
 1

 2

 UDDI Spec TC

Schema Centric XML 3

Canonicalization 4

Version 1.0 5

Document identifier: 6
SchemaCentricCanonicalization 7

This version: 8
http://uddi.org/pubs/SchemaCentricCanonicalization-9
20050523.htm 10

Latest version: 11
http://uddi.org/pubs/SchemaCentricCanonicalization.htm 12

Previous version: 13
http://uddi.org/pubs/SchemaCentricCanonicalization-14
20020710.htm 15

Author: 16
Bob Atkinson, Microsoft, bobatk@microsoft.com 17

Editors: 18
Selim Aissi, Intel, selim.aissi@intel.com 19
Maryann Hondo, IBM, mhondo@us.ibm.com 20
Andrew Hately, IBM, hately@us.ibm.com 21

Abstract: 22
Existing XML canonicalization algorithms such as Canonical 23
XML and Exclusive XML Canonicalization suffer from 24
several limitations and design artifacts (enumerated herein) 25
which significantly limit their utility in many XML 26
applications, particularly those which validate and process 27
XML data according to the rules of and flexibilities afforded 28
by XML Schema. The Schema Centric Canonicalization 29
algorithm addresses these concerns. 30

Status: 31
This specification has attained the status of Committee 32
Specification. This document is updated periodically on no 33
particular schedule. 34

����� ��� ���
	

UDDI Spec TC

����� ��� ���
	
20020710

Committee members should send comments on this 35
Committee Specification to the uddi-spec@lists.oasis-36
open.org list. Others should subscribe to and send 37
comments to the uddi-spec-comment@lists.oasis-open.org 38
list. To subscribe, send an email message to mailto:uddi-39
spec-comment-request@lists.oasis-40
open.org?body=subscribe with the word "subscribe" as the 41
body of the message. 42

For information on whether any intellectual property claims 43
have been disclosed that may be essential to implementing 44
this Committee Specification, and any offers of licensing 45
terms, please refer to the Intellectual Property Rights 46
section of the UDDI Spec TC web page (http://www.oasis-47
open.org/committees/uddi-spec/). 48

Copyrights: 49
Copyright © 2000-2002 by Accenture, Ariba, Inc., 50
Commerce One, Inc., Fujitsu Limited, Hewlett-Packard 51
Company, i2 Technologies, Inc., Intel Corporation, 52
International Business Machines Corporation, Oracle 53
Corporation, SAP AG, Sun Microsystems, Inc., VeriSign, 54
Inc., and / or Microsoft Corporation. All Rights Reserved. 55
See also Appendix A: Notices. 56

Copyright © OASIS Open 2002-2003. All Rights Reserved. 57
See also Appendix A: Notices. 58

Table of Contents 59

• 1. Introduction 60
o 1.1 Limitations of Existing Canonicalization 61

Algorithms 62
o 1.2 Canonicalization Algorithms & Web Services 63

Applications 64
• 2. Overview of Schema Centric Canonicalization 65

o 2.1 Algorithm Input 66
o 2.2 Character Model Normalization 67
o 2.3 Processing by XML Schema-Assessment 68
o 2.4 Additional Infoset Transformation 69
o 2.5 Serialization of the Schema-Canonicalized 70

Infoset 71
o 2.6 Limitations 72

• 3. Specification of Schema Centric Canonicalization 73
o 3.1 Creation of Input as an Infoset 74

� 3.1.1 Conversion of an Octet Stream to an 75
Infoset 76

� 3.1.2 Conversion of a Node-set to an Infoset 77
o 3.2 Character Model Normalization 78
o 3.3 Processing by XML Schema-Assessment 79
o 3.4 Additional Infoset Transformation 80

� 3.4.1 Pruning 81
� 3.4.2 Namespace Prefix Desensitization 82
� 3.4.3 Namespace Attribute Normalization 83
� 3.4.4 Data-type Canonicalization 84

o 3.5 Serialization of the Schema-Canonicalized 85
Infoset 86

• 4. Use of Schema Centric Canonicalization in XML Security 87
o 4.1 Algorithm Identification 88
o 4.2 Re-Enveloping of Canonicalized Data 89

• 5. Resolutions 90
o 5.1 No Non-Schema-Influencing Information Items 91
o 5.2 No Special Whitespace Processing 92
o 5.3 Case-Mapping vs. Case-Folding 93
o 5.4 No Canonicalization of anyURI Datatype 94

• 6. References 95
• 7. Revision History 96
• Appendix A: Notices 97

 98

1. Introduction 99
The design of the XML-Signature Syntax and Processing 100
specification requires the execution of a canonicalization algorithm 101
as part of the signature generation process. To date, two different 102
(but closely related) canonicalization algorithms have been broadly 103
proposed: 104

• Canonical XML, a product of a joint effort between the W3C 105
and the IETF, and 106

• Exclusive XML Canonicalization, a W3C effort that adapts 107
Canonical XML to modify its treatment of xml:lang 108
attributes, xml:space attributes, and namespace nodes in 109
order to address issues encountered in re-enveloping a 110
signed subdocument. 111

1.1 Limitations of Existing Canonicalization 112

Algorithms 113
Both of these algorithms (collectively "the existing algorithms") 114
share some characteristics which cause problems, some 115
considerable, to applications considering their use: 116

1. The presence of a DTD that validates the XML 117
subdocument being canonicalized is assumed. In particular, 118
default attributes specified in the DTD are included in the 119
output of the canonicalization process. 120

With the advent of XML Schema, it is in fact now 121
increasingly rare to find XML documents for which validation 122
is accomplished using a DTD, or, indeed, due to the weak 123
expressiveness of DTDs, to find XML documents for which 124
a DTD which describes the content models of the elements 125
of the document (instead of merely defining entities and the 126
like) can in fact ever be constructed. Thus, the existing 127
algorithms are becoming less and less useful to practical 128
applications of XML. 129

2. Contrary to the intent of the Namespaces in XML 130
Recommendation, XML documents are not canonicalized 131
with respect to the XML namespace prefixes they use. That 132
is, XML documents that are identical except for their choice 133
of namespace prefixes canonicalize to different results 134
under the existing algorithms. Since namespace 135
declarations can appear on any element, the need for their 136
preservation can at times be a very significant 137
implementation burden. 138

3. Canonical XML contains a (pragmatically minor) security 139
hole having to do with how it processes certain esoteric 140
node-sets. Consider a node set which consists of just a 141
single attribute node, one that explicitly references a 142
namespace by use of a namespace prefix. While it is true in 143
Canonical XML that an element node that is not in the 144
node-set still has its namespace axis processed, the rule in 145
Canonical XML (see §2.3) for processing that namespace 146
axis states that only "namespace nodes in the axis and in 147
the node-set" (emphasis added) are in fact processed. 148
Thus, the canonical representation of our single-attribute-149
node node-set consists of the processing of only the 150
attribute node itself; no namespace attributes are included. 151
Thus, two such single-attribute node-sets whose attributes 152
are character-wise identical but use completely different 153
namespaces as the binding of their prefix will canonicalize 154
to the same result, and that presents a security hole, 155
particularly in applications to digital signatures. Analogous 156
security holes exist with similar node-sets. Whether the 157
same security hole exists in Exclusive XML 158
Canonicalization is likely the case but is not entirely clear. 159

4. The goal of the existing canonicalization algorithms is to 160
canonicalize an XML subdocument with respect to the 161
liberties of its physical representation permitted within only 162
the XML 1.0 Recommendation and the Namespaces in 163
XML Recommendation. 164

The XML Schema Recommendation permits a considerable 165
number of additional liberties of representation, including 166
(but not limited to) the following: 167

a. the optional presence of both comments and 168
processing instructions at completely arbitrary points 169
in the input XML 170

b. normalization of whitespace in certain element 171
content (in a like manner as but in addition to the 172
normalization of whitespace within attributes 173
mandated by XML 1.0) 174

c. the permitted presence of whitespace with no 175
semantic impact imparted by the presence thereof in 176
the content of elements of complex type which have 177
a {content type} of element-only (that is, between 178
end-tags and start-tags of elements which are 179
children of such elements) 180

d. the specification in a schema of the default value of 181
attributes, which consequently permits without 182
semantic impact their omission in a corresponding 183
XML instance 184

e. the specification in a schema of the default value of 185
the content of elements, which operates in a manner 186
similar to that of the specification of the default value 187
of attributes 188

f. the inclusion of xsi:schemaLocation and 189
xsi:noNamespaceSchemaLocation attributes as 190
useful hints to the XML Schema processing system 191
but which are not of semantic significance to XML 192
Schema instance itself 193

g. within the content of an element of complex type 194
which has a {content type} of element-only, the 195
semantic insensitivity to the order within a sequence 196
of elements that validates against a model group 197
whose compositor is all. (In contrast, when such 198
occurs within a {content type} of mixed, and so there 199
may be non-whitespace interspersed between these 200
elements, the elements may not reasonably be 201
reordered, as their relationship to such characters 202
may have semantic significance to applications.) 203

h. variability in the lexical representation of the data 204
types built-in to XML Schema and extensions or 205
restrictions thereof, including 206

i. the permitted use of any of {true, false, 0, 1} for 207
data of type boolean 208

ii. the optional use of leading "+" signs in positive 209
values, and the optional use of leading and 210
trailing zeros in data of type decimal and 211
restrictions thereof, including integer, long, int, 212
nonNegativeInteger, and so on (as well as, of 213
course, user-defined extensions and 214
restrictions) 215

iii. for data of type float and double, the use of upper 216
or lower case "e" in scientific notation, the use 217
of leading zeros in the exponent thereof, the 218
use of leading "+" signs on positive values, the 219
use of trailing zeros in the mantissa, and the 220
unnecessary use of leading zeros in the 221
mantissa. 222

iv. the permitted use of various time zones to 223
represent the same time value in data of type 224
dateTime and time, as well as two 225
representations for midnight for such data 226

v. the permitted use of both upper and lower case in 227
data of type hexBinary 228

vi. in data of type base64Binary, the permitted use 229
(per the clarification in the errata to XML 230
Schema of the lexical forms of base64Binary 231
data) of whitespace characters 232

It should be noted that for these six data types, XML 233
Schema Datatypes does in fact normatively define a 234
corresponding canonical lexical representation. For 235
example, the canonical lexical representation of 236
boolean permits only the use of values in the set 237
{true, false}. However, XML Schema makes use of 238
this canonicalization only in certain circumstances, 239
such as the interpretation of default values of 240
attributes and elements. 241

There are further data type canonicalization issues 242
which appear to have been overlooked by XML 243
Schema Datatypes: 244

vii. (minor) It is not precisely clear from the XML 245
Schema Datatypes specification whether 246

leading zeros are permitted in instances of 247
gYearMonth and gYear when (the absolute 248
value of) the year in question is outside the 249
range of 0001 to 9999. However, in the 250
otherwise analogous passage of the 251
specification of dateTime, such ambiguity is 252
not present (such leading zeros are 253
prohibited), and a reasonable interpretation in 254
these other two cases is to straightforwardly 255
follow that precedent. 256

viii. the use of mixed case language-tags in data of 257
type language; this is permitted per section "2. 258
The language tag" of RFC 1766, which is 259
(ultimately) the referenced normative 260
specification for the value space of language. 261
(Note: this same value space is used by the 262
xml:lang attribute as defined by the XML 1.0 263
Recommendation; thus, the omission of the 264
canonicalization of the case of xml:lang 265
attributes should reasonably be considered a 266
flaw in even the existing canonicalization 267
algorithms.) 268

ix. More generally, it is often the case in real-world 269
schemas that various string-valued attributes 270
and elements defined therein are interpreted 271
at the application level as being case-272
insensitive. This should be capable of being 273
captured by the canonicalization algorithm; 274
were it not, then applications may be forced to 275
remember the exact case used for certain 276
data, a requirement in tension with the 277
application semantic, and quite possibly thus a 278
significant implementation burden. 279

1.2 Canonicalization Algorithms & Web 280

Services Applications 281
That these limitations are indeed considerably problematic can be 282
more readily appreciated by considering the implications to certain 283
types of application. One increasingly common and important 284
application of XML is that of so-called "web services". For our 285
purposes here, web services can be thought of as networked 286
applications where the payloads conveyed between network 287
nodes are XML documents, often SOAP requests or responses, 288
which in turn have XML subdocuments in their headers and body. 289
It is observed to be the case that, almost universally, the 290

specification of what constitutes correct and appropriate XML in 291
such circumstances is accomplished using XML Schema. 292

On the server side of web service applications, it is very often the 293
case that the semantic information conveyed by a request needs 294
to be decomposed, analyzed, and persistently stored, often 295
making use of an underlying relational database to do so. To the 296
extent that such a database is used for storage and indexing 297
purposes, this database gets populated from data received in the 298
body of XML "update" requests. Such population is carried out by 299
"shredding" the semantic information of the XML into a 300
corresponding representation in relational form, losing thereafter 301
the history of that information as having originated in an XML form. 302
Conversely, XML "get" requests are serviced by performing 303
relational operations against the database, then forming an 304
appropriate XML response based on the retrieved data and the 305
schema to which the response must conform. 306

Certain web service applications will wish to support the use of 307
digital signatures on content which is manipulated by the 308
application. In order to reasonably support such usage, and, in 309
particular, in order to continue to reasonably allow for the 310
shredding of data into an underlying relational store, the signatures 311
in question need to be canonicalized with respect to the full range 312
of liberties of representation afforded by XML Schema. In 313
particular, the problems with the existing algorithms enumerated in 314
the previous section cause especially difficult implementation 315
conundrums in these situations. 316

The Schema Centric Canonicalization Algorithm is intended to 317
address these concerns. 318

2. Overview of Schema Centric 319

Canonicalization 320
The Schema Centric Canonicalization algorithm is intended to be 321
complementary in a hand-in-glove manner to the processing of 322
XML documents as carried out by the assessment of schema 323
validity by XML Schema, canonicalizing its input XML instance with 324
respect to all those representational liberties which are permitted 325
thereunder. Moreover, the specification of Schema Centric 326
Canonicalization heavily exploits the details and specification of 327
the XML Schema validity-assessment algorithm itself. 328

In XML Schema, the analysis of an XML instance document 329
requires that the document be modeled at the abstract level of an 330
information set as defined in the XML Information Set 331

recommendation. Briefly, an XML document's information set 332
consists of a number of information items connected in a graph. 333
An information item is an abstract description of some part of an 334
XML document: each information item has a set of associated 335
named properties. By tradition, infoset property names are 336
denoted in square brackets, [thus]. There are eleven different 337
types of information items: 338

1. element information items, 339
2. attribute information items, 340
3. comment information items, 341
4. namespace information items, 342
5. character information items, 343
6. document information items, 344
7. processing instruction information items, 345
8. unexpanded entity reference information items, 346
9. document type declaration information items, 347
10. unparsed entity information items, and 348
11. notation information items. 349

Properties on each of these items, for example the [children] 350
property of element information items, connect together items of 351
different types in an intuitive and straightforward way. 352

The representation of an XML document as an infoset lies in 353
contrast to its representation as a node-set as defined in XPath. 354
The two notions are conceptually quite similar, but they are not 355
isomorphic. For a given node-set it is possible to construct a 356
semantically equivalent infoset without loss of information; 357
however, the converse is not generally possible. It is the infoset 358
abstraction which is the foundation of XML Schema, and it is 359
therefore the infoset abstraction we use here as the foundation on 360
which to construct Schema Centric Canonicalization algorithm. 361

The Schema Centric Canonicalization algorithm consists of a 362
series of steps: creation of the input as an infoset, character model 363
normalization, processing by XML-Schema assessment, additional 364
infoset transformation, and serialization. 365

2.1 Algorithm Input 366
As was mentioned, the algorithm requires that the data it is to 367
process be manifest as an infoset. If such is not provided directly 368
as input, the data provided must be converted thereto. Two 369
mechanisms for carrying out this conversion are defined: 370

1. If an octet stream is provided, then it is to be converted into 371
an infoset according to the definition in [XML-Infoset] of the 372
information set which results from the parsing of an XML 373
document represented as an octet stream. 374

2. If an XPath node-set is provided, then it is to be converted 375
into an infoset according to the rules defined below in this 376
specification. 377

In addition to the data itself, the canonicalization process requires 378
the availability of appropriate XML Schemas and an indication of 379
the relevant components thereof to which the data purports to 380
conform. In order to be able to successfully execute the 381
canonicalization algorithm, all the data must be valid with respect 382
to these components; data which is not valid cannot be 383
canonicalized. 384

2.2 Character Model Normalization 385
The Unicode Standard allows diverse representations of certain 386
"precomposed characters" (a simple example is "ç"). Thus two 387
XML documents with content that is equivalent for the purposes of 388
most applications may contain differing character sequences. 389
However, a normalized form of such representations is also 390
defined by the Unicode Standard. 391

Schema Centric Canonicalization requires that both its input 392
infoset and all the schema components processed by the XML 393
Schema-Assessment process be transformed as necessary so 394
that all string-valued properties and all sequences of character 395
information items therein be normalized into the Unicode 396
Normalization Form C. 397

2.3 Processing by XML Schema-398

Assessment 399
The third step of the Schema Centric Canonicalization requires 400
that the input infoset be transformed into the so-called "post-401
schema-validation infoset" (the "PSVI") in the manner defined by 402
the XML Schema Structures recommendation, amended as set 403
forth below. In XML Schema, as the schema assessment process 404
is carried out, the input infoset is augmented by the addition of 405
new properties which record in the information items various 406
pieces of knowledge which the assessment process has been able 407
to infer. For example, attribute information items are augmented 408
with a [schema normalized value] property which contains the 409
result of, among other things, the application of the appropriate 410
schema-specified default-value to the attribute information item 411

(the full list of such augmentation is tabulated in the appendix to 412
XML Schema Structures). 413

2.4 Additional Infoset Transformation 414
The PSVI output from XML Schema is next further transformed 415
into what we define here as the "schema-canonicalized infoset" by 416
rules of this specification that are designed to address a few 417
remaining canonicalization issues: 418

1. the existence of information items in the info set which are 419
completely ignored by the schema assessment process. 420

2. the existence of the semantically important use of XML 421
namespace prefixes in various embedded languages which 422
are contained strings of the input. For example, an attribute 423
might in fact represent an XPath expression which may 424
internally refer to contextual namespace prefixes. This issue 425
is discussed at some length in Canonical XML. In that 426
specification a decision was made to not canonicalize with 427
respect to namespace prefixes due to the existence of such 428
embedded languages, leaving the output of the algorithm 429
sensitive to the particular prefixes used in the input. Here 430
we choose otherwise, and provide a means by which the 431
algorithm is desensitized to the use of namespace prefixes 432
in embedded languages. 433

3. the namespaces which, in fact, are used in the output need 434
to be canonicalized with respect to the namespace prefix 435
declaration used for a given such namespace. The overall 436
result is that the output of the Schema Centric 437
Canonicalization algorithm is in no way sensitive to the 438
particular choice of namespace prefixes in its inputs. 439

4. the previously-mentioned permitted variability in the 440
representation of simple data types in XML Schema 441

2.5 Serialization of the Schema-442

Canonicalized Infoset 443
Finally, the schema-canonicalized infoset is serialized into an XML 444
text representation in a canonical manner, and this serialization 445
forms the output of the algorithm. 446

The output of the Schema Centric Canonicalization algorithm 447
whose input is the infoset of an entire XML document is well-448
formed XML. However, if some items in the infoset are logically 449
omitted (that is, their [omitted] property is true), then the output 450
may or may not be well-formed XML, depending on exactly which 451
items are omitted (consider, for example, omitting some element 452

information items but retaining their attributes). However, since the 453
canonical form may be subject to further XML processing, most 454
infosets provided for canonicalization will be designed to produce 455
a canonical form that is a well-formed XML document or external 456
general parsed entity. Note that the Schema Centric 457
Canonicalization algorithm shares these issues of well-formedness 458
of output with the existing canonicalization algorithms. 459

In such cases where the output of the Schema Centric 460
Canonicalization algorithm is well-formed, then the 461
canonicalization process is idempotent: if x is the input infoset, and 462
C represents the application of the Schema Centric 463
Canonicalization algorithm, then C(x) is identical to C(C(x)). 464
Moreover, in such cases C(x) is valid with respect to the same 465
schema component(s) as is x (modulo the character sequence 466
length issue noted in the next section). 467

2.6 Limitations 468
The Schema Centric Canonicalization algorithm suffers from some 469
of the limitations of Canonical XML. Specifically, as in Canonical 470
XML, the [base URI] of the infoset has no representation in the 471
canonicalized representation, the consequences of which are as in 472
Canonical XML. However, unlike Canonical XML, Schema Centric 473
Canonicalization does not suffer from the loss of notations and 474
external unparsed entity references (these are canonicalized and 475
preserved) nor from the loss of the typing of data (since, in XML 476
Schema, the association of a schema with an XML instance is 477
outside the scope of the specification and therefore is (trivially) 478
preserved by the Schema Centric Canonicalization algorithm). 479

As in Exclusive XML Canonicalization, the XML being 480
canonicalized may semantically depend on the effect of xml 481
namespace attributes, such as xml:lang and xml:space. As was 482
the case in Exclusive XML Canonicalization, to avoid problems 483
due to the importation of such attributes from information items 484
which are omitted from the canonicalized output, either they must 485
be explicitly given in the apex nodes of the XML information items 486
being canonicalized or they must always be declared with an 487
equivalent value in every context in which the XML information 488
items will be interpreted. 489

Schema Centric Canonicalization REQUIRES the identification 490
and availability of a relevant schema for the information items 491
which are to be canonicalized. Therefore, information items which 492
lack such schema cannot be canonicalized with this algorithm. 493

Schema Centric Canonicalization suffers (but arguably in a minor 494
way) from the fact that XML schema-assessment is not strictly 495
speaking deterministic: when an element or attribute information 496
item is validated against a wildcard whose {process contents} 497
property is lax, the exact schema-assessment processing of the 498
item which takes place depends on whether "the item, or any items 499
among its [children] if it's an element information item, has a 500
uniquely determined declaration available", where the term 501
"available" here provides a degree of discretion to the validating 502
application and thus a degree of non-determinism to the schema-503
assessment process. Because Schema Centric Canonicalization 504
makes integral use of the information garnered during schema-505
assessment, if an item has been skipped due to a wildcard with a 506
{process contents} of lax or skip, the output of the algorithm for 507
that item must necessarily be different than if the item has not 508
been skipped. Thus, the non-determinism caused by lax results 509
directly in non-determinism of the output of the algorithm. In order 510
to reduce the actual occurrence of this non-determinism, to the 511
extent that it does not conflict with other design requirements, it is 512
RECOMMENDED that schemas intended for use with 513
canonicalization avoid the use of a {process contents} of lax in 514
their definitions. 515

In the canonicalized form, the lengths of certain sequences of 516
character information items may differ from that which was input to 517
the algorithm, due to both processing by Unicode character model 518
normalization and to namespace attribute normalization (the latter 519
only occurs for expressions written in embedded languages such 520
as XPath). This length adjustment can in certain circumstances 521
affect the validity of the altered data, and can affect the ability to 522
reference into the data with XPointer character-points and ranges. 523

3. Specification of Schema Centric 524

Canonicalization 525
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", 526
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", 527
"MAY", and "OPTIONAL" in this document are to be interpreted as 528
described in RFC 2119. 529

The specification of the Schema Centric Canonicalization 530
algorithm defines a few items residing in an XML namespace 531
known as the Schema Centric Canonicalization algorithm 532
namespace. The URI of this namespace is: 533

urn:uddi-534
org:schemaCentricC14N:2002-07-10 535

A (non-normative) XML Schema .xsd file containing definitions of 536
the members of this namespace defined by this specification can 537
be found at: 538

http://www.uddi.org/schema/SchemaCe539
ntricCanonicalization.xsd 540

It should be clearly understood that all the details of the present 541
document are a matter solely of the specification of the behavior of 542
the Schema Centric Canonicalization algorithm, not its 543
implementation. Implementations are (of course) free to pursue 544
any course of implementation they choose so long as in all cases 545
the output they yield for a given input corresponds exactly to that 546
as is indicated herein. At times the details and language in this 547
specification may have been optimized to attempt to make the 548
presentation and specification more clear and straightforward 549
perhaps at the performance expense of an implementation that 550
were to robotically follow the literal wording thereof. In this regard, 551
attention is specifically drawn to the connection of the this 552
specification with the details of the specification of the XML 553
Schema validity-assessment, the PSVI augmentation process, and 554
the augmentation of the PSVI found in §3.3: depending on the 555
existing software artifacts and other resources upon which they 556
can rely, good implementations are likely to significantly optimize 557
their treatment of these matters especially. 558

3.1 Creation of Input as an Infoset 559
The Schema Centric Canonicalization algorithm manipulates the 560
semantic information of an XML instance as represented in the 561
form of an XML Information Set. As such, if the input to the 562
algorithm is not already in this form then it must be converted 563
thereto in order for the algorithm to proceed. This document 564
normatively specifies the manner in which this conversion is to be 565
carried out for two such alternative input data-types (other 566
specifications are free to define additional, analogous 567
conversions). These two data-types are exactly those defined by 568
the XML Signature Syntax and Processing recommendation as 569
being the architected data-types for input to a Transform. 570

As is noted in the XML Information Set recommendation, it is not 571
intrinsically the case that the [in-scope namespaces] property of an 572
element information item in an infoset will be consistent with the 573
[namespace attributes] properties of the item and its ancestors, 574
though this is always true for an information set resulting from 575

parsing an XML document. However, it is REQUIRED that this 576
consistency relationship hold for the infoset input to the Schema 577
Centric Canonicalization algorithm. 578

3.1.1 Conversion of an Octet Stream to an 579

Infoset 580
If the input to the canonicalization algorithm is an octet stream, 581
then it is to be converted into an infoset by parsing the octet 582
stream as an XML document in the manner described in the 583
specification of [XML-Infoset]. 584

Note that this is exactly the same conversion process that must be 585
carried out by software attempting to assess the schema validity of 586
XML data according to the XML Schema Structure 587
recommendation. 588

3.1.2 Conversion of a Node-set to an Infoset 589
The conversion of a node-set to an infoset is straightforward, if 590
somewhat more lengthy to describe. 591

A node-set is defined by the XPath recommendation as "an 592
unordered collection of nodes without duplicates." In this context, 593
the term "node" refers to the definition provided in the data model 594
section of the recommendation. In that section, it is noted that 595
XPath operates on an XML document as a tree, and that there are 596
seven types of node that may appear in such trees: 597

1. root nodes 598
2. element nodes 599
3. attribute nodes 600
4. text nodes 601
5. namespace nodes 602
6. processing instruction nodes 603
7. comment nodes 604

The nodes in a given node-set must (by construction; that is, rules 605
that would allow otherwise are lacking in XPath) all be nodes from 606
the same underlying tree instance. If N is a node-set, then let T(N) 607
be this tree, and let r(T(N)) be the root node of that tree. The 608
conversion process to an infoset first converts T(N) into an 609
equivalent infoset I(T(N)), then decorates that infoset to denote 610
which information items therein correspond to nodes originally 611
found in N. 612

Conversion of an XPath node-tree to an infoset is defined 613
recursively in terms of the conversion of individual nodes to 614

corresponding information items. Let n be an arbitrary XPath node, 615
and let {n} be a node-set containing just the node n. Let i be the 616
function taking a node as input and returning an ordered list of 617
nodes as output which is defined as follows: 618

1. If n is a root node, then i(n) is a single document 619
information item, where: 620

a. the [children] property is the ordered list resulting 621
from the concatenation of the lists of information 622
items 623

i(cj) 624

, where cj ranges over the children of n in document 625
order, excepting that those children of n (if any) 626
contained within the DTD (if one exists; entity 627
declarations, for example, may still usefully be found 628
therein even if XML Schema is used for validation) 629
are excluded. 630

b. the [document element] property is either 631
i. that member of [children] which results from the 632

conversion of the single child of n which is an 633
element node, if such is present, or 634

ii. no value, if such is not present. 635
c. the [notations] property has no value. 636
d. the [unparsed entities] property has no value. 637
e. the [base URI] property is unknown. 638
f. the [character encoding scheme] property is 639

unknown. 640
g. the [standalone] property has no value. 641
h. the [version] property has no value. 642
i. the [all declarations processed] property is false. 643

2. If n is an element node, then i(n) is a single element 644
information item, where: 645

a. the [namespace name] property is the result of the 646
function invocation namespace-uri({n}) 647

b. the [local name] property is the result of the function 648
invocation local-name({n}) 649

c. the [prefix] property is either 650
i. the prefix of the QName which is the result of the 651

function invocation name({n}), if such result is 652
not the empty string, or 653

ii. no value otherwise. 654

d. the [children] property is the ordered list resulting 655
from the concatenation of the lists of information 656
items 657

i(ci) 658

, where ci ranges over the children of n in document 659
order 660

e. the [attributes] property is the unordered set whose 661
members are the collective members of the lists of 662
information items 663

i(aj) 664

, where aj ranges over those attribute nodes in T({n}) 665
whose parent is n (note that such attribute nodes are 666
not children of n). 667

f. the [in-scope namespaces] property is the 668
unordered set whose members are the collective 669
members of the lists of information items 670

i(nk) 671

 (which are by construction namespace information 672
items), where nk ranges over the set of namespace 673
nodes in T({n}) whose parent is n (note such 674
namespace nodes are not children of n). 675

g. the [namespace attributes] property is an 676
unordered set of attribute information items 677
computed as follows. Let Nn be the set of 678
namespace information items in the [in-scope 679
namespaces] property of i(n), and let Np be the set of 680
namespace information items in the [in-scope 681
namespaces] property of i(m), where m is the 682
[parent] of n. For each namespace information item s 683
in Nn - Np (so, each namespace information item 684
newly introduced on i(n)), the [namespace attributes] 685
property contains an attribute information item whose 686
properties are as follows: 687

i. the [namespace name] property is (per XML 688
Infoset) "http://www.w3.org/2000/xmlns/" 689

ii. the [local name] property is the value of the 690
[prefix] property of s. 691

iii. the [prefix] property is "xmlns" 692
iv. the [normalized value] property is the value of the 693

[namespace name] property of s. 694
v. the remaining properties are as set forth in the 695

attribute node case below. 696

Conversely, consider each namespace node s in Np 697
- Nn (so, each namespace information item present 698
on the parent but removed on n). The specification of 699
XML Namespaces is such that there can be at most 700
one such s, and that it represent a declaration of the 701
default namespace, which is then undeclared by 702
element i(n). If such an s exists, then the 703
[namespace attributes] property of i(n) additionally 704
contains an attribute information item whose 705
properties are as follows: 706

vi. the [namespace name] property is 707
"http://www.w3.org/2000/xmlns/" 708

vii. the [local name] property is the empty string 709
viii. the [prefix] property is "xmlns" 710
ix. the [normalized value] property is the empty 711

string 712
x. the remaining properties are as set forth in the 713

attribute node case below. 714
h. the [base URI] property is unknown. 715
i. the [parent] property is the document or element 716

information item in the infoset rooted at i(r(T({n})) 717
which contains this information item in its [children] 718
property. 719

3. If n is an attribute node, then i(n) is a single attribute 720
information item, where: 721

a. the [namespace name] property is the result of the 722
function invocation namespace-uri({n}) 723

b. the [local name] property is the result of the function 724
invocation local-name({n}) 725

c. the [prefix] property is either 726
i. the prefix of the QName which is the result of the 727

function invocation name({n}), if such result is 728
not the empty string, or 729

ii. no value otherwise. 730
d. the [normalized value] property is the result of the 731

function invocation string({n}) 732
e. the [specified] property is unknown. 733
f. the [attribute type] property is unknown. 734
g. the [references] property is unknown. 735

h. the [owner element] property is the element 736
information item in the infoset rooted at i(r(T({n})) 737
which contains this information item in its [attributes] 738
property, if any such element exists, or no value 739
otherwise. 740

4. If n is a text node, then i(n) is an ordered list of character 741
information items, one character information item cj 742
corresponding to each character in the result of the function 743
invocation string({n}), where 744

a. the [character code] property of cj is the ISO 10646 745
character code of the corresponding jth character in 746
the result of the function invocation string({n}). 747

b. the [element content whitespace] property of cj is 748
i. unknown if the character is whitespace, and 749
ii. false otherwise. 750

c. the [parent] property is the element information item 751
in the infoset rooted at i(r(T({n})) which contains this 752
information item in its [children] property. 753

5. If n is a namespace node, then i(n) is a single namespace 754
information item, where 755

a. the [prefix] property is the result of the function 756
invocation local-name({n}), unless that returns an 757
empty string, in which case the [prefix] property is no 758
value. This perhaps unexpected formulation arises 759
from the fact that in XPath, "a namespace node has 760
an expanded-name: the local part is the namespace 761
prefix (this is empty if the namespace node is for the 762
default namespace); the namespace URI is always 763
null." 764

b. the [namespace name] property is the result of the 765
function invocation string({n}). 766

6. If n is a processing instruction node, then i(n) is a single 767
processing instruction information item, where 768

a. the [target] property is the result of the function 769
invocation local-name({n}). 770

b. the [content] property is the result of the function 771
invocation string({n}). 772

c. the [base URI] property is unknown. 773
d. the [notation] property is unknown. 774
e. the [parent] property is the document, element, or 775

document type definition information item in the 776
infoset rooted at i(r(T({n})) which contains this 777
information item in its [children] property 778

7. If n is a comment node, then i(n) is a single comment 779
information item, where 780

a. the [content] property is the result of the function 781
invocation string({n}). 782

b. the [parent] property is the document or element 783
information item in the infoset rooted at i(r(T({n})) 784
which contains this information item in its [children] 785
property. 786

Having defined the function i, we now return to completing the 787
specification of the details of the node-set to infoset conversion 788
process. 789

Let N be a node-set, and consider the document information item 790
returned by the function invocation i(r(T(N)). Define the infoset 791
I(T(N)) to be that set of information items which are transitively 792
reachable from i(r(T(N)) through any of the properties defined on 793
any of the information items therein. This infoset represents the 794
conversion of the node tree T(N) into a corresponding infoset. 795

Recall that the node-set N is in fact a subset of T(N). This 796
relationship therefore needs to be represented in I(T(N)). To that 797
end, we here define a new boolean infoset property called 798
[omitted]. Unless otherwise indicated by some specification, the 799
value of the [omitted] property of any information item is always to 800
be taken to be 'false'. The present specification, however, defines 801
that for all information items in I(T(N)) the value of [omitted] is 'true' 802
except those items which, for some n in N, are members of the list 803
returned from i(n). 804

This completes the specification of the node-set to infoset 805
conversion process. 806

3.2 Character Model Normalization 807
The Unicode Standard allows diverse representations of certain 808
"precomposed characters" (a simple example is "ç"). Thus two 809
XML documents with content that is equivalent for the purposes of 810
most applications may contain differing character sequences. 811
However, a normalized form of such representations is also 812
defined by the Unicode Standard. 813

It is REQUIRED in Schema Centric Canonicalization that both the 814
input infoset provided thereto and all the schema components to 815
processed by the XML Schema-Assessment process used therein 816
be transformed as necessary so that all string-valued properties 817
and all sequences of character information items therein be 818
normalized into the Unicode Normalization Form C as specified by 819
the algorithm defined by the Unicode Standard. 820

As a (non-normative) note of implementation, in the case where 821
the to-be-canonicalized XML instance and the XML schema 822
specifications thereof are input to the canonicalization process as 823
physical files, this normalization can usually be most 824
straightforwardly accomplished simply by normalizing the 825
characters of these files first before commencing with the 826
remainder of the canonicalization process. 827

3.3 Processing by XML Schema 828

Assessment 829
Once the input infoset is normalized with respect to its character 830
model, the Schema Centric Canonicalization algorithm carries out 831
schema assessment by appealing to the third approach listed in 832
§5.2 Assessing Schema-Validity of the XML Schema 833
recommendation and attempting to carry out strict assessment of 834
the element information item which is the value of the [document 835
element] property of the document information item of the infoset. 836

In XML Schema, as the schema assessment process is carried 837
out, the infoset input to that process is augmented by the addition 838
of new properties which record in the information items various 839
pieces of knowledge which the assessment process has been able 840
to discern. For example, attribute information items are augmented 841
with a [schema normalized value] property which contains the 842
result of, among other things, the application of the appropriate 843
schema-specified default-value to the attribute information item. 844

The Schema Centric Canonicalization algorithm makes use of this 845
augmentation. Specifically, suppose I is the character-normalized 846
version of the infoset which is input to the algorithm, possibly after 847
conversion from another data-type. Then the next step of the 848
algorithm forms the so-called "post-schema-validation infoset" (the 849
"PSVI", or more precisely, PSVI(I)) in exactly the manner 850
prescribed as a consequence of the assessment process defined 851
in the XML Schema Structures specification as amended in the 852
manner set forth below. If PSVI(I) cannot be so formed, due to, for 853
example, a failure of validation, then the Schema Centric 854
Canonicalization algorithm terminates with a fatal error. 855

In XML Schema Structures, the augmentation process of schema 856
assessment fails to record a small number of pieces of information 857
which it has learned and which we find crucially necessary to have 858
knowledge of here. Accordingly, the PSVI generation process 859
referred to by this specification is exactly that of the XML Schema 860
Structures recommendation as amended as follows: 861

3.8.5 Model Group 862

Information Set 863

Contributions 864
If the schema-validity of an element 865
information item has been assessed as 866
per Element Sequence Valid (§3.8.4) 867
by a model group whose {compositor} 868
is all, then in the post-schema-869
validation infoset it has the following 870
property: 871

PSVI Contributions 872
for element information 873
items 874

[validating model 875
group all] 876

An ·item isomorphic· to 877
the model group 878
component involved in 879
such assessment. 880

3.4 Additional Infoset Transformation 881
The fourth step of the Schema Centric Canonicalization algorithm 882
further augments and transforms the PSVI to produce the 883
"schema-canonicalized infoset". This involves a pruning step, a 884
namespace prefix desensitization step, a namespace attribute 885
normalization step, and a data-type canonicalization step. 886

3.4.1 Pruning 887
Some information items in the PSVI in fact do not actively 888
participate in the schema assessment process of XML Schema. 889
They are either ignored completely by that process, or used in an 890
administrative capacity which is not central to the outcome. Thus, 891
these items need to be pruned from the PSVI in order that they not 892
affect the output of canonicalization. Similarly, declarations of 893
notations and unparsed entities which are not actually referenced 894
in the canonicalized representation should also be removed. 895

To this end, the [omitted] property is set to 'true' for any information 896
item info in the PSVI for which at least one of the following is true: 897

1. info is a (necessarily whitespace) character information item 898
which is a member of the [children] of an element 899
information item whose [type definition] is a complex type 900

schema component whose {content type} property is 901
element-only 902

2. info is an attribute information item whose [namespace 903
name] is identical to "http://www.w3.org/2001/XMLSchema-904
instance" and whose [local name] is one of 905
"schemaLocation" or "noNamespaceSchemaLocation" 906

3. info is a notation information item for which there does not 907
exist an attribute or element information item in the infoset 908
whose [omitted] property is false, whose [member type 909
definition] (if present) or [type definition] (otherwise) 910
property is either 911

a. a NOTATION simple type (or restriction or extension 912
thereof) 913

b. a list of same 914

and whose [schema normalized value] is identical (in the 915
former case) or contains a list item which is identical (in the 916
later case) to the [name] of the notation information item 917

4. info is an unparsed entity information item for which there 918
does not exist an attribute or element information item in the 919
infoset whose [omitted] property is false, whose [member 920
type definition] (if present) or [type definition] (otherwise) 921
property is either 922

a. an ENTITY simple type (or restriction or extension 923
thereof) 924

b. a list of same 925

and whose [schema normalized value] is identical (in the 926
former case) or contains a list item which is identical (in the 927
later case) to the [name] of the unparsed entity information 928
item 929

3.4.2 Namespace Prefix Desensitization 930
The goal of namespace prefix desensitization is to first identify 931
those information items in the infoset which make use of 932
namespace prefixes outside of XML start and end tags (that is, 933
information of type QName and derivations and lists thereof as 934
well as information representing an expression written in some 935
embedded language which makes use of the XML Namespaces 936
specification in a embedded-language-specific manner), and next 937
to annotate the infoset in order to indicate exactly where and in 938
what manner uses of particular XML namespace prefixes in fact 939
occur. That is, desensitization is a two-step process: a data 940
location step, followed by an annotation step. 941

Note that the notion of embedded language used here includes not 942
only languages (such as XPath) which are represented in XML as 943
the content of certain strings but also those (such as XML Query) 944
which make use of structured element content. In all cases, 945
however, in order to be namespace-desensitizeable it is 946
REQUIRED that all references to XML namespace prefixes do in 947
fact ultimately lie in information identified as being of a simple type 948
(usually strings). It is, however, permitted that these prefixes may 949
be found in simple types which are attributes and / or the content 950
of elements perhaps deep in the sub-structure of the element 951
rooting the occurrence of the embedded language. 952

Moreover, in order to be namespace-desensitizeable, it is 953
REQUIRED that the semantics of each embedded language not 954
be sensitive to the specific namespace prefixes used, or the 955
character-count length thereof: one MUST be permitted to 956
(consistently) rewrite any or all of the prefixes used in an 957
occurrence of a language with arbitrary other (appropriately 958
declared) prefixes, possibly of different length, without affecting the 959
semantic meaning in question. 960

Each particular embedded language for which namespace 961
desensitization is to be done MUST be identified by a name 962
assigned to it by an appropriate authority. It is REQUIRED that this 963
name be of data-type anyURI. This specification assigns the 964
following URIs as names of particular embedded languages: 965

URI Embedded Language
http://www.w3.org/TR/1999/REC-
xpath-19991116

the embedded language which consists of
sequences of characters which conform to
the any of the grammatical productions of
the XPath 1.0 specification

http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502

an embedded language which consists of
sequences of characters which are of type
QName or derivations and/or lists (and
their derivations) thereof

The data location step of desensitization makes use of 966
canonicalization-specific annotations to XML Schema 967
components. It is the case in XML Schema that the XML 968
representation of all schema components allows the presence of 969
attributes qualified with namespace names other than the XML 970
Schema namespace itself; this is manifest in the schema-for-971
schemas as the presence of an 972

<xs:anyAttribute namespace="##other" 973
processContents="lax"/> 974

definition in the schema for each of the various schema 975
components. As is specified in XML Schema Structures, such 976
attributes are represented in the infoset representation of the 977
schema inside the {attributes} property of an Annotation schema 978
component which in turn is the value of the {annotation} property 979
of the annotated schema component in question (i.e.: the 980
Annotation is the {annotation} of the Attribute Declaration, the 981
Element Declaration, or whatever). Within the Schema Centric 982
Canonicalization algorithm namespace, we define a couple of 983
attributes intended for use as such annotations to schema 984
components: 985

1. The embeddedLang attribute, which is of type anyURI, is 986
defined in the Schema Centric Canonicalization algorithm 987
namespace. When used as an attribute annotation to a 988
schema component, an embeddedLang attribute indicates 989
that an information item which validates against the schema 990
component in question in fact contains information written in 991
a certain, fixed embedded language whose name is 992
indicated in the value of the embeddedLang attribute. 993
The embeddedLang attribute may also be used within a 994
schema instance (but only, of course, where such attributes 995
are permitted by the corresponding schema); this is in loose 996
analogy to how the xsi:type attribute is used. In such 997
situations, the [owner element] of the embeddedLang 998
attribute in fact contains information written in a certain, 999
fixed embedded language whose name is indicated in the 1000
value of the embeddedLang attribute. The use of an 1001
embeddedLang attribute in a schema instance supercedes 1002
any identification of embedded language that may be 1003
provided by its schema. 1004

2. The embeddedLangAttribute attribute, which is of type 1005
QName, is defined in the Schema Centric Canonicalization 1006
algorithm namespace. When used as an attribute 1007
annotation to a schema component, an 1008
embeddedLangAttribute attribute indicates that an 1009
information item which validates against the schema 1010
component in question in fact contains information written in 1011
an embedded language whose name is dynamically 1012
indicated in the information item (necessarily an element 1013
information item) as the value of a certain attribute thereof, 1014
namely the attribute whose qualified name is indicated in 1015
the value of the embeddedLangAttribute attribute. 1016

In order to specify how these attributes are used, we define an 1017
auxiliary function in order to model the inheritance of annotations 1018
in schemas from types to elements and attributes and from base 1019
types to derived types. Let i be an information item, a be a string 1020
(representing the name of an attribute), and ns be either a URI 1021
(representing the name of an XML namespace) or the value 1022
absent. Define the function getAnnot(i, a, ns) as follows: 1023

1. If i is an element information item, then 1024
a. If the [element declaration] property of i contains in 1025

its {annotation} property an Annotation schema 1026
component which contains in its {attributes} property 1027
an attribute information item whose {name} is a and 1028
whose {target namespace} is ns (that is, if the 1029
[element declaration] property of i "has an (a,ns) 1030
annotation attribute"), then getAnnot(i, a, ns) is the 1031
value of that attribute 1032

b. Otherwise, let t be the [member type definition] 1033
property of i (if it exists) or the [type definition] 1034
property of i (otherwise). Then getAnnot(i, a, ns) is 1035
getAnnot(t, a, ns). 1036

2. If i is an attribute information item, then 1037
a. If the [attribute declaration] property of i has an (a,ns) 1038

annotation attribute, then getAnnot(i, a, ns) is the 1039
value of that attribute. 1040

b. Otherwise, let t be the [member type definition] 1041
property of i (if it exists) or the [type definition] 1042
property of i (otherwise). Then getAnnot(i, a, ns) is 1043
getAnnot(t, a, ns). 1044

3. If i is an information item which is item isomorphic to a 1045
complex type definition schema component, then, 1046

a. If i has an (a,ns) annotation attribute, then 1047
getAnnot(i, a, ns) is the value of that attribute 1048

b. If the {base type definition} property t of i is not the 1049
ur-type definition, then getAnnot(i, a, ns) is 1050
getAnnot(t, a, ns) 1051

c. Otherwise, getAnnot(i, a, ns) is absent. 1052
4. If i is an information item which is item isomorphic to a 1053

simple type definition schema component, then, 1054
a. If i has an (a,ns) annotation attribute, then 1055

getAnnot(i, a, ns) is the value of that attribute. 1056
b. If the {variety} property of i is atomic, and if the {base 1057

type definition} property t of i is not the ur-type 1058
definition, then getAnnot(i, a, ns) is getAnnot(t, a, ns) 1059

c. If the {variety} property of i is list, then getAnnot(i, a, 1060
ns) is getAnnot(t, a, ns), where t is the {item type 1061
definition} property of i. 1062

d. Otherwise, getAnnot(i, a, ns) is absent. 1063
5. Otherwise, getAnnot(i, a, ns) is absent. 1064

The data location step of desensitization is carried out as follows. 1065
Let sccns be the Schema Centric Canonicalization namespace. 1066
Consider in turn each attribute and element information item x in 1067
the pruned PSVI: 1068

1. If x is an element information item, and if the [attributes] of x 1069
contain an attribute a whose [namespace name] is sccns 1070
and whose [local name] is "embeddedLang", then x is 1071
identified as being associated with the embedded language 1072
which is the value of the [schema normalized value] of a (if 1073
present) or the [normalized value] of a (otherwise). 1074

2. Otherwise, if x is an element information item, and if 1075
getAnnot(x, "embeddedLangAttribute", sccns) is not absent, 1076
then x is identified as being associated with the embedded 1077
language which is the [schema normalized value] (if 1078
present) or the [normalized value] (otherwise) of the 1079
member of the [attributes] of x whose name is the value of 1080
getAnnot(x, "embeddedLangAttribute", sccns); if no such 1081
member of [attributes] exists, a fatal error occurs. 1082

3. Otherwise, if getAnnot(x, "embeddedLang", sccns) is not 1083
absent, then x is identified as being associated with the 1084
embedded language which is is the value thereof; 1085

4. Otherwise, x is not associated with any embedded 1086
language by means of the embeddedLang or 1087
embeddedLangAttribute attributes, though such an 1088
association may be indicated by other means, such as by 1089
fiat in some specification. 1090

To that last point this specification REQUIRES that a schema 1091
component representing any of the following: 1092

1. the type of the element named "XPath" contained in 1093
elements of type dsig:TransformType (where the prefix 1094
"dsig" is bound to the XML Signature Syntax and 1095
Processing namespace: 1096
http://www.w3.org/2000/09/xmldsig#), or 1097

2. the "xpath" attribute whose [owner element] is the element 1098
xsd:selector (where the prefix "xsd" is bound to the XML 1099
Schema namespace: 1100
http://www.w3.org/2001/XMLSchema), or 1101

3. the "xpath" attribute whose [owner element] is the element 1102
xsd:field (where the prefix "xsd" is bound as before) 1103

is to be considered by definition as possessing an embeddedLang 1104
attribute with value http://www.w3.org/TR/1999/REC-xpath-1105
19991116 in the {attributes} property of its {annotation} property 1106
(that is, they are by definition annotated as being XPath 1.0 1107
expressions). 1108
Moreover, any attribute or element information item whose 1109
[member type definition] (if present) or [type definition] (otherwise) 1110
property is any of: 1111

1. QName or a derivation thereof 1112
2. a list of QName or a derivation thereof 1113
3. a derivation of a list of QName or a derivation thereof 1114

is identified as being associated with the embedded language 1115
whose name is http://www.w3.org/TR/2001/REC-xmlschema-2-1116
20010502. 1117

Other specifications are encouraged to provide similar legacy-1118
supporting definitions when appropriate: the price of not identifying 1119
an embedded language when one is actually in use is that the 1120
canonicalized output will (almost certainly) be non-operational due 1121
to dangling or erroneously-bound namespace prefixes. 1122

Following the data location step, the processing of the attribute 1123
and element information items identified as being associated with 1124
embedded languages is carried out by the annotation step of 1125
namespace prefix desensitization in what is necessarily an 1126
embedded-language-specific manner. Implementations of the 1127
Schema Centric Canonicalization algorithm will need to 1128
understand the syntax and perhaps some semantics of each of the 1129
embedded languages whose uses they encounter as they carry 1130
out canonicalization. Should an embedded language which is not 1131
appropriately understood be encountered, the Schema Centric 1132
Canonicalization algorithm terminates with a fatal error. All 1133
implementations of the Schema Centric Canonicalization algorithm 1134
MUST in this sense fully understand the (XPath) embedded 1135
language identified as http://www.w3.org/TR/1999/REC-xpath-1136
19991116 as well as the embedded language identified as 1137
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. 1138
In all cases the execution of the annotation step is manifest in the 1139
augmented PSVI in a uniform manner. Specifically, let x be an 1140
attribute or element information item which is identified by the 1141
language-specific processing as containing one or more uses of 1142
XML namespace prefixes in its [schema normalized value] 1143

property y. If any of these uses of XML namespace prefixes in y is 1144
in a form other than a occurrence of a QName, then a fatal error 1145
occurs. Otherwise, x is additionally augmented by the language-1146
specific processing with a [prefix usage locations] property which 1147
contains, corresponding to the sequence of all the QNames in y, 1148
an ordered sequence of one or more triples (offset, prefix, 1149
namespace URI) where 1150

1. offset is the zero-based offset from the start of y of the first 1151
character of a QName 1152

2. prefix is the string value of the prefix of that QName (not, to 1153
be clear, including any trailing colon), if any is present, or no 1154
value otherwise. 1155

3. namespace URI is the in-scope binding of the that XML 1156
namespace prefix (or the default XML namespace, if prefix 1157
is no value), or no value if no such binding exists (which 1158
necessarily must result from a use of the default XML 1159
namespace prefix in a context where no declaration for that 1160
prefix is in scope), 1161

and these triples occur in increasing order by offset. 1162

This concludes the specification of the namespace prefix 1163
desensitization step. 1164

3.4.3 Namespace Attribute Normalization 1165
The next step in the series of infoset transformations carried out by 1166
the Schema Centric Canonicalization algorithm is that of 1167
normalizing the actual XML namespace prefix declarations in use. 1168
The XML namespace recommendation allows namespaces to be 1169
multiply declared throughout an XML instance, possibly with 1170
several and different namespace prefixes used for the same 1171
namespace. In the canonical representation, we remove this 1172
flexibility, declaring each namespace just as needed, and using a 1173
deterministically constructed namespace prefix in such 1174
declaration. In this procedure, we borrow heavily from some of the 1175
similar work carried out in the Exclusive XML Canonicalization 1176
recommendation. We begin with some definitions. 1177

ancestor information item 1178
An ancestor information item a of an information item i in an 1179
infoset is any information item transitively reachable from i 1180
through traversal of the [parent] properties of element, 1181
processing instruction, unexpanded entity reference, 1182
character, comment, and document type declaration 1183
information items, and the [owner element] property of 1184
attribute information items. Notation, unparsed entity, and 1185

namespace information items have no ancestors, nor do 1186
attribute information items which appear in elements other 1187
than in their [attributes] properties. Note that the information 1188
item i is not an ancestor of itself. 1189

self-ancestor 1190
A self-ancestor of an information item is either the 1191
information item itself or an ancestor thereof. 1192

output parent 1193
The output parent of an information item i in an infoset is 1194
(noting that the ancestor relationship is transitive) the 1195
nearest ancestor of i which is an element information item 1196
whose [omitted] property is false, or no value if such an 1197
ancestor does not exist. 1198

visibly utilize 1199
An element information item e in an infoset is said to visibly 1200
utilize an XML namespace prefix p if any of the following is 1201
true: 1202

1. the [prefix] property of e is identical to p (note that 1203
this includes the case where both are no value), 1204

2. e has a [prefix usage locations] property, and that 1205
property value contains some triple whose prefix 1206
member is identical to p 1207

3. there exists an attribute information item a in the 1208
infoset whose [owner element] property is e, whose 1209
[omitted] property is false, and either 1210

a. the [prefix] property of a is identical to p, 1211
b. a has a [prefix usage locations] property, and 1212

that property value contains some triple whose 1213
prefix member is identical to p 1214

The execution of the namespace attribute normalization step adds 1215
[normalized namespace attributes] properties to certain element 1216
information items in the infoset. Let e be any element information 1217
item whose [omitted] property is false. Then the [normalized 1218
namespace attributes] property of e is that unordered set of 1219
attribute information items defined recursively as follows. 1220

Let Ne be the set of all namespace information items n in the [in-1221
scope namespaces] property of e where n is visibly utilized by e. 1222
Let NAp be the set of attribute information items in the [normalized 1223
namespace attributes] property of any self-ancestor of p, where p 1224
is the output parent of e and if p is not no value, or the empty set if 1225
no such output parent exists. Let namespaces(Ne) be the set of 1226
strings consisting of the [namespace name] properties of all 1227
members of Ne, and let namespaces(NAp) be the set of strings 1228

consisting of the [normalized value] properties of all members of 1229
NAp. 1230

For each namespace URI u in namespaces(Ne) - 1231
namespaces(NAp) (so, the name of each namespace with a prefix 1232
newly utilized at e), the [normalized namespace attributes] 1233
property of e contains an attribute information item whose 1234
properties are as follows: 1235

1. the [namespace name] property is (per XML Infoset) 1236
"http://www.w3.org/2000/xmlns/" 1237

2. the [local name] property is either: 1238
a. a the string "xml" if the namespace value is 1239

"http://www.w3.org/XML/1998/namespace" 1240
b. a string of the form "n" concatenated the canonical 1241

lexical representation of a non-negative integer i (for 1242
example "n0", "n1", "n2", and so on) where the 1243
particular integer i in question is chosen as described 1244
just below. 1245

3. the [prefix] property is "xmlns" 1246
4. the [normalized value] property is the value u. 1247
5. the [schema normalized value] property is identical to the 1248

[normalized value] property 1249
6. the remaining properties are as set forth above in the 1250

specification of conversion of attribute nodes to information 1251
items. 1252

XML namespace prefixes used in the [normalized namespace 1253
attributes] property (which are manifest in the [local name] 1254
properties of the attribute information items contained therein) are 1255
chosen as follows. Let e be any element containing a [normalized 1256
namespace attributes] property. Let l be the ordered list resulting 1257
from sorting the [normalized namespace attributes] property of e 1258
according to the sort function described below. Let k be the 1259
maximum over all the ancestors a of e of the integers used per (b) 1260
above to form the [local name] property of any attribute item in the 1261
[normalized namespace attributes] property of a, or -1 if no such 1262
attribute items exist. Then the attributes of l, considered in order, 1263
use, in order, the integers k+1, k+2, k+3, and so on in the 1264
generation of their [local name] as per (b) above, excepting only 1265
that if wildcardOutputRoot(e) is true, then (in order to avoid 1266
collisions) any integer which would result in a [local name] property 1267
which was the same as the [prefix] property of some namespace 1268
item in the [in-scope namespaces] property of e is skipped. 1269

Now that the declaration of necessary namespace attributes has 1270
been successfully normalized (and, canonically, the default 1271

����� ��� ���
	

namespace has been left undeclared), we apply these 1272
declarations in the appropriate places by defining appropriate 1273
[normalized prefix] and [prefix & schema normalized value] 1274
properties. Let info be any information item in the infoset whose 1275
[omitted] property is false. Then: 1276

1. If info is an element or attribute information item whose 1277
[namespace name] property has no value, then the 1278
[normalized prefix] property of info exists but is no value. 1279

2. If info is an element or attribute information item whose 1280
[namespace name] property is not no value, then let a be 1281
that namespace declaration attribute in the [normalized 1282
namespace attributes] of some self-ancestor of info where 1283
the [normalized value] property of a is identical to the 1284
[namespace name] property of info (if no such a exists, a 1285
fatal error occurs. This can occur, for example, if all element 1286
information items in the infoset are omitted, but some 1287
attributes are retained.). The [normalized prefix] property of 1288
info then exists and is the [local name] property of a. 1289

Moreover, if info contains a [prefix usage locations] property, then 1290
info also contains a [prefix & schema normalized value] property 1291
which is identical to the [schema normalized value] property of info 1292
except for differences formed according to the following procedure. 1293
Consider in turn each triple t found in the [prefix usage locations] 1294
property of info. Let normalizedPrefixUse(t) be those characters of 1295
the [prefix & schema normalized value] property of info which 1296
correspond to the characters of the [schema normalized value] 1297
property of info whose zero-based character-offsets lie in the semi-1298
open interval [offset, offset+cch-1+z), where 1299

1. offset is the offset member of t, 1300
2. cch is the number of characters in the prefix member of t (if 1301

prefix is not no value) or zero (otherwise), and 1302
3. z is one if prefix is not no value and the offset+cch-1+1'st 1303

character of the [schema normalized value] of info property 1304
is a colon, and zero otherwise. 1305

Then the characters of normalizedPrefixUse(t) are determined as 1306
follows: 1307

1. If the namespace URI of t has no value, then 1308
normalizedPrefixUse(t) is the empty string. 1309

2. Otherwise, let a be that namespace declaration attribute in 1310
the [normalized namespace attributes] of some self-1311
ancestor of info where the [normalized value] property of a 1312

is identical to the namespace URI of t (if no such a exists, a 1313
fatal error occurs). Then normalizedPrefixUse(t) is the [local 1314
name] of a followed by a colon. 1315

This completes the specification of the namespace attribute 1316
normalization step. 1317

3.4.4 Data-type Canonicalization 1318
The XML Schema Datatypes specification defines for a certain set 1319
of its built-in data-types a canonical lexical representation of the 1320
values of each of those data types. To that identified set of 1321
canonical representations Schema Centric Canonicalization adds 1322
several new rules; in some cases, it refines those rules provided 1323
by XML Schema. 1324

The most complicated part of data type canonicalization lies in 1325
dealing with character sequences which are as a matter of 1326
application-level schema design considered to be case insensitive. 1327
It is important that case-insensitivity of application data be 1328
integrated into the canonicalization algorithm: if it were not, then 1329
applications may be forced to remember the exact case used for 1330
certain data when they otherwise would not need to, a requirement 1331
which may well be in tension with the application semantic of case-1332
insensitivity, and thus quite possibly a significant implementation 1333
burden. 1334

The relevant technical reference for case-mapping considerations 1335
for Unicode characters is a technical report published by the 1336
Unicode Consortium. Case-mapping of Unicode characters is 1337
more subtle than readers might naively intuit from their personal 1338
experience. The mapping process can at times be both locale-1339
specific (Turkish has special considerations, for example) and 1340
context-dependent (some characters case-map differently 1341
according to whether they lie at the end of a word or not). Mapping 1342
of case can change the length of a character sequence. Upper and 1343
lower cases are not precise duals: there exist pairs of strings which 1344
are equivalent in their upper case-mapping but not in their lower 1345
case, and visa versa. 1346

In order to accommodate these flexibilities, we define several 1347
attributes within the Schema Centric Canonicalization algorithm 1348
namespace in order to assist with the identification of data which is 1349
to be considered case-insensitive and the precise manner in which 1350
that is to be carried out. As was the case for the embeddedLang 1351
and embeddedLangAttribute attributes previously defined, these 1352
attributes are intended to be used as annotations of relevant 1353
schema components. 1354

The caseMap attribute, which is of type 1355
language, is defined in the Schema 1356
Centric Canonicalization algorithm 1357
namespace. When used as an attribute 1358
annotation to a schema component, a 1359
caseMap attribute indicates that case-1360
mapping is to be performed on data 1361
which validates against the schema 1362
component according to the case-1363
mapping rules of the fixed locale 1364
identified by the value of the attribute. 1365

The caseMapAttribute attribute, which 1366
is of type QName, is defined in the 1367
Schema Centric Canonicalization 1368
algorithm namespace. When used as 1369
an attribute annotation to a schema 1370
component, a caseMapAttribute 1371
attribute indicates that an information 1372
item which validates against the 1373
schema component in question is to be 1374
case mapped during the 1375
canonicalization process according to 1376
the rules of the locale which is 1377
dynamically indicated in the information 1378
item (necessarily an element 1379
information item) as the value of a 1380
certain attribute thereof, namely the 1381
attribute whose qualified name is 1382
indicated in the value of the 1383
caseMapAttribute attribute (which must 1384
be of type language or a restriction 1385
thereof). 1386

The caseMapKind attribute, which is of 1387
type string but restricted to the 1388
enumerated values "upper", "lower", 1389
and "fold", is defined in the Schema 1390
Centric Canonicalization algorithm 1391
namespace. When used as an attribute 1392
annotation to a schema component, a 1393
caseMapKind attribute indicates 1394
whether upper-case or lower-case 1395
mapping or case-folding is to be carried 1396
out as part of the canonicalization 1397
process. If this attribute is contextually 1398
absent but at least one of caseMap or 1399

caseMapAttribute is contextually 1400
present, upper-case mapping is carried 1401
out. 1402

Traditional ASCII-like case insensitivity can be most easily 1403
approximated by simply specifying "fold" for the caseMapKind 1404
attribute and omitting both caseMap and caseMapAttribute. Also, 1405
schema designers are cautioned to be careful in combining case-1406
mapping annotations together with length-limiting facets of strings 1407
and URIs, due to the length-adjustment that may occur during 1408
canonicalization. 1409

The data-type canonicalization step of Schema Centric 1410
Canonicalization is carried out according to the following rules: 1411

1. Per the relevant clarification E2-9 in the errata to XML 1412
Schema, the canonical lexical representation of a datum of 1413
type base64Binary must conform to the grammatical 1414
production Canonical-base64Binary as defined therein. 1415
That production permits in the representation only valid 1416
base64 encodings which only contain characters from the 1417
base64 alphabet as defined by section "6.8 Base64 1418
Content-Transfer-Encoding" of RFC 2045 (in particular, 1419
whitespace characters are not in the alphabet), excepting 1420
only that the representation is to be formed into lines of 1421
exactly 76 characters (except for the last line, which must 1422
be 76 characters or shorter) by the appropriate periodic 1423
occurrence of a line-feed character (that is, the character 1424
whose character code is (decimal) 10) at the end of each 1425
line (including the last). 1426

2. The canonical lexical representation of a datum of type 1427
dateTime permits only the lexical representation 00:00:00 to 1428
denote a time value of midnight (that is, the representation 1429
24:00:00 is prohibited). Further (per XML Schema) either 1430
the time zone must be omitted or, if present, the time zone 1431
must be Coordinated Universal Time (UTC) indicated by a 1432
"Z". 1433

3. The canonical lexical representation of a datum of type float 1434
or double is defined by prohibiting certain options from the 1435
lexical representation. Specifically, the exponent must be 1436
indicated by "E". Leading zeroes and the preceding optional 1437
"+" sign are prohibited in the exponent. For the mantissa, 1438
the preceding optional "+" sign is prohibited and the decimal 1439
point is required. For the exponent, the preceding optional 1440
"+" sign is prohibited. Leading and trailing zeroes are 1441
prohibited subject to the following: number representations 1442
must be normalized such that there is a single digit to the 1443

left of the decimal point and at least a single digit to the right 1444
of the decimal point such that the number of of leading 1445
zeros in the overall sequence of such digits is a small as 1446
otherwise possible. 1447

4. The canonical lexical representation of a datum of type 1448
language permits only the use of upper case characters. 1449

5. The canonical lexical representation of a datum of type 1450
gYearMonth and gYear prohibits the use of leading zeros 1451
for values where the absolute value of the year in question 1452
is outside the range of 0001 to 9999. 1453

6. The canonical lexical representation of an element or 1454
attribute information item info which of type string or anyUri 1455
or a restriction thereof and where either of the following is 1456
true: 1457

a. the following is true 1458
i. getAnnot(info, "caseMap", sccns) is present, or, if 1459

not 1460
ii. getAnnot(info, "caseMapAttribute", sccns) is 1461

present 1462
b. getAnnot(info, "caseMapKind", sccns) is present 1463

is the result of the application of the function caseMap with 1464
the parameters 1465

c. the sequence of characters comprising the value of 1466
the element or attribute in question, 1467

d. the language indicated according to the applicable 1468
case i. or ii. above, if any, or the value absent 1469
otherwise, 1470

e. getAnnot(info, "caseMapKind", sccns). 1471
7. If none of the preceding rules apply, the canonical lexical 1472

representation of a datum of primitive type for which XML 1473
Schema Datatypes defines a canonical lexical 1474
representation is the representation defined therein. 1475

8. If none of the preceding rules apply, the canonical lexical 1476
representation of a datum which is of a primitive type is the 1477
not-further-processed representation of the datum itself. 1478

9. The canonical lexical representation of a datum of a type 1479
which is derived by list is that which is defined by the XML 1480
Schema Datatypes specification (note that this includes the 1481
collapsing of the whitespace therein). 1482

10. If none of the preceding rules apply, the canonical lexical 1483
representation of a datum which is of a simple type that is a 1484
restriction of a type for which a canonical lexical 1485
representation is defined is the representation of the datum 1486

according to the canonical lexical representation so defined 1487
for that base type. 1488

Thus, a canonical lexical representation for all non-union simple 1489
types is defined. 1490

The function caseMap takes three input parameters: 1491

1. a sequence of characters whose case is to be mapped, 1492
2. a locale in the form of a language in whose context the 1493

mapping is to be carried out, or the value absent, which is 1494
to be treated as if "en" were provided, 1495

3. either the string "upper", the string "lower", the string "fold", 1496
or the value absent, indicating whether upper-case or lower-1497
case mapping or case-folding is to be carried out; the value 1498
absent is treated as if "upper" were provided. 1499

The upper-case or lower-case mapping process of the caseMap 1500
function is carried out in the context of the indicated locale 1501
according to the (respectively) UCD_upper() or UCD_lower() 1502
functions as specified by the Unicode Consortium. The case-1503
folding process is carried out by mapping characters through the 1504
CaseFolding.txt file in the Unicode Character Database as 1505
specified by the Unicode Consortium. 1506

To carry out the data-type canonicalization step in the Schema 1507
Centric Canonicalization algorithm, the [schema normalized value] 1508
property of all element and attribute information items in the output 1509
of the namespace attribute normalization step whose [member 1510
type definition] (if present) or [type definition] (otherwise) property 1511
is a simple type is replaced by the defined canonical lexical 1512
representation of the member of the relevant value space which is 1513
represented by the [schema normalized value]. 1514

The infoset which is output from the data-type canonicalization 1515
step is the schema-canonicalized infoset. 1516

3.5 Serialization of the Schema-1517

Canonicalized Infoset 1518
The final step in the Schema Centric Canonicalization algorithm is 1519
the serialization of the schema-canonicalized infoset into a 1520
sequence of octets. 1521

In the description of the serialization algorithm that follows, at 1522
various times a statement is made to the effect that a certain 1523
sequence of characters is to be emitted or output. In all cases, it is 1524

to be understood that the actual octet sequences emitted are the 1525
corresponding UTF-8 representations of the characters in 1526
question. The character referred to as "space" has a character 1527
code of (decimal) 32, the character referred to as "colon" has a 1528
character code of (decimal) 58, and the character referred to as 1529
"quote" has a character code of (decimal) 34. 1530

Also, the algorithm description makes use of the notation 1531
"info[propertyName]". This is to be understood to represent the 1532
value of the property whose name is propertyName on the 1533
information item info. 1534

The serialization of the schema-canonicalized infoset, and thus the 1535
output of the overall Schema Centric Canonicalization algorithm, is 1536
defined to be the octet sequence that results from the function 1537
invocation serialize(d), where d is the document information item in 1538
the schema-canonicalized infoset, and serialize is the function 1539
defined below. 1540

3.5.1 The function serialize 1541
The serialize function is defined recursively in terms of the 1542
serialization of individual types of information item. Let the 1543
functions recurse, sort, escape, wildcarded, and 1544
wildcardOutputRoot be defined as set forth later. Let info be an 1545
arbitrary information item. Let serialize be the function taking an 1546
information item as input and returning an sequence of octets as 1547
output which is defined as follows. 1548

1. If info is a document information item, then serialize(info) 1549
is the in-order concatenation of the following: 1550

a. if info[omitted] is false, and if either info[notations] or 1551
info[unparsed entities] contains a notation or an 1552
unparsed entity information item (respectively) whose 1553
[omitted] property is false, then 1554

i. the characters "<!DOCTYPE " 1555
ii. the appropriate case from the following 1556

1. if wildcarded(info[document element]) is 1557
false, then if info[document 1558
element][normalized prefix] is not no 1559
value, then the characters thereof, 1560
followed by a colon 1561

2. if wildcarded(info[document element]) is 1562
true, then if info[document 1563
element][prefix] is not no value, then 1564
the characters thereof, followed by a 1565
colon 1566

iii. the characters of info[document element][local 1567
name] 1568

iv. the characters " [" 1569
v. recurse(sort(info[notations])) 1570
vi. recurse(sort(info[unparsed entities])) 1571
vii. the characters "]>" 1572

b. recurse(info[children]) 1573

2. If info is an element information item, then serialize(info) 1574
is: 1575

a. if info[validation attempted] is full or partial and 1576
info[validity] is not valid, then a fatal error occurs. 1577

b. otherwise, the in-order concatenation of the 1578
following: 1579

i. if info[omitted] is false, then 1580
1. the character "<" 1581
2. the appropriate case from the following: 1582

a. if wildcarded(info) is false, then if 1583
info[normalized prefix] is not no 1584
value, then the characters 1585
thereof, followed by a colon 1586

b. if wildcarded(info) is true, then if 1587
info[prefix] is not no value, then 1588
the characters thereof, followed 1589
by a colon 1590

3. the characters of info[local name] 1591
4. if info[normalized namespace 1592

attributes] exists, then 1593
recurse(sort(info[normalized 1594
namespace attributes])) 1595

5. if wildcardOutputRoot(info) is true, then 1596
recurse(sort(N)), where N is info[in-1597
scope namespaces] but with the item 1598
therein having the prefix "xml" 1599
removed. 1600

6. if wildcarded(info) is true and 1601
wildcardOutputRoot(info) is false, then 1602
recurse(sort(info[namespace 1603
attributes])). 1604

ii. recurse(sort(info[attributes])) 1605
iii. if info[omitted] is false, then 1606

1. the character ">" 1607
iv. the appropriate case from the following: 1608

1. if the property info[prefix & schema 1609
normalized value] is present, then 1610

a. if info[children] contains any 1611
character information item c 1612

where c[omitted] is true, then the 1613
empty octet sequence, 1614

b. otherwise, escape(info[prefix & 1615
schema normalized value]) 1616

2. else if the property info[schema 1617
normalized value] is present, then 1618

a. if info[children] contains any 1619
character information item c 1620
where c[omitted] is true, then the 1621
empty octet sequence, 1622

b. otherwise, escape(info[schema 1623
normalized value]), 1624

3. else if at least one member of 1625
info[children] is an element information 1626
item which possesses a [validating 1627
model group all] property, then let the 1628
subsequence of info[children] 1629
consisting of all those elements which 1630
possess a [validating model group all] 1631
property be partitioned into into k 1632
subsequences l1 to lk such that k is as 1633
small as possible and all items of a 1634
given subsequence share the same 1635
model group information item for their 1636
[validating model group all] property 1637
(XML Schema assures that this is well-1638
defined), and let children' be a re-1639
ordering of info[children] according to 1640
the following constraints: 1641

a. if an item c of info[children] 1642
possesses a [validating model 1643
group all] property, and is 1644
therefore contained in 1645
subsequence li for some i, then 1646
the relative order of c in children' 1647
with respect to 1648

i. any item d of li different than 1649
c is the same as the 1650
relative ordering of c and 1651
d in sort(li) 1652

ii. any item e of lj (for some i
�
 j) 1653

is the same as the relative 1654
ordering of the first items 1655
of li and lj 1656

iii. any other item f of 1657
info[children] is the same 1658

as the relative ordering in 1659
info[children] of f with that 1660
item g of li where the 1661
index of g in li is the same 1662
as the index of c in sort(li) 1663

b. if items m and n of info[children] 1664
do not posses a [validating 1665
model group all] property, then 1666
they occur in children' in the 1667
same relative order as they 1668
occur as items in info[children] 1669

then, recurse(children') 1670

4. otherwise, if info[content type] is element-only, 1671
then recurse(nwsChildren), where nwsChildren 1672
is the result of removing from info[children] 1673
those character information items whose 1674
[character code] is defined as a white space in 1675
the XML 1.0 Recommendation (this reflects 1676
the validation rule in clause 2.3 of §3.4.4 of 1677
XML Schema). 1678

5. otherwise, recurse(info[children]) 1679
v. if info[omitted] is false, then 1680

1. the characters "</" 1681
2. the appropriate case from the following: 1682

a. if wildcarded(info) is false, then if 1683
info[normalized prefix] is not no 1684
value, then the characters 1685
thereof, followed by a colon 1686

b. if wildcarded(info) is true, then if 1687
info[prefix] is not no value, then 1688
the characters thereof, followed 1689
by a colon 1690

3. the characters of info[local name] 1691
4. the character ">" 1692

3. If info is an attribute information item, then serialize(info) 1693
is the in-order concatenation of the following: 1694

a. if info[omitted] is false, then 1695
i. the character space 1696
ii. the appropriate case from the following: 1697

1. if wildcarded(info) is false, then if 1698
info[normalized prefix] is not no value, 1699
then the characters thereof, followed by 1700
a colon 1701

2. if wildcarded(info) is true, then if 1702
info[prefix] is not no value, then the 1703
characters thereof, followed by a colon 1704

iii. the characters of info[local name] 1705
iv. the character "=" 1706
v. the character quote 1707
vi. the appropriate case of the following: 1708

1. if the property info[prefix & schema 1709
normalized value] is present, then 1710
escape(info[prefix & schema 1711
normalized value]) 1712

2. if info[schema normalized value] exists, 1713
then escape(info[schema normalized 1714
value]) 1715

3. otherwise (the attribute was 1716
wildcarded), escape(info[normalized 1717
value]) 1718

vii. the character quote 1719
b. otherwise, the empty octet sequence 1720

4. If info is a namespace information item, then 1721
serialize(info) is the in-order concatenation of the following: 1722

a. if info[omitted] is false, then 1723
i. the character space 1724
ii. the characters "xmlns:" 1725
iii. the characters of info[prefix] 1726
iv. the character "=" 1727
v. the character quote 1728
vi. escape(info[namespace name]) 1729
vii. the character quote 1730

b. otherwise, the empty octet sequence 1731

5. If info is an unparsed entity information item, then 1732
serialize(info) is the in-order concatenation of the following: 1733

a. if info[omitted] is false, then 1734
i. the characters "<!ENTITY" 1735
ii. the character space 1736
iii. info[name] 1737
iv. the character space 1738
v. the appropriate case of the following 1739

1. if info[public identifier] is not no value, 1740
then the in-order concatenation of the 1741
following: 1742

a. "PUBLIC" 1743
b. the character space 1744
c. info[public identifier] 1745
d. the character space 1746

e. info[system identifier] 1747
2. otherwise, the in order concatenation of 1748

the following: 1749
a. "SYSTEM" 1750
b. the character space 1751
c. info[system identifier] 1752

vi. if info[notation name] is not no value, then the in-1753
order concatenation of the following: 1754

1. the character space 1755
2. "NDATA" 1756
3. the character space 1757
4. info[notation name] 1758

vii. the character ">" 1759
b. otherwise, the empty octet sequence 1760

6. If info is a notation information item, then serialize(info) is 1761
the in-order concatenation of the following: 1762

a. if info[omitted] is false, then 1763
i. the characters "<!NOTATION" 1764
ii. the character space 1765
iii. info[name] 1766
iv. the character space 1767
v. the appropriate case of the following 1768

1. if info[public identifier] and info[system 1769
identifier] are not both no value, then 1770
the in-order concatenation of the 1771
following: 1772

a. "PUBLIC" 1773
b. the character space 1774
c. info[public identifier] 1775
d. the character space 1776
e. info[system identifier] 1777

2. else if info[public identifier] has no 1778
value, the in-order concatenation of the 1779
following: 1780

a. "SYSTEM" 1781
b. the character space 1782
c. info[system identifier] 1783

3. otherwise, the in-order concatenation of 1784
the following 1785

a. "PUBLIC" 1786
b. the character space 1787
c. info[public identifier] 1788

vi. the character ">" 1789
b. otherwise, the empty octet sequence 1790

7. Otherwise (this includes processing instruction, 1791
unexpanded entity reference, character, comment, and 1792
document type declaration information items, though 1793
characters and DTD's are accounted for by other means), 1794
serialize(info) is the empty sequence of octets. 1795

3.5.2 The function recurse 1796
The function recurse is a function which takes as input an ordered 1797
list infos of information items and proceeds as follows. 1798

First, character information items in infos whose [omitted] property 1799
is 'true' are pruned by removing them from the list. Next, the 1800
pruned list is divided into an ordered sequence of sub-lists l1 1801
through lk according to the rule that a sub-list which contains 1802
character items may not contain other types of information items, 1803
but otherwise k is as small as possible. The result of recurse is 1804
then the in-order concatenation of processing in order each sub-1805
list li in turn in the following manner: 1806

1. If li contains character information items, then let si be the 1807
string of characters of length equal to the size of li where the 1808
ISO 10646 character code of the nth character of si is equal 1809
to the [character code] property of the nth character of li. 1810
The output of processing li is then the result of the function 1811
invocation escape(si). 1812

2. If li does not contain character information items, then the 1813
output of processing li is the in-order concatenation of 1814
serialize(info) as info ranges in order over the information 1815
items in the sub-list li . 1816

3.5.3 The function escape 1817
The function escape is that function which takes as input a string s 1818
and returns a copy of s where each occurrence of any of the five 1819
characters & < > ' " in s is replaced by its corresponding predefined 1820
entity. 1821

3.5.4 The functions sort and compare 1822
The function sort takes as input an unordered set or an ordered list 1823
of information items and returns an ordered list of those 1824
information items arranged in increasing order according to the 1825
function compare, unless some of the information items do not 1826
have a relative ordering, in which case a fatal error occurs. 1827

The function compare takes two information items a and b as input 1828
and returns an element of {less than or equal, greater than or 1829
equal, no relative ordering} as output according to the following: 1830

1. If a and b are both attribute information items, then (as in 1831
Canonical XML) less than or equal or greater than or equal 1832
is returned according to a lexicographical comparison with 1833
the [namespace name] property as the primary key and the 1834
[local name] as the secondary key. 1835

2. If a and b are both element information items, then less 1836
than or equal or greater than or equal is returned according 1837
to a lexicographical comparison with the [namespace name] 1838
property as the primary key and the [local name] as the 1839
secondary key. 1840

3. If a and b are both namespace information items, then 1841
less than or equal or greater than or equal is returned 1842
according to a lexicographical comparison with the 1843
[namespace name] property as the primary key and the 1844
[prefix] property as the secondary key. 1845

4. If a and b are both notation information items, then less 1846
than or equal or greater than or equal is returned according 1847
to a comparison of their [name] properties 1848

5. If a and b are both unparsed entity information items, 1849
then less than or equal or greater than or equal is returned 1850
according to a comparison of their [name] properties 1851

6. Otherwise, no relative ordering is returned. 1852

3.5.5 The function wildcarded 1853
The function wildcard takes an element or an attribute information 1854
as input and returns a boolean indicating whether validation was 1855
not attempted on that item. In the Schema Centric 1856
Canonicalization algorithm, validation of an information item will 1857
only not be attempted as a consequence of the item or a parent 1858
thereof being validated against a wildcard whose {process 1859
contents} property is either skip or lax. 1860

Let i be the information item input to wildcarded. The function is 1861
then defined as follows: 1862

1. If i[validation attempted] is none, then true is returned. 1863
2. Otherwise, false is returned. 1864

3.5.6 The function wildcardOutputRoot 1865
The function wildcardOutputRoot takes an element item as input 1866
and returns a boolean indicating whether the item is an 1867
appropriate one on which to place the contextual namespace 1868
declarations necessary for dealing with wildcarded items contained 1869
therein. Let e be the information item input to wildcardOutputRoot. 1870
The function is then defined as follows: 1871

1. If e[omitted] is true, then false is returned. 1872
2. If wildcarded(e) is false and e[attributes] contains any 1873

attribute items a for which wildcarded(a) is true, then true is 1874
returned. 1875

3. If wildcarded(e) is true, and there does not transitively exist 1876
any [parent] element item p of e where either the preceding 1877
clause (2) applies or both p[omitted] is false and 1878
wildcarded(p) is true, then true is returned. 1879

4. Otherwise, false is returned. 1880

4. Use of Schema Centric 1881

Canonicalization in XML Security 1882

4.1 Algorithm Identification 1883
The XML-Signature Syntax and Processing recommendation (XML 1884
DSIG) defines the notion of a canonicalization algorithm together 1885
with the use of URIs as identifiers for such algorithms. In XML 1886
DSIG, the use of canonicalization algorithms is architected in three 1887
places: 1888

1. As part of the signature generation and validation 1889
processes, where it is used to canonicalize a SignedInfo 1890
element prior to its being fed into a digest algorithm. 1891

2. As a Transform algorithm in the pipeline of Transforms 1892
inside a Reference, used to modify data during the 1893
reference generation and validation processes. As a matter 1894
of good XML DSIG hygiene, such a canonicalization 1895
Transform should always be used in the pipeline, and in fact 1896
should always occur as the last Transform therein. 1897

3. As the means by which a Transform in the pipeline which 1898
requires an octet stream as input but is instead presented 1899
(by the previous Transform) with an input node-set converts 1900
the latter into the former. 1901

XML Encryption makes similar use of these algorithms. 1902

This specification asserts that the URI of the Schema Centric 1903
Canonicalization algorithm namespace is the identifier (in the 1904
sense of XML DSIG) of a canonicalization algorithm. This identifier 1905
denotes the Schema Centric Canonicalization algorithm. The 1906
algorithm does not require or permit any explicit parameters. 1907

4.2 Re-Enveloping of Canonicalized Data 1908
As is discussed in Exclusive XML Canonicalization, many 1909
applications from time to time find it useful to be able to change 1910

the enveloping context of a subset of an XML document without 1911
changing the canonical form thereof. 1912

In such situations, if Schema Centric Canonicalization is the 1913
algorithm of relevance, then applications SHOULD avoid 1914
references to notations or unparsed entities in the document 1915
subset in question, since the canonical representation of the 1916
notation and entity declarations referred to (which must, for 1917
security, be part of the canonical form) are defined in a document 1918
type declaration, the presence of which significantly complicates 1919
the task of re-enveloping. 1920

5. Resolutions 1921
This section discusses a few key decision points as well as a 1922
rationale for each decision. 1923

5.1 No Non-Schema-Influencing Information 1924

Items 1925
Several of the eleven different types of information items either 1926
can never appear in an infoset which successfully validates 1927
according to XML Schema or can in no way affect the outcome 1928
thereof. Accordingly, representations of such information items 1929
never appear in the output of the Schema Centric Canonicalization 1930
algorithm. These types of information item are the following: 1931

1. comment information items and processing instruction 1932
information items: as is described in the XML Schema 1933
Structures recommendation, comments and processing 1934
instructions, even in the midst of text, are ignored for all 1935
validation purposes. Thus, for example, each can appear in 1936
such places as the middle of the sequence of digits of an 1937
integer which is the content of an element with an integral 1938
simple type. Were it required (or even optional) to preserve 1939
the significance of such items with respect to the 1940
canonicalization, applications, particularly those wishing to 1941
shred XML information into a relational or other store, would 1942
face cumbersome and significant impediments to 1943
implementation. 1944

2. unexpanded entity reference information items: as is 1945
explained in the XML Infoset recommendation, a validating 1946
XML processor will never generate unexpanded entity 1947
reference information items for a valid document. 1948

3. document type declaration information items: these are 1949
excluded since all possible effects of their processing are 1950
modeled in various properties of other information items. 1951

5.2 No Special Whitespace Processing 1952
Believing their reasoning to be sound, we adopt the attitude of 1953
Canonical XML towards the processing of whitespace in character 1954
content, namely that no special processing is carried out: 1955

"All whitespace within the root 1956
document element MUST be preserved 1957
(except for any #xD characters deleted 1958
by line delimiter normalization). This 1959
includes all whitespace in external 1960
entities." 1961

Moreover, for analogous reasons, we adopt the attitude of 1962
Exclusive XML Canonicalization towards the lack of special 1963
processing of the xml:lang and the xml:space attributes. 1964

It is perhaps worth noting by way of contrast that (unrelated to 1965
xml:lang and xml:space) XML Schema defines certain whitespace 1966
processing rules of its own; these are, of course, carried out by 1967
Schema Centric Canonicalization. 1968

5.3 Case-Mapping vs. Case-Folding 1969
The Unicode Technical Report on Case Mappings distinguishes 1970
case-mapping from a similar process termed case-folding. Unlike 1971
case-mapping, case-folding is a locale-independent operation, and 1972
does not encounter the issue that strings may be equal or differ 1973
depending on the direction in which they are case-mapped. As is 1974
clear in the report, case-folding suffers from being only an 1975
approximation to language-specific rules of processing, and is 1976
primarily aimed at legacy systems where locale information simply 1977
is not feasibly available with which to do a more complete 1978
processing. 1979

The Schema Centric Canonicalization algorithm supports the use 1980
of either case-mapping or case-folding in user schemas. 1981

5.4 No Canonicalization of anyURI Datatype 1982
XML Schema Datatypes does not define a canonical lexical 1983
representation for data of type anyURI. In the present 1984
specification, thought was given to reconsidering this position. As 1985
is described in the specification of Uniform Resource Identifiers, 1986
various aspects of the syntactic structure of URIs are considered 1987
case insensitive: the scheme part of the URI is an example (or 1988
probably is one: contrast §3.1 with §6 in RFC2396 with respect to 1989
this point), and various particular schemes have substructure that 1990
is so. Moreover, a subset of URI share a common syntax for 1991

representing hierarchical relationships within their namespace, and 1992
for the relative (as opposed to absolute) form of such URI, an 1993
algorithm exists (see §5.2 of RFC2396) by which certain aspects 1994
of the URI representation involving "." and ".." are canonicalized. 1995

For these and related reasons it is reasonable to ask whether a 1996
canonical lexical representation for data of type anyURI should be 1997
specified. This, however, is a difficult if not insurmountable task. 1998
Many of the details of an appropriate canonicalization (such as 1999
case-mapping or case-folding) are inherently scheme-specific, and 2000
it is intrinsically impossible for any one Schema Centric 2001
Canonicalization implementation to understand the universe of 2002
possible URI schemes it might encounter (and so canonicalize 2003
them all appropriately). Even for some commonly known URI 2004
schemes, the relevant specifications lack crisp clarity on some 2005
germane issues. And the algorithm of §5.2 of RFC2396 can (see 2006
ibid, §5.1) only be carried out in the context of a specific base URI; 2007
as generally speaking such relevant base URI may be application-2008
level notions not represented in XML, the algorithm of §5.2 must 2009
remain out of scope so far as XML canonicalization is concerned. 2010

These reasons, together with the lack of compelling pragmatic 2011
problems caused by simply having all anyURI data canonicalize to 2012
itself, indicate that the prudent course of action is that Schema 2013
Centric Canonicalization should not differ from XML Schema 2014
Datatypes on this issue. 2015

6. References 2016
Keywords 2017

RFC 2119. Key words for use in RFCs to Indicate 2018
Requirement Levels. Best Current Practice. S. Bradner. 2019
March 1997. S. Bradner. March 1997. 2020
http://www.ietf.org/rfc/rfc2119.txt 2021

Unicode 2022
Unicode 3.1. The Unicode Consortium. 2023
http://www.unicode.org/unicode/reports/tr27/. 2024

Unicode Normalization 2025
Unicode Normalization Forms. The Unicode Consortium. 2026
http://www.unicode.org/unicode/reports/tr15/. 2027

Unicode Case Mappings 2028
Case Mappings. The Unicode Consortium. 2029
http://www.unicode.org/unicode/reports/tr21/. 2030

URI 2031
RFC 2396. Uniform Resource Identifiers (URI): Generic 2032
Syntax. T. Berners-Lee, R. Fielding, L. Masinter. August 2033

1998. See also RFC 2732. Format for Literal IPv6 2034
Addresses in URL's. R. Hinden et al. 2035
http://www.ietf.org/rfc/rfc2396.txt. See also 2036
http://www.ietf.org/rfc/rfc2732.txt. 2037

XML 2038
Extensible Markup Language (XML) 1.0 (Second Edition). 2039
W3C Recommendation. T. Bray, E. Maler, J. Paoli, C. M. 2040
Sperberg-McQueen. October 2000. 2041
http://www.w3.org/TR/2000/REC-xml-20001006. 2042

XML-C14N 2043
Canonical XML. W3C Recommendation. J. Boyer. March 2044
2001. 2045
http://www.w3.org/TR/2001/REC-xml-c14n-20010315 2046
http://www.ietf.org/rfc/rfc3076.txt 2047

XML-DSig 2048
XML-Signature Syntax and Processing. W3C 2049
Recommendation. D. Eastlake, J. Reagle, and D. Solo. 2050
12 February 2002. 2051
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ 2052

XML-Enc 2053
XML Encryption Syntax and Processing. D. Eastlake, and J. 2054
Reagle. W3C Candidate Recommendation. 04 March 2002. 2055
http://www.w3.org/TR/2002/CR-xmlenc-core-20020304 2056

XML-Exc-C14N 2057
Exclusive XML Canonicalization W3C Candidate 2058
Recommendation. J. Boyer, D. Eastlake, and J. Reagle. 2059
12 February 2002. 2060
http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212 2061

XML-Infoset 2062
XML Information Set, John Cowan and Richard Tobin, eds., 2063
W3C, 24 October 2001. See 2064
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/ 2065

XML-NS 2066
Namespaces in XML. Recommendation. T. Bray, D. 2067
Hollander, and A. Layman. January 1999. 2068
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 2069

XML-Schema 2070
XML Schema. Recommendation. H. Thompson, D. Beech, 2071
M. Maloney, N. Mendelsohn. 2 May 2001. 2072
http://www.w3.org/XML/Schema 2073

XML-Schema-Errata 2074
XML Schema 1.0 Specification Errata. 2075
http://www.w3.org/2001/05/xmlschema-errata 2076

XPath 2077

XML Path Language (XPath) Version 1.0 , W3C 2078
Recommendation. eds. James Clark and Steven DeRose. 2079
16 November 1999. 2080
http://www.w3.org/TR/1999/REC-xpath-19991116. 2081

7. Revision History 2082

13 February 2002 Initial distribution for public review.
15 May 2002 Update references to XML-DSIG, XML-Exc-C14N, XML-

Enc to refer to updated publications. Revise commentary
thereon in introduction to reflect changes in these updates.

 Allow embeddedLang attribute to be used on schema
instances as well as schemas themselves. Added by-fiat
identification of uses of XPath in XML Schema itself.

 Clarified position with respect to (non)canonicalization of
anyURI.

 Expanded limitations section per observations of
Exclusive XML Canonicalization and others.

 QNames (and derivations and lists thereof) were not
being namespace prefix desensitized. Fixed.

 Added pointer to supporting .xsd file.

20 May 2003 Reformated per OASIS requirements. A very few minor
editorial fixes, updated legal language.

Appendix A: Notices 2083
Copyright © 2000-2002 by Accenture, Ariba, Inc., Commerce One, 2084
Inc., Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, 2085
Inc., Intel Corporation, International Business Machines 2086
Corporation, Oracle Corporation, SAP AG, Sun Microsystems, 2087
Inc., VeriSign, Inc., and / or Microsoft Corporation. All Rights 2088
Reserved. 2089

This document is provided by the companies named above 2090
("Licensors") under the following license. By using and/or copying 2091
this document, or the document from which this statement is 2092
linked, you (the licensee) agree that you have read, understood, 2093
and will comply with the following terms and conditions: 2094
Permission to use, copy, and distribute the contents of this 2095
document, or the document from which this statement is linked, in 2096
any medium for any purpose and without fee or royalty under 2097
copyrights is hereby granted, provided that you include the 2098
following on ALL copies of the document, or portions thereof, that 2099
you use: 2100

1. A link to the original document. 2101
2. An attribution statement: "Copyright © 2000-2002 by 2102

Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, 2103
Hewlett-Packard Company, i2 Technologies, Inc., Intel 2104
Corporation, International Business Machines Corporation, 2105
Oracle Corporation, SAP AG, Sun Microsystems, Inc., 2106
VeriSign, Inc., and / or Microsoft Corporation. All Rights 2107
Reserved." If the Licensors own any patents or patent 2108
applications which that may be required for implementing 2109
and using the specifications contained in the document in 2110
products that comply with the specifications, upon written 2111
request, a non-exclusive license under such patents shall 2112
be granted on reasonable and non-discriminatory terms. 2113

THIS DOCUMENT IS PROVIDED "AS IS," AND LICENSORS 2114
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS 2115
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 2116
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 2117
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; 2118
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE 2119
FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF 2120
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY 2121
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. 2122
LICENSORS WILL NOT BE LIABLE FOR ANY DIRECT, 2123
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES 2124
ARISING OUT OF ANY USE OF THE DOCUMENT OR THE 2125
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS 2126
THEREOF. 2127

Copyright © OASIS Open 2002-2003. All Rights Reserved. OASIS 2128
takes no position regarding the validity or scope of any intellectual 2129
property or other rights that might be claimed to pertain to the 2130
implementation or use of the technology described in this 2131
document or the extent to which any license under such rights 2132
might or might not be available; neither does it represent that it has 2133
made any effort to identify any such rights. Information on OASIS's 2134
procedures with respect to rights in OASIS specifications can be 2135
found at the OASIS website. Copies of claims of rights made 2136
available for publication and any assurances of licenses to be 2137
made available, or the result of an attempt made to obtain a 2138
general license or permission for the use of such proprietary rights 2139
by implementors or users of this specification, can be obtained 2140
from the OASIS Executive Director. 2141

OASIS invites any interested party to bring to its attention any 2142
copyrights, patents or patent applications, or other proprietary 2143
rights which may cover technology that may be required to 2144

implement this specification. Please address the information to the 2145
OASIS Executive Director. 2146

This document and translations of it may be copied and furnished 2147
to others, and derivative works that comment on or otherwise 2148
explain it or assist in its implementation may be prepared, copied, 2149
published and distributed, in whole or in part, without restriction of 2150
any kind, provided that the above copyright notice and this 2151
paragraph are included on all such copies and derivative works. 2152
However, this document itself may not be modified in any way, 2153
such as by removing the copyright notice or references to OASIS, 2154
except as needed for the purpose of developing OASIS 2155
specifications, in which case the procedures for copyrights defined 2156
in the OASIS Intellectual Property Rights document must be 2157
followed, or as required to translate it into languages other than 2158
English. The limited permissions granted above are perpetual and 2159
will not be revoked by OASIS or its successors or assigns. 2160

This document and the information contained herein is provided on 2161
an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, 2162
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 2163
ANY WARRANTY THAT THE USE OF THE INFORMATION 2164
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 2165
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 2166
PARTICULAR PURPOSE. 2167

