged data. Asthe basis for all higher level CCTS models, these Core Component Types are reusable in every
UBL schema. The complex type definitionsfor all CCTS Core Component Types are collected in the Core Component
Type schema module published by UN/CEFACT.

3.7.4.4. UBL Unqualified Datatypes Schema Module
The UBL Unqualified Datatypes Schema Module imports the CCTS CoreComponentType Schema Maodule.

[NMS20] The UBL Unqualified Datatypes schema module namespace MUST be represented by the
prefix "udt" when referenced in other schemas.

3.7.4.5. UBL Qualified Datatypes Schema Module
UBL Qualified Datatypes are not expressed in the schema. Rather, datatype qualifcations are expressed in the cvafile.
[SSM18] A schema module without any declarations must exist.

[SSM19] The UBL Qualified Datatypes schemamodule MUST be identified as QualifiedDatatypes
in the document name in the schema header.

[NMSL5] The UBL Qualified Datatypes schema module MUST reside in its own namespace.

To ensure consistency in expressing the UBL Qualified Datatypes schema module, a namespace prefix that will be
used in all UBL schemas must be defined.

24

{ Specification Title Version X.X}

[NMSL6] The UBL Qualified Datatypes schema module namespace MUST be represented by the
namespace prefix "qdt" when referenced in other schemas.

4. Modeling
4.1. Data Types for BBIEs

Thislevel goesinto the table of contents.

4.2. CCTS 2.01 Core Component Types

Thislevel goesinto the table of contents.

4.3. Naming Conventions

Thislevel goesinto the table of contents.

4.4. Oxford English

Thislevel goesinto the table of contents.

4.5. Acronyms and Abbreviations

Thislevel goesinto the table of contents.

4.6.Which and Why

Thislevel goesinto the table of contents.

4.7. Singular Nouns Where Applicable

Thislevel goesinto the table of contents.

4.8. Namespaces

Thislevel goesinto the table of contents.

4.9. Style Guide

Thislevel goesinto the table of contents.

4.10. Multiplicity and Preserving Functional Dependency

Thislevel goesinto the table of contents.

25

{ Specification Title Version X.X}

4.11. Patterns and Prohibitions

Thislevel goesinto the table of contents.

5. Spreadsheets

3. Spreadsheets - which columns are mandatory requiring data entry? - which columns are optional not requiring data
entry? - which columns are fixed calculations of other columns and have no data entry? - note that eDoCreator has
only one such column and | think there are others - which rows are expressed as enumerated code lists?

5.1. Mandatory Columns
Thislevel goesinto the table of contents.

5.2. Optional Columns

Thislevel goesinto the table of contents.

5.3. Fixed Calculation Columns
Thislevel goesinto the table of contents.

5.4. eDoCreator

Thislevel goesinto the table of contents.

5.5. Rows with Expressed Enumerated Code Lists

Thislevel goesinto the table of contents.

6. Naming and Design Rules

Naming and Design Rules - which aggregate schema declarations are created from the spreadsheets? - which basic
schema declarations are created from the spreadsheets? - which document type schema declarations are created from
the spreadsheets? - which context val ue associations are created from the spreadsheets?

6.1. Aggregate Schema Declarations

Thislevel goesinto the table of contents.

6.2. Basic Schema Declarations

Thislevel goesinto the table of contents.

6.3. Schema Declarations Created from Spreadsheets

Thislevel goesinto the table of contents.

26

{ Specification Title Version X.X}

6.4. Context Value Associationss Created from Spread-
sheets

Thislevel goesinto the table of contents.

7. Schema Dependencies

Schema dependencies - which common schema fragments support the declarations from the spreadsheets? (see the
SGTG strategy document to populate this section)

7.1. Common Schema Fragments

8. Code Lists

8.1. Genericode

9. Conformance

The last section contains the conformance clauses/statements.

A. Normative Annex

Normative appendices are not marked as hon-normative using an attribute.

B. Non-normative Annex (Non-Normative)

Non-normative appendices are marked as such using an attribute.

C. Acknowledgements (Non-Normative)

In atypical OASIS work product one might wish to list committee participants in a non-normative annex (markup
shown above in the normative annex example) using wording along the line of " The following individual s have parti-
cipated in the creation of this specification and are gratefully acknowledged:"

» Mary Baker, Associate Member
 Jane Doe, Example Corporation Member
« John Able, Other Example Corporation Member

Note that the itemized list uses spaci hg="conpact " to remove the space between list itemsin the printed result,
not the HTML result).

27

{ Specification Title Version X.X}

D. Revision History (Non-Normative)

[optional; should NOT beincluded in OASIS standards]

Revision 0.5 8 July 2010 okh
New template structure and filename conventions; mimic latest XHTML template
Revision 0.4 03 Feb 2006 okh
New PR and use of revised 0.4 specification publishing environment; mimic latest Word and Open Office templateq
Revision 03 15 Aug 2002 naw
Changed copyright holder.

Revision 02 28 May 2002 naw
Added IPR section.

Revision 01 26 Apr 2002 naw
Reworked after conversations with Eve.

Revision 00 25 Apr 2002 naw
First draft.

28

