
[image: image4.wmf]WSDL

definitions

definitions

import

definitions

import

tModel name=[portType local name]

overviewURL

= [

wsdl

location]

categoryBag

type = portType

namespace = [namespace]

UDDI V2

tModel name=[binding local name]

overviewURL

= [

wsdl

location]

categoryBag

type = binding

namespace = [namespace]

portType = [portType tModel]

businessService

name=[human

-

readable name]

categoryBag

type = service

namespace = [namespace]

local name = [service local

namel

]

bindingTemplate

accessPoint

= [access point]

protocol = SOAP

transport = HTTP

portType = [portType tModel]

binding = [binding tModel]

local name = [port local name]

WSDL location = [WSDL location]

types

message

portType

binding

service

port

WSDL

definitions

definitions

import

definitions

import

tModel name=[portType local name]

overviewURL

= [

wsdl

location]

categoryBag

type = portType

namespace = [namespace]

UDDI V2

tModel name=[binding local name]

overviewURL

= [

wsdl

location]

categoryBag

type = binding

namespace = [namespace]

portType = [portType tModel]

businessService

name=[human

-

readable name]

categoryBag

type = service

namespace = [namespace]

local name = [service local

namel

]

bindingTemplate

accessPoint

= [access point]

protocol = SOAP

transport = HTTP

portType = [portType tModel]

binding = [binding tModel]

local name = [port local name]

WSDL location = [WSDL location]

types

message

portType

binding

service

port

[image: image2.png]

UDDI Specifications TC
Technical Note
Using WSDL 1.1 in a UDDI Registry

Document identifier:

wsdl-TN-V2.00-Draft-20021114
Location:

http://tbd

Authors (alphabetically):

John Colgrave, IBM colgrave@uk.ibm.com
Karsten Januszewski, Microsoft karstenj@microsoft.com
Editors:

Anne Thomas Manes, anne@manes.net
Tony Rogers, Computer Associates tony.rogers@ca.com
Abstract:

This document is an OASIS UDDI Technical Note that defines a new approach to using WSDL in a UDDI Registry.

Status:

This document is a working draft.

Committee members should send comments on this document to the uddi-spec@lists.oasis-open.org list. Others should subscribe to and send comments to the uddi-spec-comment@lists.oasis-open.org list. To subscribe, send an email message to uddi-spec-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright

Copyright © OASIS Open November 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

61
Introduction

61.1
Goals and Requirements

71.2
Relationship to Version 1 Best Practice

71.3
tModel Keys

71.4
Terminology

82
Rationalizing Two Data Models: WSDL & UDDI

82.1
WSDL Data Model

82.1.1
portType

82.1.2
binding

92.1.3
service and port

92.1.4
import

92.2
UDDI Data Model

92.2.1
tModels

102.2.2
businessService & bindingTemplate

102.3
Mapping WSDL and UDDI

122.4
References to WSDL Components

122.5
WSDL Extensibility Elements

122.6
Mapping WSDL 1.1 in UDDI V2

132.6.1
wsdl:portType (uddi:tModel

132.6.2
wsdl:binding (uddi:tModel

142.6.3
wsdl:service (uddi:businessService

142.6.4
wsdl:port and wsdl:binding (uddi:bindingTemplate

162.7
Mapping WSDL 1.1 in UDDI V3

162.7.1
wsdl:portType (uddi:tModel

172.7.2
wsdl:binding (uddi:tModel

172.7.3
wsdl:service (uddi:businessService

182.7.4
wsdl:port and wsdl:binding (uddi:bindingTemplate

213
A Complete Example

213.1
WSDL Sample

213.2
UDDI V2 Model

213.2.1
UDDI portType tModel

223.2.2
UDDI binding tModel

223.2.3
UDDI businessService and bindingTemplate

243.3
Sample V2 Queries

243.3.1
Find tModel for portType name

243.3.2
Find bindings for portType

243.3.3
Find Implementations of portType

243.3.4
Find implementations of binding

253.3.5
Find SOAP Implementations of portType

253.3.6
Find SOAP/HTTP Implementations of portType

253.3.7
Find the portType of a binding

253.4
UDDI V3 Model

253.4.1
UDDI portType tModel

263.4.2
UDDI binding tModel

263.4.3
UDDI businessService and bindingTemplate

283.5
Sample V3 Queries

283.5.1
Find tModel for portType name

283.5.2
Find bindings for portType

283.5.3
Find Implementations of portType

293.5.4
Find Implementations of binding

293.5.5
Find SOAP Implementations of portType

293.5.6
Find SOAP/HTTP Implementations of portType

293.5.7
Find the portType of a binding

304
References

304.1
Normative

31A
Canonical tModels

31A.1 WSDL Entity Type tModel

31A.1.1 Design Goals

31A.1.2 Definition

31A.1.3 Values

32A.1.4 Example of Use

32A.2 XML Namespace tModel

32A.2.1 Design Goals

32A.2.2 Definition

33A.2.3 Values

33A.2.4 Example of Use

33A.3 XML Local Name tModel

33A.3.1 Design Goals

33A.3.2 Definition

34A.3.3 Values

34A.3.4 Example of Use

34A.4 WSDL portType Reference tModel

34A.4.1 Design Goals

34A.4.2 Definition

35A.4.3 Values

35A.4.4 Example of Use

35A.5 WSDL URL Reference tModel

35A.5.1 Design Goals

35A.5.2 Definition

36A.5.3 Values

36A.5.4 Example of Use

36A.6 SOAP Protocol tModel

36A.6.1 Design Goals

36A.6.2 Definition

36A.6.3 Example of Use

37A.7 HTTP Protocol tModel

37A.7.1 Design Goals

37A.7.2 Definition

37A.7.3 Example of Use

38A.8 HTTP SOAP Transport tModel

38A.8.1 Design Goals

38A.8.2 Definition

38A.8.3 Example of Use

40B
Using XPointer in overviewURL

40B.1 XPointer Syntax

41C
Acknowledgments

42D
Revision History

43E
Notices

1 Introduction

The Universal Description, Discovery & Integration (UDDI) specification provides a platform-independent way of describing and discovering Web services and Web service providers. The UDDI data structures provide a framework for the description of basic service information, and architects an extensible mechanism to specify detailed service access information using any standard description language. Many such languages exist in specific industry domains and at different levels of the protocol stack. The Web Services Description Language (WSDL) is a general purpose XML language for describing the interface, protocol bindings, and the deployment details of network services. WSDL complements the UDDI standard by providing a uniform way of describing the abstract interface and protocol bindings of arbitrary network services. The purpose of this document is to clarify the relationship between the two and to describe a recommended approach to mapping WSDL descriptions to the UDDI data structures.
Consistent and thorough WSDL mappings are critical to the utility of UDDI.

1.1 Goals and Requirements

The primary goals of this mapping are:
1. to enable the automatic registration of WSDL definitions in UDDI
2. to enable optimized and flexible UDDI queries based on specific WSDL artifacts and metadata
3. to enable the generation of service deployment descriptions from information in UDDI
4. to maintain compatibility with the mapping described in the Using WSDL in a UDDI Registry, Version 1 [2] Best Practice document
This mapping prescribes a consistent methodology to map WSDL 1.1 artifacts to UDDI structures. It describes an approach that represents reusable, abstract Web service artifacts, (i.e., WSDL portTypes and WSDL bindings) as well as Web service implementations (i.e., WSDL services and ports). Tools can use this mapping to automatically generate UDDI registrations from WSDL descriptions.
This mapping captures sufficient information from the WSDL documents to allow precise queries for Web services information without further recourse to the source WSDL documents, and to allow the appropriate WSDL documents to be retrieved once a match has been found. Given that the source WSDL documents can be distributed among the publishers using a UDDI registry, a UDDI registry provides a convenient central point where such queries can be executed.

This mapping enables the following types of queries for both design-time and run-time discovery:

· Given the namespace and/or local name of a wsdl:portType, find the tModel that represents that portType.

· Given the namespace and/or local name of a wsdl:binding, find the tModel that represents that binding.

· Given a tModel representing a portType, find all tModels representing bindings for that portType.

· Given a tModel representing a portType, find all bindingTemplates that represent implementations of that portType.

· Given a tModel representing a binding, find all bindingTemplates that represent implementations of that binding.

· Find all bindingTemplates that represent implementations of a binding or portType that support a particular protocol and/or transport, for example all SOAP/HTTP implementations.

Some aspects of the mapping allow information to be retrieved directly without further queries being necessary. For example, given the tModel representing a binding, it is possible to retrieve the key of the tModel representing the portType referred to by the binding. Other aspects of the mapping may require multiple queries to be issued to UDDI.

With this new mapping, it is also possible to generate a wsdl:service element directly from the mapping in UDDI.

1.2 Relationship to Version 1 Best Practice

This document builds on Using WSDL in a UDDI Registry, Version 1.08, providing an expanded modeling practice that encompasses the flexibility of WSDL. The primary difference between this mapping and the one described in the existing Best Practice is that this mapping provides a methodology to represent individual Web services artifacts.
As a Technical Note, this document does not replace the existing Best Practice. If the additional flexibility is not required the existing Best Practice can continue to be used, particularly when the UDDI artifacts are published manually.

It is anticipated that implementations of the approach described in this Technical Note will be developed, and that once experience with those implementations is obtained this Technical Note will become a Best Practice.

A final goal is to be compatible with the existing Best Practice in that a tModel representing a WSDL binding published using the approach described in this document should be usable by a client that uses the Version 1 Best Practice approach.

1.3 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

2 Mapping Two Data Models: WSDL & UDDI

A brief discussion of the two respective data models, WSDL and UDDI, follows. For a complete explanation of these specifications, see [1] and [3].

2.1 WSDL Data Model

A review of WSDL in the context of the goals and requirements will help guide a new mapping practice in UDDI.
[image: image1.png]

2.1.1 portType

The central construct in WSDL is the portType. A portType is an abstract collection of operations that may be supported by one or more Web services. A WSDL portType defines these operations in terms of message definitions, which usually rely on the XML Schema language to describe the representation of each message. A single WSDL file may contain multiple portType entities. Each portType is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the portType.

WSDL portTypes may be implemented by more than one Web service. Web services that purport to support a given portType must adhere not only to the message formats that are part of the WSDL definition; they must also adhere to the semantic agreement that is implicitly part of the portType. This consistency allows applications to treat two Web services as substitutable if and only if they implement a common portType.

2.1.2 binding

WSDL portTypes are abstract Web service descriptions and do not specify information about the encoding and transport protocols used to transmit the messages. To specify encoding and transport protocol details in WSDL, one must define a second construct, known as a binding. A WSDL binding specifies a specific set of encoding and transport protocols that may be used to communicate with a particular WSDL portType. A WSDL binding specifies its portType through a QName reference. The referenced portType may or may not be in the same target namespace as the binding itself. Again, a single WSDL file may contain multiple bindings. For example, a WSDL file may describe multiple protocol bindings for a single portType. Like a portType, a binding is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the binding.
As with portTypes, WSDL bindings are abstract definitions and do not represent a Web service implementation. Multiple Web services may implement the same WSDL binding.
2.1.3 service and port

Finally, WSDL defines a Web service implementation as a service with a collection of named ports. Each port implements a particular portType using the protocols defined by a named binding. A service may expose multiple ports in order to make a single portType available over multiple protocols. Or, a service may expose multiple ports in order to expose more than one portType from a single logical entity. A WSDL port specifies the binding it implements through a QName reference. The referenced binding may or may not be in the same target namespace as the port itself. A single WSDL file may contain multiple services. A service is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the service. Likewise, a port is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the port.
2.1.4 import

The import directive in WSDL allows the separation of these different entities into multiple files. As such, a WSDL file may be composed of a single portType, multiple portTypes, a single binding that imports its portType definition, multiple bindings, a single service, or multiple services, etc. The WSDL data model provides great flexibility in terms of composition and reusability of WSDL entities.

Given this flexibility, the critical components of a WSDL file in terms of composition and identity are the target namespace of the definitions element and the local names that identify each portType, binding, service, and port within the target namespace.

2.2 UDDI Data Model

As an aid to understanding the sections ahead, we provide here a brief overview of two UDDI data structures that are particularly relevant to the use of WSDL in the context of a UDDI registry: the tModel and the businessService.

2.2.1 tModels

TModels are often referred to as service type definitions. TModels represent unique concepts or constructs. They are used to describe compliance with a specification, a concept, or a shared design. TModels have various uses in the UDDI registry. In the case of mapping WSDL-described Web services, tModels have two uses. First, tModels are used to represent technical specifications such as service types, bindings, and wire protocols. Second, tModels are used to implement taxonomies that are used to identify or categorize technical specifications. This Technical Note defines a set of specification and taxonomy tModels that are used when mapping WSDL entities to UDDI entities. These tModels are defined in Appendix A.
When a particular specification is registered in the UDDI registry as a tModel, it is assigned a unique key, called a tModelKey. This key is used by other UDDI entities to reference the tModel, for example to indicate compliance with the specification.

Each specification tModel contains an overviewURL, which provides the address of the specification itself, for example, a WSDL file.

Additional metadata can be associated with a specification tModel using any number of identifier and categorization taxonomies. Identifiers are grouped in a construct called an identifierBag, and categories are grouped in a construct called a categoryBag. These bags contain a set of keyedReference elements. Each keyedReference specifies the tModelKey of the taxonomy tModel and a name/value pair that specifies the metadata. For example, a keyedReference referencing the namespace taxonomy can be used to specify a WSDL namespace. Any metadata specified in keyedReference elements can be used as selection criteria when searching UDDI.

2.2.2 businessService & bindingTemplate

[image: image3.wmf]definitions

targetNamespace

=

thisNamespace

xmlns

:

tns

=

thisNamespace

xmlns

:ins=

importedNamespace

portType name=

foo

operation

input message=ins:in

output message=ins:out

import

importedNamespace

imported namespace describes

types and messages

portType describes an abstract set

of operations

binding name=

foobar

type=

tns

:

foo

[binding information]

in and out messages defined in

imported namespace

binding describes a concrete set of

formats and protocols for the

foo

portType

service name=

foobarService

port name=

foobarPort

binding=

tns

:

foobar

[endpoint information]

port describes an implementation

of the

foobar

binding

definitions

targetNamespace

=

thisNamespace

xmlns

:

tns

=

thisNamespace

xmlns

:ins=

importedNamespace

portType name=

foo

operation

input message=ins:in

output message=ins:out

import

importedNamespace

imported namespace describes

types and messages

portType describes an abstract set

of operations

binding name=

foobar

type=

tns

:

foo

[binding information]

in and out messages defined in

imported namespace

binding describes a concrete set of

formats and protocols for the

foo

portType

service name=

foobarService

port name=

foobarPort

binding=

tns

:

foobar

[endpoint information]

port describes an implementation

of the

foobar

binding

Services are represented in UDDI by the businessService data structure, and the details of how and where the service is accessed are provided by one or more bindingTemplate structures. The businessService might be thought of as a logical container of services. The bindingTemplate structure contains the accessPoint of the service itself, as well as references to the tModels it is said to implement.

2.3 Mapping WSDL and UDDI

WSDL is designed to support modular and reusable definitions, and each definition artifact has certain relationships with other definition artifacts. As described in Section 1.1, the four goals of this mapping are to enable the automatic registration of WSDL definitions in UDDI, to enable optimized and flexible UDDI queries based on specific WSDL artifacts and metadata, to enable the generation of service deployment descriptions from information in UDDI, and to maintain compatibility with the Version 1 Best Practice methodology. The mapping itself addresses the first goal. The second and third goals provide the rationale for the methodology used in this mapping. In order to support queries based on specific WSDL artifacts and metadata, this mapping must be able to represent the individual WSDL artifacts and the relationships between artifacts. These goals also provide the rationale for the amount of information that must be captured in UDDI to enable users to retrieve specific WSDL artifacts or to generate WSDL service definitions. Additional information must also be included in some cases to support the fourth goal.
2.3.1 Mapping Overview
This mapping describes a methodology for mapping WSDL 1.1 definitions to the UDDI V2 and UDDI V3 data models. The methodology maps each WSDL artifact to a separate UDDI entity, accurately representing the “building block” design of WSDL descriptions.
wsdl:portType and wsdl:binding elements map to uddi:tModel entities, wsdl:service elements map to uddi:businessService entities and wsdl:port elements map to bindingTemplate entities. KeyedReferences provide a mechanism to express additional metadata and to represent a relationship between two UDDI entities.

2.3.2 Comparison to Version 1 Mapping

One important thing to note about this mapping, especially as compared to the mapping described in the Version 1 Best Practice, is that this approach may map a single WSDL file to multiple tModels. For example, a single WSDL file that contains one portType definition and two binding definitions will map to three distinct tModels in UDDI. This approach differs from the Version 1 Best Practice, which would map the entire WSDL file to a single tModel. The rationale for this new mapping decision is to more effectively represent the modularity and reusability of WSDL artifacts in UDDI. A Web service implementation might implement only one of the bindings described in a WSDL file. By decomposing WSDL into multiple tModels, one can accurately model in UDDI exactly which portTypes and bindings a given Web service implementation supports, as opposed to being constrained to asserting that a Web service always supports the entirely of the WSDL file.

While there is an increased amount of data from a WSDL file modeled in UDDI, this new approach is in accord with the Version 1 Best Practice in that it does not attempt to use UDDI as a repository for all of the data in a WSDL file. Just as in the Version 1 Best Practice, one still must go outside of the UDDI registry to retrieve the portType and binding information necessary for software applications to work with that Web service.
2.3.3 New Canonical tModels

This mapping introduces a number of canonical tModels that are used to represent WSDL metadata and relationships. These tModels, including the WSDL Entity Type tModel, the XML Namespace tModel, the XML Local Name tModel, the WSDL portType Reference tModel, the WSDL URL Reference tModel, the SOAP Protocol tModel, and the HTTP Protocol tModel, are
described in Appendix A. These tModels MUST be registered in the UDDI registry to support this mapping.
2.3.4 General Conventions

In this mapping, each WSDL artifact is mapped to its corresponding UDDI entity. A set of keyedReference elements is added to each UDDI entity to capture additional metadata. In order to support the requirements outlined in Section 1.1, the following metadata MUST be captured for each entity:

· The type of WSDL entity being defined (i.e., portType, binding, service, or port)
· The target namespace of the WSDL definitions file that defines the WSDL entity
· The local name of the WSDL entity being defined
Any relationships and dependencies between entities must also be captured. For example, a tModel that represents a binding MUST provide a reference to the tModel that represents the portType implemented by the binding.
To maintain compatibility with the Version 1 Best Practice mapping, certain UDDI entities MUST also be characterized as being of type “wsdlSpec”.
2.3.5 References to WSDL Components
2.3.6

2.3.7
2.4
A UDDI entity normally references technical specifications using the overviewURL element. As noted above, in this mapping a single WSDL file may map to multiple tModels, and each tModel refers to a particular WSDL entity within the file. The particular WSDL entity is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the WSDL entity. This identity information SHOULD be determined from the metadata contained within the entity’s categoryBag. Alternatively, the overviewURL value MAY contain a fragment identifier that identifies the particular WSDL entity. If the optional fragment identifier is used, then the value of the overviewURL MUST conform to the syntax described in Appendix B.
2.4.1 WSDL Extensibility Elements
WSDL uses extensibility elements to specify technology-specific information within a WSDL description. Extensibility elements may be included under many of the WSDL elements. The only extensibility elements that are relevant to the UDDI mapping of a WSDL description are binding and port extensions, specifically the extensibility elements that can be added to the wsdl:binding and wsdl:port elements. The first of these is used to declare particular protocols and message formats; the second is to provide address information.

Information from these extensibility elements is mapped to the bindingTemplate. The mappings defined in this document include details on the SOAP 1.1 and HTTP GET/POST bindings defined in the WSDL 1.1 W3C Note. The mappings also describe how other bindings should be incorporated into the UDDI mapping.
2.4.2 Differences between UDDI V2 and UDDI V3 Mappings

Section 2.4 describes the mapping of WSDL 1.1 artifacts to the UDDI V2 data model. Section 2.5 describes the mapping of WSDL 1.1 artifacts to the UDDI V3 data model. For the most part these mappings are nearly identical. The major difference between these two mappings is in the way that wsdl:port information is mapped to a uddi:bindingTemplate entity. The UDDI V3 mapping maps this information to keyedReference elements in the categoryBag on the bindingTemplate. The UDDI V2 data model does not provide a categoryBay on the bindingTemplate entity, so keyedReferences can’t be used to represent wsdl:port metadata and relationships. Instead this information is specified in the instanceParms element in the tModelInstanceInfo elements. The UDDI Inquiry API supports queries based on the keyValue of keyedReference elements, but unfortunately it does not support queries based on the instanceParms of tModelInstanceInfo. Although it’s desirable to maintain consistency between the V2 and V3 mappings, the added functionality afforded by keyedReferences warrants this small discrepancy.
The other differences between the mappings pertain to the new UDDI V3 useType attribute on the accessPoint and overviewURL elements.
2.5 Mapping WSDL 1.1 in UDDI V2

This section described a detailed mapping of WSDL 1.1 artifacts to the UDDI V2 data model.

2.5.1 wsdl:portType (uddi:tModel

A wsdl:portType MUST be modeled as a uddi:tModel.
The minimum information that must be captured about a portType is its entity type, its local name, its namespace, and the location of the WSDL document that defines the portType. Capturing the entity type enables users to search for tModels that represent portType artifacts. Capturing the local name, namespace, and WSDL location enables users to locate the definition of the specified portType artifact.

This information is captured as follows:
· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:portType.

· The tModel MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “portType”.
2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:portType.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL file that describes the wsdl:portType.

·
2.5.2 wsdl:binding (uddi:tModel

A wsdl:binding MUST be modeled as a uddi:tModel.
The minimum information that must be captured about a binding is its entity type, its local name, its namespace, the location of the WSDL document that defines the binding, and the portType that it implements. Capturing the entity type enables users to search for tModels that represent binding artifacts. Capturing the local name, namespace, and WSDL location enables users to locate the definition of the specified binding artifact. The link to the portType enables users to search for bindings that implement a particular portType.

A wsdl:binding corresponds to a WSDL service interface definition as defined by the mapping in the Version 1 Best Practice. To maintain compatibility with the previous mapping, the binding must also be characterized as type “wsdlSpec”.
This information is captured as follows:
· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:binding.

· The tModel MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “binding”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:binding.

3. A keyedReference with a tModelKey of the WSDL portType Reference taxonomy and a keyValue of the tModelKey that models the wsdl:portType to which the wsdl:binding relates.

4. A keyedReference with a tModelKey of the uddi-org:types taxonomy and a keyValue of “wsdlSpec” for backward compatibility
.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL file that describes the wsdl:binding.

2.5.3 wsdl:service (uddi:businessService

A wsdl:service MUST
be modeled as a
uddi:businessService. An existing businessService MAY be used or a new businessService MAY be created
.
The minimum information that must be captured about a service is its entity type
, its local name, its namespace, and the list of ports that it supports

. Capturing the entity type enables users to search for services that are described by a WSDL definition. Capturing the namespace and local name, when combined with the WSDL location information from the bindingTemplate
, enables users to locate the definition of the specified service artifact. The list of ports provides access to the technical information required to consume the service.
This information is captured as follows:
· If a new businessService is created, the uddi:name of this businessService SHOULD be a human readable name, although if no human readable name is specified, it MUST be the value of the name attribute of the wsdl:service
.

·
· The businessService MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “service”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:service.

3. A keyedReference with a tModelKey of the XML Local Name taxonomy and a keyValue that is the value of the name attribute of the wsdl:service.

· The bindingTemplates element of the businessService MUST include bindingTemplate elements that model the ports of the service, as described in the following sections.

2.5.4 wsdl:port (uddi:bindingTemplate

A wsdl:port MUST be modeled as a uddi:bindingTemplate.
The minimum information that must be captured about a port is the binding that it implements, the portType that it implements, its local name, and the location
of the WSDL document that defines the port. Capturing the binding enables users to search for services that implement a specific binding. Capturing the portType enables users to search for services that implement a particular portType. Capturing the local name and the location of the WSDL document, when combined with the namespace specified in the associated businessService, enables users to find the definition of the specific port artifact.
This information is captured as follows:
· The bindingTemplate tModelInstanceDetails element MUST contain at least the following tModelInstanceInfo elements:

1. A tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:binding that this port implements. The instanceParms of this tModelInstanceInfo MUST contain the wsdl:port local name.

2. A tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:portType.

3. A tModelInstanceInfo with a tModelKey of the WSDL URL Reference tModel. The instanceParms of this tModelInstanceInfo MUST contain the URL of the WSDL file that describes the wsdl:port
.
2.5.5 wsdl:binding Extensions (uddi:bindingTemplate
In order to meet the requirements stipulated in Section 1.1, additional information about the protocols used by a service MUST be captured in the uddi:bindingTemplate. This information enables users to search for services that support particular protocols, such as SOAP and HTTP, without knowing the specific binding implemented.
This information comes from wsdl:binding extensibility elements.
2.5.5.1 soap:binding
If the wsdl:binding contains a soap:binding extensibility element then the uddi:bindingTemplate MUST include the following additional tModelInstanceInfo element:

1. A tModelInstanceInfo with a tModelKey of the SOAP Protocol tModel.

If the value of the transport attribute of the soap:binding element is http://schemas.xmlsoap.org/soap/http then the bindingTemplate MUST include the following additional tModelInstanceInfo element:
1. A tModelInstanceInfo with a tModelKey of the HTTP SOAP Transport tModel
.

If the value of the transport attribute is anything else then the bindingTemplate MUST include an additional tModelInstanceInfo element with a tModelKey of an appropriate transport tModel.
2.5.5.2 http:binding
If the wsdl:binding contains an http:binding extensibility element then the uddi:bindingTemplate MUST include the following additional tModelInstanceInfo element:
1. A tModelInstanceInfo with a tModelKey of the HTTP Protocol tModel. The instanceParms of this tModelInstanceInfo MUST contain the value of the verb attribute of the http:binding, usually either “GET” or “POST”, although other values are possible.
Note that this is a different tModel from the HTTP SOAP Transport tModel
, and in this case there is no separate transport tModel.

2.5.5.3 Other wsdl:binding Extensions
Other wsdl:binding extensibility elements are handled in a similar fashion. It is assumed that vendors that provide other bindings will provide the appropriate protocol and transport tModels
.
2.5.6 wsdl:port Address Extensions (uddi:bindingTemplate
One other piece of information must be captured in the uddi:bindingTemplate, and that is the location of the Web service. This information comes from the wsdl:port extensibility element and is mapped to the uddi:accessPoint in the uddi:bindingTemplate that models the wsdl:port.
2.5.6.1 soap:address (uddi:accessPoint

A soap:address MUST be modeled as a uddi:accessPoint in the bindingTemplate that models the wsdl:port that contains the soap:address.
The URLType attribute of the accessPoint MUST correspond to the transport specified by the soap:binding, or “other” if no correspondence exists. In the case of the HTTP transport, for example, the URLType attribute MUST be “http”.
If “other” is used then a tModelInstanceInfo element referencing the appropriate vendor-defined transport tModel MUST be added to the bindingTemplate as described above.
The accessPoint MUST be the value of the location attribute of the soap:address.
2.5.6.2 http:address (uddi:accessPoint
An http:address MUST be mapped to a uddi:accessPoint in the bindingTemplate that models the wsdl:port that contains the http:address. The URLType attribute of the accessPoint MUST be “http”.

The accessPoint MUST be the value of the location attribute of the http:address.

2.5.6.3 Other wsdl:port Address Extensions
Any other address extensibility element MUST be modeled as a uddi:accessPoint. The URLType attribute SHOULD be set to “other” if none of the other defined values of the attribute are appropriate.

If the address information cannot be mapped to the accessPoint, then the accessPoint MUST be empty and the original WSDL description must be retrieved to obtain the address information.
2.6 Mapping WSDL 1.1 in UDDI V3

This section described a detailed mapping of WSDL 1.1 artifacts to the UDDI V3 data model.
The relevant differences in UDDI data structures between UDDI V2 and UDDI V3 are:

1. A bindingTemplate can have a categoryBag.

2. An accessPoint has a useType attribute rather than a URLType attribute, and one of the values of useType is wsdlDeployment, which indicates that the address information should be retrieved from the referenced WSDL document.

3. An overviewURL now has an optional useType attribute, and a standard value of “wsdlInterface” has been defined to indicate “an abstract interface document”. This mapping assumes that “wsdlInterface” is used with tModels that represent both portTypes and bindings.

2.6.1 wsdl:portType (uddi:tModel

A wsdl:portType MUST be modeled as a uddi:tModel.
The minimum information that must be captured about a portType is its entity type, its local name, its namespace, and the location of the WSDL document that defines the portType. Capturing the entity type enables users to search for tModels that represent portType artifacts. Capturing the local name, namespace, and WSDL location enable users to locate the definition of the specified portType artifact.

This information is captured as follows:
· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:portType.
· The tModel MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “portType”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:portType
.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL file that describes the wsdl:portType. The value of the useType attribute of the overviewURL MUST be “wsdlInterface”.

2.6.2 wsdl:binding (uddi:tModel

A wsdl:binding MUST be modeled as a uddi:tModel.
The minimum information that must be captured about a binding is its entity type, its local name, its namespace, the location of the WSDL document that defines the binding, and the portType that it implements. Capturing the entity type enables users to search for tModels that represent binding artifacts. Capturing the local name, namespace, and WSDL location enables users to locate the definition of the specified binding artifact. The link to the portType enables users to search for bindings that implement a particular portType.

A wsdl:binding corresponds to a WSDL service interface definition as defined by the mapping in the Version 1 Best Practice. To maintain compatibility with the previous mapping, the binding must also be characterized as type “wsdlSpec”.

This information is captured as follows:
· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:binding.

· The tModel MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “binding”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:binding.

3. A keyedReference with a tModelKey of the WSDL portType Reference taxonomy and a keyValue of the tModel that models the wsdl:portType to which the wsdl:binding relates.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL file that describes the wsdl:binding. The value of the useType attribute of the overviewURL MUST be “wsdlInterface”.

2.6.3 wsdl:service (uddi:businessService

A wsdl:service MUST
be modeled as a uddi:businessService. An existing businessService MAY be used or a new businessService MAY be created.

The minimum information that must be captured about a service is its entity type
, its local name, its namespace, and the list of ports that it supports
. Capturing the entity type enables users to search for services that are described by a WSDL definition. Capturing the namespace and local name enables users to locate the definition of the specified service artifact
. The list of ports provides access to the technical information required to consume the service.

This information is captured as follows:
· If a new businessService is created, the uddi:name of this businessService SHOULD be a human readable name, although if not human readable name is specified, it MUST be the value of the name attribute of the wsdl:service.

·
· The businessService MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReference elements:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “service”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:service.

3. A keyedReference with a tModelKey of the XML Local Name taxonomy and a keyValue that is the value of the name attribute of the wsdl:service.

· The bindingTemplates element of the businessService MUST include bindingTemplate elements that model the ports of the service, as described in the following sections.

2.6.4 wsdl:port (uddi:bindingTemplate

A wsdl:port MUST be modeled as a uddi:bindingTemplate.

The minimum information that must be captured about a port is the binding that it implements, the portType that it implements, its entity type
, its local name, and its namespace
. Capturing the binding enables users to search for services that implement a specific binding. Capturing the portType enables users to search for services that implement a particular portType. Capturing the entity type enables users to search for bindings that are described by WSDL
. Capturing the local name and namespace enables users to find the definition of the specific port artifact
.

This information is captured as follows:
· The bindingTemplate tModelInstanceDetails element MUST contain at least the following tModelInstanceInfo elements:

1. A tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:binding that this port implements.

2. A tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:portType that this port implements.

· The bindingTemplate MUST contain a categoryBag, and the categoryBag MUST contain at least the following keyedReferences:

1. A keyedReference with a tModelKey of the WSDL Entity Type taxonomy and a keyValue of “port
”.

2. A keyedReference with a tModelKey of the XML Namespace taxonomy and a keyValue of the target namespace of the wsdl:definitions element that contains the wsdl:port
.

3. A keyedReference with a tModelKey of the XML Local Name taxonomy and a keyValue of the local name of the wsdl:port.
2.6.5 wsdl:binding Extensions (uddi:bindingTemplate

In order to meet the requirements stipulated in Section 1.1, additional information about the protocols used by a service MUST be captured in the uddi:bindingTemplate. This information enables users to search for services that support particular protocols, such as SOAP and HTTP, without knowing the specific binding implemented.

This information comes from wsdl:binding extensibility elements.

2.6.5.1 soap:binding

If the wsdl:binding contains a soap:binding extensibility element then the uddi:bindingTemplate MUST include the following additional tModelInstanceInfo element:

1. A tModelInstanceInfo with a tModelKey of the SOAP Protocol tModel.

If the value of the transport attribute of the soap:binding element is http://schemas.xmlsoap.org/soap/http then the bindingTemplate MUST include the following additional tModelInstanceInfo element:
1. A tModelInstanceInfo with a tModelKey of the HTTP SOAP Transport tModel
.

If the value of the transport attribute is anything else then the bindingTemplate MUST include an additional tModelInstanceInfo element with a tModelKey of an appropriate transport tModel.
2.6.5.2 http:binding

If the wsdl:binding contains an http:binding extensibility element then the uddi:bindingTemplate MUST include the following additional tModelInstanceInfo element:
1. A tModelInstanceInfo with a tModelKey of the standard HTTP Protocol tModel. The instanceParms element of this tModelInstanceInfo MUST contain the value of the verb attribute of the http:binding, usually either “GET” or “POST”, although other values are possible.
Note that this is a different tModel from the HTTP SOAP Transport tModel, and in this case there is no separate transport tModel.

2.6.5.3 Other wsdl:binding Extensions

Other wsdl:binding extensibility elements are handled in a similar fashion. It is assumed that vendors that provide other bindings will provide the appropriate protocol and transport tModels
.
2.6.6 wsdl:port Address Extensions (uddi:bindingTemplate

One other piece of information must be captured in the uddi:bindingTemplate, and that is the location of the Web service. This information comes from the wsdl:port extensibility element and is mapped to the uddi:accessPoint in the uddi:bindingTemplate that models the wsdl:port.

2.6.6.1
2.6.6.2
2.6.6.3
2.6.6.4
2.6.6.5 soap:address (uddi:accessPoint

A soap:address MUST be modeled as a uddi:accessPoint in the bindingTemplate that models the wsdl:port that contains the soap:address.

The accessPoint SHOULD specify the endpoint of the service. In this case, the useType of the accessPoint MUST be set to "endPoint”, and the content of the accessPoint MUST be the value of the location attribute of the soap:address. Alternatively the access point MAY indicate that the endpoint is specified in a WSDL deployment file. If the useType of the accessPoint is not set to “endPoint”, then it MUST be set to “wsdlDeployment”, and the content of the accessPoint MUST be a reference to the WSDL file containing the address information.
2.6.6.6 http:address (uddi:accessPoint
An http:address MUST be mapped to a uddi:accessPoint in the bindingTemplate that models the wsdl:port that contains the http:address.

The accessPoint SHOULD specify the endpoint of the service. In this case, the useType of the accessPoint MUST be set to “endPoint", and the content of the accessPoint MUST be the value of the location attribute of the http:address. Alternatively the access point MAY indicate that the endpoint is specified in a WSDL deployment file. If the useType of the accessPoint is not set to “endPoint”, then it MUST be set to “wsdlDeployment”, and the content of the accessPoint MUST be a reference to the WSDL file containing the address information.
2.6.6.7 Other wsdl:port Address Extensions
Any other address extensibility element MUST be mapped to a uddi:accessPoint in the bindingTemplate that models the wsdl:port that contains the address.
The accessPoint SHOULD specify the endpoint of the service. In this case, the useType of the accessPoint MUST be set to "endPoint”, and the content of the accessPoint MUST be the value of the location attribute of the address extensibility element. Alternatively the access point MAY indicate that the endpoint is specified in a WSDL deployment file. If the useType of the accessPoint is not set to “endPoint”, then it MUST be set to “wsdlDeployment”, and the content of the accessPoint MUST be a reference to the WSDL file containing the address information.
3 A Complete Example

Consider the following sample based on the WSDL file presented in the WSDL 1.1 specification
. This sample shows how a single WSDL file is decomposed into two tModels (one for the portType and one for the binding) and one businessService with one bindingTemplate. It then shows the kinds of UDDI API queries that can be used for the purposes of discovery.

3.1 WSDL Sample

<?xml version="1.0" encoding="utf-8" ?>

<definitions

name="StockQuote"

targetNamespace="http://example.com/stockquote/"

xmlns:tns="http://example.com/stockquote/"

xmlns:xsd1="http://example.com/stockquote/schema/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import

namespace="http://example.com/stockquote/schema/"

location="http://location/schema.xsd" />

<message name="GetLastTradePriceInput">

<part name="body" element="xsd1:TradePriceRequest" />

</message>

<message name="GetLastTradePriceOutput">

<part name="body" element="xsd1:TradePrice" />

</message>

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput" />

<output message="tns:GetLastTradePriceOutput" />

</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="GetLastTradePrice">

<soap:operation soapAction="http://example.com/GetLastTradePrice"/>

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<service name="StockQuoteService">

<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://location/sample"/>

</port>

</service>

</definitions>

Note that this WSDL file has one portType, one binding, one service, and one port. As such, this sample represents the simplest WSDL file. Also note that the location of this WSDL is at http://location/sample.wsdl.

3.2 UDDI V2 Model

3.2.1 UDDI portType tModel

The WSDL portType entity maps to a tModel. The tModel name is the same as the WSDL portType local name. The tModel contains a categoryBag that specifies the WSDL namespace, and it indicates that the tModel is of type “portType”. The overviewDoc provides a pointer to WSDL file.
<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >

<name>

StockQuotePortType

</name>

<categoryBag>

<keyedReference

tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496"
 keyName=”portType namespace”

keyValue=”http://example.com/stockquote/”

/>

<keyedReference

tModelKey="uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0"
 keyName=”WSDL type”

keyValue="portType"

/>

</categoryBag>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

<overviewURL>

<overviewDoc>

</tModel>
3.2.2 UDDI binding tModel

The WSDL binding entity maps to a tModel. The tModel name is the same as the WSDL binding local name. The tModel contains a categoryBag that specifies the WSDL namespace, it indicates that the tModel is of type “binding”, and it supplies a pointer to the portType tModel. The wsdlSpec keyedReference ensures that users can find the tModel using the conventions defined in the Version 1 Best Practice. The overviewDoc provides a pointer to WSDL file.

<tModel tModelKey="uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda">

<name>

StockQuoteSoapBinding

</name>

<categoryBag>

<keyedReference

tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496"
 keyName=”binding namespace”

keyValue=”http://example.com/stockquote/”

/>

<keyedReference

tModelKey="uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0"
 keyName=”WSDL type”

keyValue="binding"

/>

<keyedReference

tModelKey="uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85"
 keyName=”portType reference”

keyValue="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3"

/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
 keyName=”uddi-org:types”

keyValue="wsdlSpec"

/>

</categoryBag>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

<overviewURL>

<overviewDoc>

</tModel>

3.2.3 UDDI businessService and bindingTemplate

The WSDL service entity maps to a businessService, and the WSDL port entity maps to a bindingTemplate. Information from the WSDL binding extensibility elements is also captured in the bindingTemplate. The businessService name should be a human-readable name. The businessService contains a categoryBag that indicates that this service represents a WSDL service, and it specifies the WSDL namespace and WSDL service local name. The bindingTemplate specifies the endpoint of the service, and it contains a set of tModelInstanceDetails. The first two tModels referenced here indicate that the service communicates using SOAP over HTTP. The next tModel indicates that the service implements the StockQuoteSoapBinding and provides the WSDL port local name. The next tModel indicates that the service implements the StockQuotePortType. The last tModel provides a pointer to the WSDL file.
<businessService

serviceKey="102b114a-52e0-4af4-a292-02700da543d4"

businessKey="1e65ea29-4e0f-4807-8098-d352d7b10368">

<name>Stock Quote Service</name>

<bindingTemplates>

<bindingTemplate

bindingKey="f793c521-0daf-434c-8700-0e32da232e74”

serviceKey="102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint URLType="http">

http://location/sample

</accessPoint>

<tModelInstanceDetails>

 <tModelInstanceInfo
 tModelKey=”uuid:057916d3-6ec1-3755-b847-013f0f514586”>

 <description xml:lang=”en”>

 This service supports a SOAP binding.

 </description>

<tModelInstanceInfo

tModelKey="uuid
:26de470c-0dab-4471-89f9-57450a524005">

<description xml:lang="en">

This service uses HTTP transport.

</description>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda">

<description xml:lang="en">

This tModel key represents the wsdl:binding that this

wsdl:port implements.

</description>

<instanceDetails>

<instanceParms>StockQuotePort</instanceParms>

</instanceDetails>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3">

<description xml:lang="en">

This tModel represents the wsdl:portType that

this wsdl:port implements.

</description>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uuid:35e80847-04ba-3677-9867-3affa0e9b900">

<description xml:lang="en">

The location of the WSDL file containing the port.

</description>

<instanceDetails>

<instanceParms>http://location/sample.wsdl</instanceParms>

</instanceDetails>

</tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>

<categoryBag>

 <keyedReference

tModelKey=” uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0”
 keyName=”WSDL type”

keyValue=”service”

/>

 <keyedReference

tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496"
 keyName=”service namespace”

keyValue=”http://example.com/stockquote/”

/>

 <keyedReference

tModelKey=" uuid:451515ac-db54-3785-8937-114029f1d37b"
 keyName=”service local name”

keyValue="StockQuoteService"

/>

</categoryBag>

</businessService>

3.3 Sample V2 Queries

This section shows how to perform various UDDI V2 queries given the model of the example.

3.3.1 Find tModel for portType name

Find the portType tModel for StockQuotePortType in the namespace http://example.com/stockquote/.
<find_tModel generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <name>StockQuotePortType</name>

 <categoryBag>

 <keyedReference

 tModelKey=”uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0”
 keyName=”WSDL type”
 keyValue=”portType”/>

 <keyedReference

 tModelKey=”uuid:fb5fb934-9a3d-39dc-9871-271f64780496”
 keyName=”portType namespace”
 keyValue=”http://example.com/stockquote/”/>

 </categoryBag>

</find_tModel>

This should return the tModelKey uuid:e8cf1163-8234-4b35-865f-94a7322e40c3.

3.3.2 Find bindings for portType

Find all bindings for StockQuotePortType.

<find_tModel generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <categoryBag>

 <keyedReference

 tModelKey=” uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0”
 keyName=”WSDL type”
 keyValue=”binding”/>

 <keyedReference

 tModelKey=”uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85”
 keyName=”portType reference”
 keyValue=”uuid:e8cf1163-8234-4b35-865f-94a7322e40c3”/>

 </categoryBag>

</find_tModel>

This should return the tModelKey uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda.

3.3.3 Find Implementations of portType

Find all implementations of StockQuotePortType.

<find_binding generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <tModelBag>

 <tModelKey>uuid:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.3.4 Find implementations of binding

Find all implementations of StockQuoteSoapBinding.

<find_binding generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <tModelBag>

 <tModelKey>uuid:49662926-f4a5-4ba5-b8d0-32ab388dadda</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.3.5 Find SOAP Implementations of portType

Find all implementations of StockQuotePortType that support SOAP.

<find_binding generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <tModelBag>

 <tModelKey>uuid:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 <tModelKey>uuid:057916d3-6ec1-3755-b847-013f0f514586</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.3.6 Find SOAP/HTTP Implementations of portType

Find all implementations of StockQuotePortType that support SOAP over HTTP.

<find_binding generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

 <tModelBag>

 <tModelKey>uuid:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 <tModelKey>uuid:057916d3-6ec1-3755-b847-013f0f514586</tModelKey>

 <tModelKey
>uuid:26de470c-0dab-4471-89f9-57450a524005</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.3.7 Find the portType of a binding

The portType of a binding is contained in the categoryBag of the binding tModel. No query is required once the tModel of the binding has been obtained. The keyValue of the keyedReference with tModelKey=”uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85” contains the portType tModelKey.
3.4 UDDI V3 Model

3.4.1 UDDI portType tModel

The WSDL portType entity maps to a tModel. The tModel name is the same as the WSDL portType local name. The tModel contains a categoryBag that specifies the WSDL namespace, and it indicates that the tModel is of type “portType”. The overviewDoc provides a pointer to WSDL file and indicates that the document is a WSDL interface description.
<tModel tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3" >

<name>

StockQuotePortType

</name>

<categoryBag>

<keyedReference

tModelKey="uddi:uddi.org:xml:namespace"
 keyName=”portType namespace”

keyValue=”http://example.com/stockquote/”

/>

<keyedReference

tModelKey="uddi:uddi.org:wsdl:types"
 keyName=”WSDL type”

keyValue="portType"

/>

</categoryBag>

<overviewDoc>

<overviewURL useType=”wsdlInterface”>

http://location/sample.wsdl

<overviewURL>

<overviewDoc>

</tModel>
3.4.2 UDDI binding tModel

The WSDL binding entity maps to a tModel. The tModel name is the same as the WSDL binding local name. The tModel contains a categoryBag that specifies the WSDL namespace, it indicates that the tModel is of type “binding”, and it supplies a pointer to the portType tModel. The wsdlSpec keyedReference ensures that users can find the tModel using the conventions defined in the Version 1 Best Practice. The overviewDoc provides a pointer to WSDL file and indicates that the document is a WSDL interface description.

<tModel tModelKey="uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda">

<name>

StockQuoteSoapBinding

</name>

<categoryBag>

<keyedReference

tModelKey="uddi:uddi.org:xml:namespace"
 keyName=”binding namespace”

keyValue=”http://example.com/stockquote/”

/>

<keyedReference

tModelKey="uddi:uddi.org:wsdl:types"
 keyName=”WSDL type”

keyValue="binding"

/>

<keyedReference

tModelKey="uddi:uddi.org:wsdl:portTypeReference"
 keyName=”portType reference”

keyValue="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3"

/>

<keyedReference

tModelKey="uddi:uddi.org:categorization:types"
 keyName=”tModel type”

keyValue="wsdlSpec"

/>

</categoryBag>

<overviewDoc>

<overviewURL useType=”wsdlInterface”>

http://location/sample.wsdl

<overviewURL>

<overviewDoc>

</tModel>

3.4.3 UDDI businessService and bindingTemplate

The WSDL service entity maps to a businessService, and the WSDL port entity maps to a bindingTemplate. Information from the WSDL binding extensibility elements is also captured in the bindingTemplate. The businessService name should be a human-readable name. The businessService contains a categoryBag that indicates that this businessService represents a WSDL service, and it specifies the WSDL namespace and WSDL service local name. The bindingTemplate specifies the endpoint of the service, and it contains a set of tModelInstanceDetails. The first two tModels referenced here indicate that the service communicates using SOAP over HTTP. The next two tModels indicate that the service implements the StockQuoteSoapBinding and the StockQuotePortType. The bindingTemplate also contains a categorBag that indicates that this bindingTemplate represents a WSDL port, and it specifies the WSDL namespace and WSDL port local name.
<businessService

serviceKey="uddi:102b114a-52e0-4af4-a292-02700da543d4"

businessKey="uddi:1e65ea29-4e0f-4807-8098-d352d7b10368">

 <name>Stock Quote Service</name>

 <bindingTemplates>

 <bindingTemplate

bindingKey="uddi:f793c521-0daf-434c-8700-0e32da232e74”

serviceKey="uddi:102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint useType="endPoint">

http://location/sample

</accessPoint>

<tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey=”uddi:uddi.org:protocol:soap”>

 <description xml:lang=”en”>

 This service supports the SOAP protocol

 </description>

<tModelInstanceInfo

tModelKey
="uddi:26de470c-0dab-4471-89f9-57450a524005">

<description xml:lang="en">

This service uses the HTTP transport protocol.

</description>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda">

<description xml:lang="en">

This tModel key represents the wsdl:binding that this

wsdl:port implements.

</description>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3">

<description xml:lang="en">

This tModel represents the wsdl:portType that

this wsdl:port implements.

</description>

</tModelInstanceInfo>
 </tModelInstanceDetails>

 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:wsdl:types”
 keyName=”WSDL type”
 keyValue=”port”

 />
 <keyedReference
tModelKey="uddi:uddi.org:xml:namespace"
 keyName=”port namespace”
 keyValue=”http://example.com/stockquote/”

 />
 <keyedReference
tModelKey="uddi:uddi.org:xml:localName"
 keyName=”port local name”

 keyValue=”StockQuotePort”
 />
 </categoryBag>

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>
 <keyedReference
tModelKey=”uddi:uddi.org:wsdl:types”
 keyName=”WSDL type”

 keyValue=”service”
 />

 <keyedReference

 tModelKey="uddi:uddi.org:xml:namespace"
 keyName=”service namespace”

 keyValue=”http://example.com/stockquote/”

 />

 <keyedReference

 tModelKey="uddi:uddi.org:xml:localName"
 keyName=”service local name”

 keyValue=”StockQuoteService”

 />

 </categoryBag>

</businessService>

3.5 Sample V3 Queries

This section shows how to perform various UDDI V3 queries given the model of the example.

3.5.1 Find tModel for portType name

Find the portType tModel that described the StockQuotePortType in the namespace http://example.com/stockquote/.
<find_tModel xmlns=”urn:uddi-org:api_v3”>

 <name>StockQuotePortType</name>

 <categoryBag>

 <keyedReference

 tModelKey=”uddi:uddi.org:wsdl:types”
 keyname=”WSDL type”
 keyValue=”portType”

 />

 <keyedReference

 tModelKey=”uddi:uddi.org:xml:namespace”
 keyName=”portType namespace”

 keyValue=”http://example.com/stockquote/”

 />

 </categoryBag>

</find_tModel>

This should return the tModelKey uddi:e8cf1163-8234-4b35-865f-94a7322e40c3.

3.5.2 Find bindings for portType

Find all bindings for StockQuotePortType.
<find_tModel xmlns=”urn:uddi-org:api_v3”>

 <categoryBag>

 <keyedReference

tModelKey=”uddi:uddi.org:wsdl:types”

keyName=”WSDL type”

keyValue=”binding”

/>

 <keyedReference

tModelKey=”uddi:uddi.org:wsdl:portTypeReference”

keyName=”portType reference”

keyValue=”uddi:e8cf1163-8234-4b35-865f-94a7322e40c3”

/>

 </categoryBag>

</find_tModel>

This should return the tModelKey uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda.

3.5.3 Find Implementations of portType

Find all implementations of StockQuotePortType.

<find_binding xmlns=”urn:uddi-org:api_v3”>

 <tModelBag>

 <tModelKey>uddi:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.5.4 Find Implementations of binding

Find all implementations of StockQuoteSoapBinding.
<find_binding xmlns=”urn:uddi-org:api_v3”>

 <tModelBag>

 <tModelKey>uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.5.5 Find SOAP Implementations of portType

Find all implementations of StockQuotePortType that support the SOAP protocol.

<find_binding xmlns=”urn:uddi-org:api_v3”>

 <tModelBag>

 <tModelKey>uddi:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 <tModelKey>uddi:uddi.org:protocol:soap</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74.

3.5.6 Find SOAP/HTTP Implementations of portType

Find all implementations of the StockQuotePortType that support SOAP over HTTP.

<find_binding xmlns=”urn:uddi-org:api_v3”>

 <tModelBag>

 <tModelKey>uddi:e8cf1163-8234-4b35-865f-94a7322e40c3</tModelKey>

 <tModelKey>uddi:uddi.org:protocol:soap</tModelKey>

 <tModelKey
>uddi:26de470c-0dab-4471-89f9-57450a524005</tModelKey>

 </tModelBag>

</find_binding>

This should return the bindingKey uddi:f793c521-0daf-434c-8700-0e32da232e74.

3.5.7 Find the portType of a binding

The portType of a binding is contained in the categoryBag of the binding tModel. No query is required once the tModel of the binding has been obtained. The keyValue of the keyedReference with tModelKey=”uddi:uddi.org:wsdl:portTypeReference” contains the portType tModelKey.
4 References

[This section should list any references to publicly available documents that the reader may find helpful during reading of this Technical noted document. These documents may expand upon any aspect of the material, for instance they may provide additional insight into the business situation dealt with or they may document standards or products used in developing the solution.]

4.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

1. UDDI Version 2.0 Data Structure Reference, July 7, 2002. Available at http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.pdf.

2. Using WSDL in a UDDI Registry 1.08, ??Date??, 2002. Available at http://uddi.org/pubs/wsdlbestpractices.pdf
3. Web Services Description Language (WSDL) 1.1, March 15, 2000. Available at http://www.w3.org/TR/wsdl
4. XPointer xpointer() Scheme, W3C Working Draft 10 July 2002. Available at http://www.w3.org/TR/2002/WD-xptr-xpointer-20020710/
A Canonical tModels

A.1 WSDL Entity Type tModel

A.1.1 Design Goals

This mapping uses a number of UDDI entities to represent the various entities within a WSDL file. A mechanism is required to indicate what type of WSDL entity is being described by each UDDI entity. The WSDL Entity Type tModel provides a typing system for this purpose. This taxonomy is used to indicate that a UDDI entity represents a particular type of WSDL entity.

A.1.2 Definition

Name:

uddi.org:wsdl:types

Description:

WSDL Type Category System

V3 format key:
uddi:uddi.org:wsdl:types

V1,V2 format key:
uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0
Categorization:
categorization

Checked:

no

A.1.2.1 V2 tModel Structure

<tModel tModelKey="uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0" >

<name>uddi.org:wsdl:types</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#wsdlTypes

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="unchecked"

/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="categorization"

/>

</categoryBag>

</tModel>

A.1.3 Valid Values

While this is an unchecked taxonomy, there are only four values that should be used with this taxonomy:

	keyValue
	Description
	UDDI Entity

	portType
	Represents a UDDI entity categorized as a wsdl:portType
	tModel

	binding
	Represents a UDDI entity categorized as a wsdl:binding
	tModel

	service
	Represents a UDDI entity categorized as a wsdl:service
	businessService

	port
	Represents a UDDI entity categorized as a wsdl:port
	bindingTemplate (v3 only)

A.1.4 Example of Use

A V2 tModel representing a portType tModel would have a categoryBag representing its type:

<categoryBag>

<keyedReference

tModelKey="uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0"

keyName="WSDL Entity type"

keyValue="portType"

/>

…

</categoryBag>

A.2 XML Namespace tModel

A.2.1 Design Goals

A namespace provides necessary qualifying information about a technical concept or model. The XML Namespace tModel provides a mechanism to associate a namespace with a UDDI entity. This taxonomy describes a UDDI entity by specifying the target namespace of the description file (i.e., a WSDL file or XML Schema file) that describes the entity. More than one tModel might be categorized with the same namespace – in fact, this mapping would be quite common, as many WSDL files use a common target namespace for <wsdl:portType>, <wsdl:binding>, and <wsdl:service> elements.

A.2.2 Definition

Name:

uddi.org:xml:namespace

Description:

A category system used to indicate namespaces

V3 format key:
uddi:uddi.org:xml:namespace
V1, V2 format key:
uuid:fb5fb934-9a3d-39dc-9871-271f64780496
Categorization:
categorization

Checked:

no

A.2.2.1 V2 tModel Structure

<tModel tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496">

<name>uddi.org:xml:namespace</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#xmlNamespace

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="unchecked"

/>

 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="categorization"

/>

</categoryBag>

</tModel>

A.2.3 Valid Values

The values used in this taxonomy are namespaces of type “anyURI”. The content of keyValue in a keyedReference that refers to this tModel is the target namespace of the WSDL file that describes the WSDL entity described by the UDDI entity.
A.2.4 Example of Use

A namespace keyedReference would be as follows:

<categoryBag>

<keyedReference

tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496"

keyName="namespace"

keyValue="urn:foo"

/>

…

</categoryBag>

A.3 XML Local Name tModel

A.3.1 Design Goals

Each WSDL entity is identified by its name attribute, and this identification information needs to be captured in the mapped UDDI entities. In the case of wsdl:portType and wsdl:binding, the name attribute is mapped to the tModel name element. However, it isn’t appropriate to map the wsdl:service name attribute to the name element of the businessService, and, in the case of wsdl:port, the bindingTemplate entity does not have a name element. The XML Local Name tModel provides a mechanism to indicate the name attribute for these two constructs.

A.3.2 Definition

Name:

uddi.org:xml:localName
Description:

A category system used to indicate XML local names

V3 format key:
uddi:uddi.org:xml:localName
V1,V2 format key:
uuid:451515ac-db54-3785-8937-114029f1d37b
Categorization:
categorization

Checked:

no

A.3.2.1 V2 tModel Structure

<tModel tModelKey="uuid:451515ac-db54-3785-8937-114029f1d37b" >

<name>uddi.org:xml:localName</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#xmlLocalName

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="unchecked"

/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="categorization"

/>

</categoryBag>

</tModel>
A.3.3 Valid Values

The values used in this taxonomy are XML local names. The content of keyValue in a keyedReference that refers to this tModel is equal to the name attribute of the WSDL entity described by the UDDI entity.
A.3.4 Example of Use

A local name keyedReference would be as follows:

<categoryBag>

<keyedReference

tModelKey="uuid:451515ac-db54-3785-8937-114029f1d37b"
 keyName=”Local service name”

keyValue="StockQuoteService"

/>

…

</categoryBag>

A.4 WSDL portType Reference tModel

A.4.1 Design Goals

WSDL entities exhibit many relationships. Specifically, a wsdl:port describes an implementation of a wsdl:binding, and a wsdl:binding describes a binding of a particular wsdl:portType. These same relationships must be expressed in the UDDI mapping. UDDI provides a built-in mechanism, via the tModelInstanceInfo structure, to associate a bindingTemplate with a tModel. But UDDI does not provide a built-in mechanism to describe a relationship between two tModels. The WSDL portType Reference category system provides a mechanism to indicate that a wsdl:binding tModel is a binding of a specific wsdl:portType tModel.
A.4.2 Definition

Name:

uddi.org:wsdl:portTypeReference

Description:

A category system used to reference a wsdl:portType tModel
V3 format key:
uddi:uddi.org:wsdl:portTypeReference

V1,V2 format key:
uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85
Categorization:
categorization

Checked:

no

A.4.2.1 V2 tModel Structure

<tModel tModelKey="uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85" >

<name>uddi.org:wsdl:portTypeReference</name>

<description xml:lang="en">

This tModel is a taxonomy tModel that can be used to identify a relationship to a portType tModel.

</description>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#portTypeReference

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="categorization"

/>

 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="unchecked"

/>

</categoryBag>
</tModel>

A.4.3 Valid Values

Valid values for this taxonomy are tModelKeys. The content of keyValue in a keyedReference that refers to this tModel is the tModelKey of the wsdl:portType tModel being referenced.

A.4.4 Example of Use

One would add the following keyedReference to signify that a wsdl:binding implements a specific portType:

<categoryBag>

 <keyedReference

tModelKey="uuid:d3e8ef29-877e-3486-b9e2-46af338d6c85"

keyName="wsdl:portType Reference"

keyValue="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3"

/>

…

</categoryBag>

Note that the keyValue is a tModelKey, which, if queried for using get_tModelDetail, would return the tModel that represents the portType.
A.5 WSDL URL Reference tModel

A.5.1 Design Goals

A service provider may not want to specify the address of a service port in the uddi:accessPoint element and instead require the user to retrieve a WSDL file to obtain the service address. UDDI V2 does not provide a built-in mechanism to indicate that the access point should be obtained from a WSDL file. The WSDL URL Reference tModel provides such a mechanism. A V2 bindingTemplate includes a tModelInstanceInfo element that references this tModel, and the instanceParms contains the URL of the WSDL file.
The wsdlDeployment useType attribute in the UDDI V3 accessPoint element provides a built-in mechanism to indicate that the access point should be obtained from a WSDL file. Even though the WSDL URL Reference tModel isn’t required for UDDI V3, a V3 key is given for this tModel to ease migration to UDDI V3.

A.5.2 Definition

Name:

uddi.org:wsdl:URLReference
Description:

A tModel used to point to a WSDL document.
V3 format key:
uddi:uddi.org:wsdl:URLReference
V1,V2 format key:
uuid:35e80847-04ba-3677-9867-3affa0e9b900
Categorization:
wsdlSpec

A.5.2.1 V2 tModel Structure

<tModel tModelKey="uuid:35e80847-04ba-3677-9867-3affa0e9b900" >

<name>uddi.org:wsdl:URLReference</name>

<description xml:lang="en">
This tModel is used to include the URL for a WSDL document.

</description>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#URLReference

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="wsdlSpec"

/>

</categoryBag>

</tModel>

A.5.3 Valid Values

The value of the instanceParms element associated with this tModel is the URL of the WSDL file that contains a wsdl:port definition.
A.5.4 Example of Use

One would add the following tModelInstanceInfo to a bindingTemplate to provide the URL of the WSDL file that contained the port element:

<tModelInstanceInfo

tModelKey="uuid:35e80847-04ba-3677-9867-3affa0e9b900"
>

<description xml:lang="en">

The URL of the WSDL file that contains the port.

</description>

<instanceDetails>

<instanceParms>

http://example.com/stockquote/stockquoteservice.wsdl

</instanceParms>

</instanceDetails>
<tModelInstanceInfo>

A.6 SOAP Protocol tModel

A.6.1 Design Goals

Web services can support a wide variety of protocols. Users looking for Web services may want to search for Web services that support a specific protocol. The SOAP Protocol tModel can be used to indicate that a Web service supports the SOAP 1.1 protocol. The SOAP Protocol tModel is one of a number of tModels that are used to map wsdl:binding protocol information to a uddi:bindingTemplate.
A.6.2 Definition

Name:

uddi.org:protocol:soap

Description:

A tModel that represents the SOAP 1.1 protocol

V3 format key:
uddi:uddi.org:protocol:soap

V1,V2 format key:
uuid:057916d3-6ec1-3755-b847-013f0f514586
Categorization:
protocol

A.6.2.1 tModel Structure

<tModel tModelKey="uuid:057916d3-6ec1-3755-b847-013f0f514586">

<name>uddi.org:protocol:soap</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#soap

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="protocol"

/>

</categoryBag>

</tModel>

A.6.3 Example of Use

The SOAP Protocol tModel is used to indicate that a service binding represents a Web service that supports the SOAP 1.1 protocol. The SOAP Protocol tModel is included in the list of tModels in the tModelInstanceDetails element in the uddi:bindingTemplate element. Inclusion of this tModel enables a user to make a query to find bindings that support the SOAP 1.1 protocol.

<bindingTemplates>

<bindingTemplate

bindingKey="f793c521-0daf-434c-8700-0e32da232e74”

serviceKey="102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint URLType="http">

http://location/sample

</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo

tModelKey="uuid:057916d3-6ec1-3755-b847-013f0f514586">

<description xml:lang="en">

This tModel represents the SOAP protocol

</description>

</tModelInstanceInfo>

… … …

</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>

A.7 HTTP Protocol tModel

A.7.1 Design Goals

Web services can support a wide variety of protocols. Users looking for Web services may want to search for Web services that support a specific protocol. The HTTP Protocol tModel can be used to indicate that a Web service supports the HTTP protocol. The HTTP Protocol tModel is one of a number of tModels that are used to map wsdl:binding protocol information to a uddi:bindingTemplate.
A.7.2 Definition

Name:

uddi.org:protocol:http

Description:

A tModel that represents the HTTP protocol

V3 format key:
uddi:uddi.org:protocol:http
V1,V2 format key:
uuid:e01a4d7f-b7d6-337d-b47c-2cf3e84edd75
Categorization:
protocol

A.7.2.1 V2 tModel Structure

<tModel tModelKey="uuid:e01a4d7f-b7d6-337d-b47c-2cf3e84edd75">

<name>uddi.org:protocol:http</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#http

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyValue="protocol"

/>

</categoryBag>

</tModel>

A.7.3 Example of Use

The HTTP Protocol tModel is used to indicate that a service binding represents a Web service that supports the HTTP protocol. The HTTP Protocol tModel is included in the list of tModels in the tModelInstanceDetails element in the uddi:bindingTemplate element. Inclusion of this tModel enables a user to make a query to find bindings that support the HTTP protocol.

<bindingTemplates>

<bindingTemplate

bindingKey="f793c521-0daf-434c-8700-0e32da232e74”

serviceKey="102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint URLType="http">

http://location/sample

</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo

tModelKey="uuid:e01a4d7f-b7d6-337d-b47c-2cf3e84edd75">

<description xml:lang="en">

This tModel key represents the HTTP protocol

</description>

</tModelInstanceInfo>

… … …

</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

A.8 HTTP SOAP Transport tModel

A.8.1 Design Goals

The SOAP protocol can utilize a variety of transport protocols to transport SOAP messages. Users looking for Web services may want to search for Web services that support a specific transport protocol. The HTTP SOAP Transport tModel can be used to indicate that a Web service uses the HTTP protocol to transport SOAP messages. The HTTP SOAP Transport tModel is one of a number of tModels that are used to map wsdl:binding protocol information to a uddi:bindingTemplate. Other transport tModels may be defined in the future.

A.8.2 Definition

Name:
http://schemas.xmlsoap.org/soap/http

Description: A tModel that represents SOAP over HTTP

V3 format key: uddi:26de470c-0dab-4471-89f9-57450a524005

V1,V2 format key: uuid:26de470c-0dab-4471-89f9-57450a524005

Categorization: transport

A.8.2.1 tModel Structure

<tModel tModelKey="uuid:26de470c-0dab-4471-89f9-57450a524005" >

<name>http://schemas.xmlsoap.org/soap/http</name>

<overviewDoc>

<overviewURL>

http://uddi.org/pubs/uddi_wsdl_technical_note_v2.htm#http

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName=”Wire/transport protocol”

keyValue="transport"

/>

</categoryBag>

</tModel>

A.8.3 Example of Use

The HTTP SOAP Transport tModel is used to indicate that a service binding represents a Web service that uses the HTTP protocol to transport SOAP messages. The HTTP SOAP Transport tModel is included in the list of tModels in the tModelInstanceDetails element in the uddi:bindingTemplate element. Inclusion of this tModel enables a user to make a query to find bindings that support the SOAP over HTTP.

<bindingTemplates>

<bindingTemplate

bindingKey="f793c521-0daf-434c-8700-0e32da232e74”

serviceKey="102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint URLType="http">

http://location/sample

</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo

tModelKey="uuid:26de470c-0dab-4471-89f9-57450a524005">

<description xml:lang="en">

This tModel represents a SOAP over HTTP binding

</description>

</tModelInstanceInfo>

… … …

</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>
B Using XPointer in overviewURL

B.1 XPointer Syntax

In this mapping of WSDL to UDDI, a UDDI entity describes a particular element within a WSDL file. The particular WSDL element described SHOULD be determined by using the metadata contained within the entity’s categoryBag, and either the UDDI entity’s name or the instanceParms value specified in the WSDL Local Name tModel. Alternatively, the overviewURL value MAY contain a fragment identifier that identifies the particular WSDL element.
As the WSDL 1.1 schema does not allow for id attributes on WSDL elements, we cannot simply use a fragment identifier of the form #foo.

If the optional fragment identifier is used, the syntax defined by XPointer [4] MUST be used for the fragment identifier. It should be noted that at the time of writing this Technical Note, XPointer is a set of Working Draft documents and is therefore subject to change.
B.1.1 Example of Use
Referring to the WSDL Sample in Section 3.1, the StockQuotePortType tModel may reference the wsdl:portType element directly from the overviewURL using XPointer syntax.
<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >

<name>

StockQuotePortType

</name>

<categoryBag>

<keyedReference

tModelKey="uuid:fb5fb934-9a3d-39dc-9871-271f64780496"

 keyName=”portType target namespace”

keyValue=”http://example.com/stockquote/”

/>

<keyedReference

tModelKey="uuid:5b67c4b8-fbb8-3681-9c63-bf6b0c838dd0"

 keyName=”WSDL Entity Type”

keyValue="portType"

/>

</categoryBag>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl#xmlns(wsdl=http://schemas.xmlsoap.org/wsdl/) xpointer(/wsdl:definitions/wsdl:portType[@name=”StockQuotePortType”]).

<overviewURL>

<overviewDoc>

</tModel>
C Acknowledgments

The following individuals were members of the committee during the development of this technical note:
John Colgrave, IBM
Karsten Januszewski, Microsoft

Anne Thomas Manes

Tony Rogers, CA
D Revision History

[This appendix is optional, but helpful.]

	Rev
	Date
	By Whom
	What

	
	
	
	

	
	
	
	

	
	
	
	

E Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

businessEntity: Information about the party who publishes information about a service

businessService: Descriptive information about a particular family of technical services

bindingTemplate: Technical information about a service entry point and construction specifications

tModel: Descriptions of specifications for services or taxonomies. Basis for technical fingerprints

bindingTemplate data contains references to tModels. These references designate the interface specifications for a service.

� WSDL 1.1 does not require the usage of a targetNamespace, but such a practice is not recommended. In the event that a WSDL file without a targetNamespace is registered in UDDI, it will not have an XML WSDL Namespace keyedReference, and queries for these tModels based solely on the tModel name could return multiple results because no namespace can be specified.

� WSDL 1.1 does not require the usage of a targetNamespace, but such a practice is not recommended. In the event that a WSDL file without a targetNamespace is registered in UDDI, it will not have a WSDL Namespace keyedReference and queries for these tModels based solely on the tModel name could return multiple results because no namespace can be specified.

� By categorizing a wsdl:binding tModel according to the Version 1 UDDI/WSDL Best Practice, backward compatibility is maintained. However, wsdl:portType tModels should not be categorized with this designation, as the wsdl:portType tModel will not contain sufficient information to compose a complete WSDL binding.

� WSDL permits any arbitrary group of ports to be collected into a single service, therefore a wsdl:service may not directly correspond to a uddi:businessService. As a best practice for this mapping, a wsdl:service SHOULD contain a collection of associated ports that relate to a single logical business service, for example, a collection of ports that implement alternate bindings for a particular portType. A wsdl:service SHOULD NOT contain multiple ports that do not relate to a single logical business service.

� Note that the location of the WSDL file is not captured in the businessService. The WSDL location is captured in the bindingTemplates instead.

� Users searching for a wsdl:service MUST NOT assume that the businessService name is the same as the wsdl:service local name. Because an existing businessService could be used, and it is unlikely in this case that the businessService name is the same as the WSDL service name, the wsdl:service local name MUST be specified as a keyedReference in the categoryBag MUST be used to retrieve the WSDL service name, not the businessServiceName.

� While it may seem redundant to create tModelInstanceInfos for both portType and binding, doing so allows one to query for services based on known portTypes, as opposed to just known bindings.

� WSDL 1.1 does not require the usage of a targetNamespace, but such a practice is not recommended. In the event that a WSDL file without a targetNamespace is registered in UDDI, it will not have an XML Namespace keyedReference, and queries for these tModels based solely on the tModel name could return multiple results because no namespace can be specified.

� This mapping is slightly different from the UDDI V2 mapping. UDDI V2 does not support the useType attribute on overviewURL.

� This mapping is slightly different from the UDDI V2 mapping. UDDI V2 does not support the useType attribute on overviewURL.

� WSDL permits any arbitrary group of ports to be collected into a single service, therefore a wsdl:service may not directly correspond to a uddi:businessService. As a best practice for this mapping, a wsdl:service SHOULD contain a collection of associated ports that relate to a single logical business service, for example, a collection of ports that implement alternate bindings for a particular portType. A wsdl:service SHOULD NOT contain multiple ports that do not relate to a single logical business service.

� Users searching for a wsdl:service MUST NOT assume that the businessService name is the same as the wsdl:service local name. Because an existing businessService could be used, the wsdl:service local name MUST be specified as a keyedReference in the categoryBag.

� The details of this mapping are different from the UDDI V2 mapping. The UDDI V2 mapping does not capture the port’s WSDL entity type, whereas the UDDI V3 mapping does. The UDDI V2 mapping captures the port’s namespace in the businessService, whereas the UDDI V3 mapping captures it in the bindingTemplate. The UDDI V2 mapping captures the WSDL location in the bindingTemplate, whereas the V3 mapping does not capture the WSDL location. The UDDI V2 mapping captures the port local name in the instanceParms of the tModelInstanceInfo that represents the wsdl:binding, whereas the UDDI V3 mapping captures the port local name in the bindingTemplate categoryBag.

� Note that in the v3 modeling, the local name of the port is captured in a keyedReference, whereas in v2, it was captured in the tModelInstanceInfo instanceParms.

� This mapping is slightly different from the UDDI V2 mapping. UDDI V3 expands the flexibility of the accessPoint element. In UDDI V2 the accessPoint could only be used to specify the endpoint of the service. In UDDI V3 the useType attribute can be used to identify what type of accessPoint is used.

� Note that in the v3 modeling, the local name of the port is captured in a keyedReference, whereas in v2, it was captured in the tModelInstanceInfo instanceParms.

�PAGE \# "'Page: '#'�'" ��What about the SOAP over HTTP tModel? (we can’t use the existing HTTP Transport tModel as is)

�PAGE \# "'Page: '#'�'" ��Perhaps this should be SHOULD? Claus has some concerns – ought to be able to support many-to-many relationships between wsdl:service and uddi:businessService. Does the footnote cover this issue? Do we want to describe a methodology to map many-to-many relationships? Perhaps using business service projection? This mapping MUST generate one-to-one mapping from wsdl:service to uddi:businessService. (required to meet requirement #1) Then use projection to associate business-oriented businessService with this generated one.

�PAGE \# "'Page: '#'�'" ��Perhaps we should say “one or more”?

�PAGE \# "'Page: '#'�'" ��Why do we need the service’s entity type? Will users want to search for services based on type=service? (I don’t see this in the requirements)

�PAGE \# "'Page: '#'�'" ��Wouldn’t it be more appropriate to capture the WSDL location here rather than replicate it in each bindingTemplate? Perhaps WSDL URL Reference tModel should be a taxonomy rather than a wsdlSpec?

�PAGE \# "'Page: '#'�'" ��See previous comment

�PAGE \# "'Page: '#'�'" ��Wouldn’t it be more appropriate to capture the WSDL location in the businessService rather than to replicate it in each bindingTemplate?

�PAGE \# "'Page: '#'�'" ��Wouldn’t it be more appropriate to capture the WSDL location in the businessService?

�PAGE \# "'Page: '#'�'" ��What tModel to use here?

�PAGE \# "'Page: '#'�'" ��What tModel to use here?

�PAGE \# "'Page: '#'�'" ��We should reference the process to register new tModels

�PAGE \# "'Page: '#'�'" ��See previous notes on this issue.

�PAGE \# "'Page: '#'�'" ��Why do we need the service’s entity type? Will users want to search for services based on type=service? (I don’t see this in the requirements)

�PAGE \# "'Page: '#'�'" ��We don’t capture the WSDL file location in the V3 mapping.

�PAGE \# "'Page: '#'�'" ��Actually, it doesn’t. We don’t capture the location of the WSDL file.

�PAGE \# "'Page: '#'�'" ��Why do we need the port’s entity type? Will users want to search for bindings based on type=port? (I don’t see this in the requirements)

�PAGE \# "'Page: '#'�'" ��Do we need to capture the namespace here? The namespace is specified in the businessService. Shouldn’t we make this mapping more consistent with the V2 mapping? The only information that needs to be captured at this level is the binding, portType, and local name. The namespace and WSDL location should be captured at the businessService.

�PAGE \# "'Page: '#'�'" ��Is this of any value?

�PAGE \# "'Page: '#'�'" ��Except that we haven’t captured the WSDL location.

�PAGE \# "'Page: '#'�'" ��Why is this necessary?

�PAGE \# "'Page: '#'�'" ��Why is this necessary? The namespace is specified in the businessService.

�PAGE \# "'Page: '#'�'" ��What tModel to use here?

�PAGE \# "'Page: '#'�'" ��Reference the process to register standard tModels.

�PAGE \# "'Page: '#'�'" ��The WSDL sample from WSDL 1.1 spec has an error (port uses wrong binding local name). This WSDL has been corrected. Should we mention this correction?

�PAGE \# "'Page: '#'�'" ��Need the correct tModelKey.

�PAGE \# "'Page: '#'�'" ��Need the correct tModelKey.

�PAGE \# "'Page: '#'�'" ��Need the correct tModelKey

�PAGE \# "'Page: '#'�'" ��Need the correct tModelKey

�PAGE \# "'Page: '#'�'" ��Do we want to call this http://schemas.xmlsoap.org/soap?

�PAGE \# "'Page: '#'�'" ��What to do? V2 provides an http transport tModel that we could use. V3 has qualified the tModel to mean HTTP/GET.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 43
2
wsdl-tn-2.00-draft-20021114-atm4

12 June 2002

Copyright © OASIS Open 2002. All Rights Reserved.

Page 22 of 43

