
Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

The Stencil Group, Inc.
912 Cole Street, PMB 287

San Francisco, California 94117

www.stencilgroup.com

August 2004

Confidential & Proprietary—Do Not Distribute

STATUS OF THIS DOCUMENT
This is DRAFT 2 of an updated UDDI Executive White Paper. It updates the previous
draft (of August 8, 2004) to reflect feedback from several readers on the UDDI
committees.

Please note that this document is a work-in-progress and should not be distributed
outside the UDDI member committees, except to solicit comments before
publication.

REVISION HISTORY

Draft 2: August 31, 2004
■ Clarified analogies with ORB, DNS, etc.

■ Clarified discussion of UBR.

■ Added explicit reference to “taxonomy” in discussion of registry role.

■ Added explicit reference to “governance” in discussion of UDDI’s role in service-
oriented infrastructure.

■ Expanded executive summary.

■ Corrected various minor typos and diction choices.

■ Added companion slide presentation.

Draft 1: August 6, 2004
■ Initial version.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 2 of 13

EXECUTIVE SUMMARY
Question: how explicitly do you want to counter criticisms that UDDI is an “ugly
duckling” or “MIA” among web services standards? I have had conflicting input from
committee members on this point. If we want it explicit, this is the place to do it.

The Universal Description, Discovery, and Integration (UDDI) protocol is a key
member of the group of interrelated standards that comprise the web services stack.
It defines a standard method for publishing and discovering the network-based
software components of a service-oriented architecture (SOA).

The UDDI registry model is a central element of the service-oriented approach to
software design. By enabling policy-based distribution and management of enterprise
web services, a UDDI registry delivers significant business value. It helps ensure that
the convenience of developers, the requirements of enterprise architects, and the
underlying business policies are not in opposition; in fact, it brings all of these needs
into closer alignment by increasing software flexibility, reuse, and control.

The current 3.0 specification represents a significant milestone in UDDI’s evolution.
It provides key capabilities for enterprise-level deployment and is a mature, well-
supported standard. Its development is led by the OASIS consortium of enterprise
software vendors and customers.

This paper discusses the strategic rationale for UDDI and analyzes its enabling role
in the context of today’s enterprise web services applications. In a companion white
paper, we provide a concise, technical overview of the UDDI standard and describe
key architectural changes in the recent Version 3 specification.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 3 of 13

THE SERVICE-ORIENTED IMPERATIVE
The success of IT organizations increasingly is measured by how well the systems
they manage adapt to business change. IT leaders must identify and plan for an
architecture that provides not only scalability and “five nines” reliability, but also the
ability to add new application components or to reorient and coordinate existing
functions nimbly and rapidly.

Yet, most incumbent enterprise applications were not designed for flexibility and
with presumption of rapid change. The layering of several generations of computing
technology has resulted in a complex infrastructure that is difficult to integrate and
that often limits IT’s options. It is no wonder that the financial and opportunity costs
of integration-related projects are so high.

To address these challenges, IT leaders increasingly recognize they must begin to
think of IT systems in terms of malleable services, not static assets. Although this
service-oriented approach to enterprise software design represents a much-needed
solution to the complexity and costs of many legacy practices, it also reflects several
well-tested antecedents. Indeed, progressive enterprise software architects have long
advocated methods in which applications are designed with modular, loosely coupled
interfaces that hide the complexity of the underlying systems.

Yet, because of a lack of universal standards, many earlier approaches were not
practical for solving broad-based enterprise software needs. This obstacle was
particularly difficult in environments where all endpoint components could not be
controlled fully, such as when business processes crossed organizational boundaries
to include other corporate divisions or external trading partners.

It is in this context that web services—a group of interrelated standards based upon
the Extensible Markup Language (XML) that define an open, loosely coupled, and
simplified framework for integrating enterprise software applications—has been
embraced by software vendors and customers alike. Indeed, over the past several
years, the basic vocabulary of web services has become familiar to every IT executive.
The model’s pragmatic business benefits—better integration and coordination
among systems, increased flexibility of IT assets, and reduced development costs—

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 4 of 13

are compelling.

A STANDARDS-BASED WEB SERVICES REGISTRY
UDDI is an important enabling element of the service-oriented approach to software
design. The standard specifies protocols for accessing a registry for web services,
methods for controlling access to the registry, and a mechanism for distributing or
delegating records to other registries. In short, a UDDI registry provides a standards-
based approach to locate a software service, to invoke that service, and to manage
metadata about that service.

Rather than forcing applications to include hard-wired information about an external
service’s application programming interface (API), UDDI registries provide this
binding information dynamically, at run-time. The benefits of this approach
immediately become clear should some details—even the location of the service—
change. Moreover, the UDDI registry can provide different responses depending
upon the security, transport, or quality of service as defined by arbitrary business
rules (or, as they often are described in the UDDI documentation, “taxonomies.”)

To further illustrate the concept of a UDDI web services registry, consider the
important roles similar systems have played in other distributed application
architectures. The Domain Name System (DNS) controls the Internet’s network
addresses, CORBA implemented its Trading and Naming services to help direct the
flow of system calls, and Microsoft Windows uses an eponymous Windows Registry
to manage the interactions of COM/DCOM components. Although UDDI goes
beyond the simple location transparency of most of these systems by providing an
advanced framework for defining and querying services by taxonomy, the essential
value of a UDDI registry is similar: it provides a mechanism for managing an
otherwise ad hoc, chaotic, and unscalable series of interactions.

In fact, many adopters of web services methods today are facing this very challenge.
Many software developers within IT organizations have begun to take advantage of a
wide range of tools that simplify incorporating the SOAP interfaces that are the basic
building blocks of web service interactions. While development managers and
enterprise software architects often encourage this “organic” growth of web service

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 5 of 13

implementations, they also are acutely aware of their enterprises’ needs to provide an
infrastructure that systematically addresses needs such as discovery, manageability,
and security.

UDDI and other standards that have begun to flesh out the web services “stack”
ensure that the convenience of developers, the requirements of enterprise architects,
and the underlying business policies are not in opposition. In fact, a UDDI registry
can make the jobs of all these groups of users significantly easier.

UDDI’s Role in Web Services Development
Benefits such as standards-based interoperability that are provided to programmers
by web services are clear. Nonetheless, when development teams begin to build web
services interfaces into the their applications, they soon face issues all too familiar to
developers who work in any programming environment: code reuse, ongoing
maintenance, and documentation. Moreover, as the number of web services created
within an IT organization grows, the need to manage these services can increase
exponentially.

For development teams, registries based upon UDDI help answer needs such as:

■ How can development managers systematically organize and manage web
services across multiple systems and development teams?

■ How can developers systematically manage the process of moving services
through each phase of development: from coding to testing to public deployment?

■ How can programmers document interface specifications, message transports,
and authentication mechanisms with other developer groups? As the services
change over time, how can external applications accommodate the changes?

When developing and deploying web services applications, UDDI registries help
drive better code reuse and developer productivity. A UDDI registry provides an
interoperable, standards-based approach for systematically documenting and
publishing web services, regardless of development environment or platform. It can
help developers—even across functional groups—to find a shared service and use

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 6 of 13

that service within his or her own application.

UDDI’s Role in Service-Oriented Infrastructure
Issues of services development point to the larger question of how to design an IT
infrastructure that is supports web services development efforts. Although questions
such as how best to conceive shared services, to design identity management and
authentication mechanisms, and so on are beyond the scope of the UDDI standard
(and this paper!), UDDI registries represent an important element of this overall
question. In a service-oriented environment, enterprise software architects must
consider questions such as:

■ How can critical applications be insulated from changes—or failures—in back-
end shared services?

■ How can an organization share information about services in a controlled way
that reflects the business rules and policies of the business?

Compounding these issues, a service-oriented approach implies that these questions
must be addressed as a routine aspect of run-time operations, not hard-coded into the
applications themselves.

Registries based upon UDDI provide IT administrators a formal layer of indirection
necessary for service-oriented application development and management. By
providing a sort of firewall between a service and the applications that call it, system
administrators more easily can accommodate changes in the life-cycle of specific
components—such as for version updates, for policy considerations, or even for
service termination.

In addition to the fundamental benefits of run-time binding provided by the registry
in a service-oriented architecture, administrators often require control of the
publication and distribution of information about deployed web services, so that
software deployment follows business policy. To facilitate these operational and
governance needs, the current version of UDDI adds support for features such as
client authentication and publish/subscribe for peer registries.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 7 of 13

THE EVOLUTION OF UDDI
When UDDI first was conceived, much of the attention was focused on the “UDDI
Business Registry” (UBR), a public implementation of the UDDI standard that
represents a master directory of publicly available e-commerce services. Returning to
an analogy used earlier in this article, one could consider the role of this public
registry as similar to the root node of the DNS database. Although the comparison is
imperfect, both represent successful examples of distributed registry infrastructure.

The UBR serves as highly visible reference implementation of the standard. As such,
it provides an ideal environment for validating and proposing changes to the
specification, as well as for testing applications and tools that make use of UDDI.
Although the UBR remains an important part of the UDDI project, it represents only
one aspect of the overall effort. Just as the overwhelming majority of DNS activity
occurs within the confines of a company’s own network, so too do most UDDI
implementations support a business’ internal web services infrastructure.

This understanding of how web services are most often used today is reflected as the
UDDI specification has evolved. Its current implementation recognizes the need for
federated control in real-world operational environments and further integrates the
standard with other elements of service-oriented infrastructure. Highlights of the
standard’s progress are shown in the table below.

Figure 1: History of the UDDI Specification

UDDI VERSION YEAR RELEASED KEY OBJECTIVE

1.0 2000 Create foundation for registry of Internet-
based business services

2.0 2003
Align specification with emerging web

services standards and provide support
for flexible, external taxonomies

3.0 2004
Support secure interaction of private and
public implementations as key element

of service-oriented infrastructure

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 8 of 13

The current 3.0 specification represents a significant milestone in UDDI’s evolution.
It provides key capabilities for enterprise-level deployment and is a mature, well-
supported standard. In fact, a prerequisite of its certification by the OASIS standards
group was the existence of several deployed commercial implementations.

HOW TO LEARN MORE
The UDDI specification is managed by OASIS, a member-led, international, non-
profit standards consortium that concentrates on structured information and
e-business standards. The organization’s members include enterprise IT users,
vendors, academics, and governments. In addition to UDDI, OASIS is known best
for shepherding web services-related protocols such as ebXML, SAML, WS-Security,
BPEL, and others.

To learn more about UDDI and OASIS, please visit www.uddi.org. In addition to the
specification itself, the UDDI web site provides detailed technical notes, best
practices, case studies, and information about how to contribute to UDDI’s ongoing
development. The site also provides links to several commercial and open-source
implementations of UDDI registries that are available in the marketplace.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 9 of 13

APPENDIX: UDDI USE CASE SCENARIOS
Many practical applications of general web services and specific UDDI concepts exist,
and it is not our objective to document them exhaustively here. Instead, we outline
two scenarios that are representative of the registry interaction features enabled by
Version 3 of the UDDI specification.

Scenario 1: Private Test Registry
Business Scenario

For the past year, the IT organization of a major corporation had begun to explore the
possibilities of web services approaches to application development and integration.
Using the technology first in pilot projects and other piecemeal efforts, the IT team
had skirted around the question of how to deploy and manage its web services
applications. As it begins to plan for using web services in the company’s mission-
critical business processes and to create services that will be available to the rest of
the organization, the IT team realizes that it will require a more controlled and
systematic approach.

Overview of Issues

■ Need to test real-world conditions. As software is developed, testing and debugging
must occur under conditions as close to real-world production environment as
possible and, in fact, incorporate several external, functioning services in the test
scenarios. Additionally, it is desirable that as few modifications as possible be
made to the component software to switch from “test” to “production” mode.

■ Clear separation between production and test systems. At the same time, development
versions of software must not interfere with actual production systems. Because
services can be highly distributed and are loosely coupled, maintaining this
distinction is paramount to ensure that dependencies are managed systematically.

■ Requirement to support distributed developer base. Developers using the system may
be based world-wide and, in fact, use different platforms and technologies from
group to group. As a result, interoperability and support for a variety of network

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 10 of 13

connections is an important functional requirement.

Description of Solution

The IT organization develops a test environment that utilizes a “one-way peering”
model of registry interaction to create two overlapping domains for services. Those in
the “private” domain can interact with the outside world, but not the other way
around. When development versions of software have been fully tested and certified,
they are promoted to the production sphere, using the expanded publishing features
of the UDDI Version 3 specification.

Figure 2: Illustration of Private Test Registry

Comment: As services are certified and promoted to the production environment, the associated UDDI
entities are published from the development registry to the production registry using new features

enabled in Version 3 of the UDDI specification.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 11 of 13

Scenario 2: Supporting Collaboration among Trading Partners
Business Scenario

A large manufacturer has built a business based on providing “specialty” and custom
fabricated plastics components on a spot and contract basis. Its role in the middle of
the supply chain—between commodity suppliers like refiners and the plants of
manufacturers like consumer packaged goods concerns—requires that the company
manage relationships with multiple business partners and even act as an
intermediary between its suppliers and customers. In order to increase its value to
partners by providing visibility into supply and demand, as well as reduce its own
costs of managing inventory and logistics, the company has embarked upon a
program of automating a largely manual process of communicating with its suppliers
using web services-based interfaces to the key applications.

Overview of Issues

■ Interoperability. The sources of data for the new system range from internal
systems like ERP applications to third-party services like inventory and logistics
tracking. Because all of these applications are established, long-running systems,
standardizing on one particular platform is not an option.

■ Decentralization and collaboration. The company’s business relationships are
highly customized, and as a result, the integration infrastructure must be
significantly decentralized. In fact, many of the business processes in question
cannot be controlled by any single organization but, rather, require the
cooperation of all parties involved.

■ Security. Many of the systems in question are highly strategic, and information
about these systems—even where they exist—may be highly sensitive and should
not be shared with other companies in the network.

Description of Solution

As part of an overall web services solution, the company implements a service broker
using a UDDI registry as a central element. By deploying it within the boundaries of
a “DMZ” trusted environment, the company can both isolate interactions from its
internal network, as well as limit the exposure of the registry to the outside world. In

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 12 of 13

addition, by establishing subscription-based relationships with partners’ registries in
the trading network, the company can ensure that information is fully, but safely,
distributed among trading partners. The registry also implements the XML Digital
Signatures support in Version 3 of the UDDI specification to ensure the integrity and
authenticity of exchanged data.

Figure 3: Illustration of Trading Partner Collaboration

Comment: Partners use UDDI Version 3’s new subscription features to monitor the company’s root
registry. They gain visibility to only a desired subset of all of the services available, as defined in the

company’s business policies.

Enabling Service-Oriented Architecture
[REV. DRAFT] UDDI Executive White Paper

8/31/2004 Confidential & Proprietary—Do Not Distribute Page 13 of 13

