UnitSpace BCR Server

Data Services Getting Started Guide
Data Services Overview

UnitSpace BCR Server contains a built-in repository optimized for storing business data exchanged between information systems potentially belonging to multiple parties. Data services provide a SOAP interface to the data in the repository. Metadata-based filters specify a subset of repository visible to service consumers.
Repository metamodel is represented in entity-relational design style derived from UDDI information model. Thus, its primary data objects are entities and relationships between them. Accompanying metadata describes structural components of specific information models via entity type, attribute, identifier and taxonomy definitions. Information model metadata provides at least a semantic description of data, but may also provide syntactic bindings to enable schema-based serialization and deserialization of data. Such metadata is exposed via UDDI tModel data structures and is not managed via data services.
Purpose

UnitSpace BCR Server allows data to be published, integrated and re-packaged for on demand delivery in an interoperability-ready information model. Data services enable data exchange between systems, presenting a uniform interface, which does not depend on specific information systems involved. Security model is set up by service owners for each service and allows for attribute-level access control granularity.

Such systems may be legacy systems that have not originally been designed to support the new channels and new user categories which the system now needs to provide data to and/or receive data from. Data services allow a service-oriented façade to be created that presents data sharing capabilities to such systems, enabling data to be exchanged and synchronized with them. Façade design pattern allows systems to be replaced without disturbing a live integration, since external systems are connected to a stable interface.

Whether exchanging data within a company or within a community of trading partners, data services are a simple and reliable solution that helps achieve managed one-to-many and many-to-many communication.
UDDI Integration

UnitSpace BCR Server uses UDDI registry to advertise all services, including data services, created via its Management API. In order to achieve such integration, UnitSpace BCR Server relies on the affiliated UDDI registry to provide authentication function via standard UDDI API. The same API is used to publish, update and remove publicly-accessible service registrations. Authorization logic is handled by UnitSpace BCR Server internally and is managed by UnitSpace BCR Server systems administrator as well as by individual service and partition owners for the artifacts in their custody.
UnitSpace BCR Server V3R4 supports UDDI Version 2 Publication API.

API Overview

All UnitSpace BCR Server APIs, including data service and repository APIs, support SOAP 1.1 over HTTP with and without SSL (on different endpoints). All messages are defined as document-style literal-encoded, SOAP encoding is not supported. API’s WSDL and XML Schema definitions conform to WS-I Basic Profile 1.0. On-the-wire message serialization may vary slightly depending on the underlying application server platform.

Data services are implemented as an API set consisting of 6 possible endpoint types (see Table 1).

	Data Service Type
	Data Serialization Style

	
	Raw
	Native
	Schema

	Information Provider
(Inquiry API)
	search and retrieve data using static API
	search and retrieve data using UDDI-like API derived from information model definitions
	search and retrieve data using custom API derived from XML Schema mapping of information models

	Information Consumer
(Publication API)
	publish and manage data using static API
	publish and manage data using UDDI-like API derived from information model definitions
	publish and manage data using custom API derived from XML Schema mapping of information models

Table 1. Data services API set.
This guide focuses on data services created with ‘raw’ serialization style. Alternative serializations result in dynamically generated interfaces that depend on the definition of information models used in these data services. ‘Native’- and ‘schema’-serialized data services have the same operations, but a different message format and rich data structures, which are derived from metadata and the service’s context.
Data Structures

The primary structure representing a data object, also known as business information entity (BIE), is entity. It is defined in XML Schema as follows:

<xsd:element name="entity" type="bcr:entity" final="restriction"/>

<xsd:complexType name="entity" final="restriction">

<xsd:sequence>

<xsd:element ref="bcr:entityType" minOccurs="0"/>

<xsd:element ref="bcr:identifierBag" minOccurs="0"/>

<xsd:element ref="bcr:categoryBag" minOccurs="0"/>

<xsd:element ref="bcr:attributeValues" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute ref="bcr:entityKey" use="optional"/>

</xsd:complexType>
[image: image1.png]berentity

Entities are identified by a key, which is unique within a given UnitSpace BCR Server node or network, if used in a networked configuration. Entity key is rendered as an RFC 2396-compliant URI, composed of two colon-separated parts: key partition path and partition-specific ID. Key partition path is a string composed of colon-separated components corresponding to the names of partitions leading to the partition that contains target entity. Partition-specific ID is a string that contains no colons and is unique within the partition identified by key partition path. For example, entity key bcr:amazon.com:books:harrypotter has partition path of bcr:amazon.com:books and partition-specific ID harrypotter.

Entity keys may be assigned either by entity’s publisher or by the repository.

To support standardized discovery and navigation, entities may be assigned additional identifiers and categories from value sets, taxonomies and ontologies published to UDDI registry. identifierBag and categoryBag structures implement this function similarly to how namesake structures are applied in UDDI information model.

Information model defines attributes, which may be used to describe properties of entities of specific types. Multiple attribute values may be provided for each attribute applicable to the entity. Data structure attributeValues is used to capture this information.
Two entities may be linked via a typed relationship represented by entityRelationship structure:

<xsd:element name="entityRelationship" type="bcr:entityRelationship" final="restriction"/>

<xsd:complexType name="entityRelationship" final="restriction">

<xsd:sequence>

<xsd:element ref="bcr:fromKey"/>

<xsd:element ref="bcr:toKey"/>

<xsd:element ref="bcr:keyedReference"/>

</xsd:sequence>

</xsd:complexType>
[image: image2.png]| bersentiyRetationship

| Fberromkey

Chertokey

| berkeyedReference

fromKey and toKey identify the two entities being linked, while keyedReference indicates relationship type. A similar design pattern is employed in UDDI information model, where publisherAssertion structure represents entity relationships.
Key Partitions

The repository is divided into a hierarchical system of partitions, in which entities are stored. Each partition has one or more owners assigned to it. An owner may create subpartitions, to which he automatically acquires custody, resign as partition owner, and assign other users to partitions owned, thus delegating partition permissions to them. To store and access objects and to instantiate services that do so a user must be an owner of the partition to which the object belongs.
UnitSpace BCR Server entity keys, known as bcrKey, are designed to be compatible with UDDI V3 keys for programming purposes. As UDDI V3 implementations make their way to market, partition management will become integrated with UDDI registry’s keyGenerator tModels. This is the reason why no partition management API is exposed at this time.
Design-Time Considerations
Data can be loaded to and retrieved from UnitSpace BCR Server’s repository either directly via the Repository API or via individual data service endpoints. Repository API may be more suitable for the back-end provider or consumer of data (e.g., a legacy system, for which a more standardized implementation-independent service-oriented façade is being built), whereas data services are an outward-facing mechanism for delivering inquiry and publication capabilities.
The repository’s and data services’ interface is described using WSDL that conforms to WS-I Basic Profile. Such WSDL files can be imported into any programming environment that supports Web services client development to generate native language (Java, C#, VB.Net, etc.) code stubs that communicate with a corresponding endpoint. For example, in Microsoft Visual Studio .NET this is done via the “Add Web Reference” function.

The stubs contain native method calls and data structures necessary to perform remote method invocations, hiding the complexity of performing SOAP-based calls. The development toolkit used will generate the client-side code necessary to marshall and unmarshall SOAP messages that transport requests and responses across the network.
The generated client stub can be used just like any other local code written in that programming language.

Many integrated development environments go a step further and allow users to navigate their UDDI registry to the service or tModel representing the interface of the service for which a stub is required. Once such service is selected, the IDE feeds the WSDL associated with service endpoint into the stub generator.

Data services’ and repository’s WSDL can also be retrieved via HTTP GET (e.g., pointing a Web browser) to the URL of the service endpoint.

After a native service stub is generated, an application that publishes and/or retrieves data to/from services can be developed using the stub to communicate with the remote service.

Runtime Considerations
Client applications can bind to the data services statically or dynamically. Programming tools generally implement static binding by default if service access point is available at design time (either from a UDDI registry or from a WSDL file). However, an alternative URL may be communicated to the stub to point it to a different service location. Such URL may be hard-coded, inferred from the client application’s parameters or discovered at runtime in a UDDI registry. The latter cases represent dynamic – or late – binding. UDDI registry’s address, in turn, can be provided to the application as a runtime parameter.
Static binding represents a very inflexible form of integration and should be avoided except in very simple controlled environments. Any change in service’s location or technical parameters of its interface (i.e., new or obsoleted SOAP-level capabilities) will cause static binding to fail and be reprogrammed for the change.
Dynamic binding allows service client to absorb simple changes by automatically accommodating a changing variety and locations of services available for the client to interact with. UDDI specification should be consulted to understand how runtime service discovery is performed using UDDI. UDDI tModels used to represent data services’ interface are named unitspace-com:bcr:v3:infoservice:provider (information provider service type tModel) and unitspace-com:bcr:v3:infoservice:consumer (information consumer service type tModel). UnitSpace BCR Server repository may also be accessed directly to publish and retrieve data. Its corresponding service type tModel is unitspace-com:bcr:v3:repository.
Publishing Data

Publishing data to the repository is accomplished via Repository API or via Data Consumer services. The latter have an interface similar Repository API, but stripped of non-publishing functions to restrict users’ visibility of data published by others. Operations for publishing data are as follows.
save_entity Operation
Entities are created and updated using save_entity operation. The save_entity call returns entityDetail structure if successful or SOAP fault if an error occurs.
Input

[image: image3.png]|
o
-
ity

]
_entity ‘

Output

[image: image4.png]| [borentiypetail

e

save_entityRelationships Operation

Entity relationships are created and updated using save_entityRelationships operation. The save_entityRelationships call returns entityRelationships structure if successful or SOAP fault if an error occurs.
Input
[image: image5.png]Mocrisave_entiyRetationships -1

Save_entityRelationships EH-{ E—{

Output
[image: image6.png]MocrentiyReistionships |

eI e }

delete_entity Operation
Entities are removed using delete_entity operation. The delete_entity call returns nothing if successful or SOAP fault if an error occurs.
Input
[image: image7.png][] |
(G & (= |

i) |

|

Output
none
delete_entityRelationships operation

Entity relationships are removed using delete_entityRelationships operation. The delete_entityRelationships call returns nothing if successful or SOAP fault if an error occurs.
Input
[image: image8.png]Mocrgelete_entityRetationships 1

Fherauthinto
Gelete_entityRelationships EH-{ E—{

Output
none
Retrieving Data

Getting data from the repository is accomplished via Repository API or via Data Provider services. The latter have an interface similar to Repository API, but stripped of its publishing functions to prevent write access. Operations for getting data are as follows.
find_entity Operation
Entities can be found using find_entity operation. The find_entity call returns entityList structure if successful or SOAP fault if an error occurs. entityList contains brief information about matching entities, including their keys, type and keys of attributes each of them contains. This information may be useful to a further determination whether some or all of the matching entities need to be retrieved via get_entityDetail operation.
Input
[image: image9.png]

Output

[image: image10.png]berentityList

find_relatedEntities Operation

Related entities can be found using find_relatedEntities operation. The find_relatedEntities call returns relatedEntitiesList structure if successful or SOAP fault if an error occurs. At least one of entityKey, fromKey or toKey must be specified in request; entityKey may be used to represent either fromKey or toKey value.
Input
[image: image11.png]

Output
[image: image12.png]berrelatedEntitiesList

berrelatedEntityinfo

.
[peveryReatonsips
|
|

get_entityDetail Operation
All entity details available via the given data service can be retrieved using get_entityDetail operation. Some entity data may remain inaccessible due to constraints specified on the data service. The get_entityDetail call returns entityDetail structure if successful or SOAP fault if an error occurs.
Input

[image: image13.png]

Output
[image: image14.png]| [borentiypetail

e

