

Web Services Coordination
Framework Specification (WS-CF)
Committee draft version 0.2

22 December 2004

Abstract

WS-CAF provides a set of modular and composable service definitions to facilitate the
construction of applications that combine multiple services together in composite applications.
The fundamental capability offered by the WS-Coordination Framework specification is the ability
to register a web service as a participant in some kind of domain specific function. An example
scenario may be to register with a publication-subscription topic to receive a stream of messages
asynchronously. While it is expected that the vast majority of protocols will involve some form of
signaling to registered services via SOAP messages, this signaling is not a part of the model
itself. Monitoring protocols, for example, may express interest in participation is some interaction
semantic without any subsequent signaling to registered services; messaging protocols may use
an optimized channel based on a native MOM protocol for message distribution.
WS-Context provides a late binding session model for the web services environment. SOAP
messages that are to be processed within the scope of an activity contain Context headers,
uniquely identifying a single activity. WS-Coordination Framework extends the session model for
protocols that require group membership paradigms by defining a “registration context”. The
“registration context” extends the basic context type and provides a Web service reference to a
“registration” endpoint. Registration in the context of an activity adds the registered service to an
activity group. Membership in the group may be used to drive some group specific protocol (e.g.
data replication) over the lifetime of the activity group or may be used to coordinate signals
associated with a termination protocol (e.g., two phase commit). The purpose and semantics of
activity group membership are protocol specific.
Coordination is a requirement present in a variety of different aspects of distributed applications.
For instance, workflow, atomic transactions, caching and replication, security, auctioning, and
business-to-business activities all require some level of what may be collectively referred to as
“coordination.” For example, coordination of multiple Web services in choreography may be
required to ensure the correct result of a series of operations comprising a single business
transaction. Coordination protocols may be layered on WS-Coordination Framework.

Deleted: 20 December 2004

Inserted: 20 December 2004

Deleted: 7 December 2004

Comment: Intro and abstract
both need to be rewritten for
clarity and topic order (i.e.
ensure topics are presented in
order of importance). This is an
editorial issue, and may
depend upon the resolution of
some of the technical issues.

Table of contents

1 Note on terminology..4
1.1 Namespace...4

1.1.1 Prefix Namespace..4
1.2 Referencing Specifications ..4

2 Introduction...5
3 WS-CF architecture ..6

3.1 Overview...6
3.2 Invocation of Service Operations ...6
3.3 Relationship to WSDL ...7
3.4 Referencing and addressing conventions ..7

4 WS-CF components..9
4.1 Registration Service ..10

4.1.1 Client-to-Registration interactions ...11
addParticipant...11
removeParticipant ...11
4.1.2 Client-to-coordinator interactions ..13
coordinate...13
getStatus ..14
4.1.3 Registration Context ...15

/context ...16
4.2 Recovery Service ..17

recover ...18
getStatus ..18

5 References ...20

Deleted: 7

Deleted: 8

Deleted: 10

Deleted: 11

Deleted: 12

Deleted: 12

Deleted: 13

Deleted: 14

Deleted: 14

Deleted: 15

Deleted: 16

Deleted: 17

Deleted: 18

Deleted: 19

Deleted: 21

4

1 Note on terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [2].
Namespace URIs of the general form "some-URI" represents some application-dependent or
context-dependent URI as defined in RFC 2396 [3].

1.1 Namespace
The XML namespace URI that MUST be used by implementations of this specification is:

http://docs.oasis-open.org/wscaf/2004/09/wscf

1.1.1 Prefix Namespace

Prefix Namespace

wscf http://docs.oasis-open.org/wscaf/2004/09/wscf

wsctx http://docs.oasis-open.org/wscaf/2004/09/wsctx

ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

tns targetNamespace

1.2 Referencing Specifications
One or more other specifications, such as (but not limited to) WS-TXM may reference the WS-CF
specification. The usage of optional items in WS-CF is typically determined by the requirements
of such as referencing specification.
Referencing specifications are generally used to construct concrete protocols based on WS-CF.
Any application that uses WS-CF must also decide what optional features are required. For the
purpose of this document, the term referencing specification covers both formal specifications
and more general applications that use WS-CF.

Comment: Need to agree on
this.

 5

2 Introduction
Many protocols in distributed systems require software agents to perform a registration function to
participate in the protocol. Examples of protocols that require explicit registration functions include
notifications, transactions, virtual synchronous replica models based on group membership
paradigms, and security. WS-Coordination Framework provides a WSDL interface for registering
Web services as participants in arbitrary protocols. This is supported through the
RegistrationService and Participant PortTypes.
Context information can flow implicitly (transparently to the application) within normal messages
sent to the participants, or it may be an explicit action on behalf of the client/service. This
information is specific to the type of activity being performed, e.g., it may identify registration
endpoints, the other participants in an Activity, recovery information in the event of a failure, etc.
Furthermore, it may be required that additional application specific context information (e.g.. extra
SOAP header information) flow to these participants or the services which use them. WS-
Coordination Framework introduces a registration context type that builds on the context type
defined in WS-Context to provide additional information required to enlist as a participant in an
activity. Applications may use the registration context to define collections of services called
“activity groups”. WS-Coordination Framework provides support for protocols that depend on
group membership paradigms, such as coordination and security.
Coordination is an integral part of any distributed system, but there is no single type of
coordination protocol that can suffice for all problem domains. Therefore, what is needed is a
common Web Services Coordination Framework (WS-CF) that allows users and services to tie
into it and customize it on a per service or application basis. A suitably designed coordination
framework should provide enough flexibility and extensibility to its users that allow it to be
tailored, statically or dynamically, to fit any requirement.
This service builds upon WS-Context and supports WS-TXM, as well as other Web Service
standards in the area of choreography, workflow and transactions. In the case of transactions, for
example, unlike other attempts that are solutions to one specific problem area and are therefore
not applicable to others, different extended transaction models can be relatively easily developed
to suit specific domains, and interoperability across transaction protocols supported.

Comment: Page: 1
Obviously I made these up and
this would require consensus
vote to adopt. However, I think
we need to consider that the
current interfaces will need to
be renamed/reworked.

Comment: Need to settle on
and consistently use a set of
terms. For example, are
problem domains the same as
composite applications?
Editorial issue.

6

3 WS-CF architecture
The following sections outline the architecture of WS-CF, describing the components that
implementations provide and those that are required from users.

3.1 Overview
WS-CF provides mechanisms for services to enlist with registration endpoints and allows the
management and coordination in a Web services interaction of a number of activities related to
an overall application. It builds on the Web Services Context Service (WS-Context) specification
and provides a registration context that leverages the activity model and context structure defined
in WS-Context. In particular WS-CF:
• Allows services to register as participants in some protocol specific semantic;
• Introduces the notion of an activity group;
• Allows for the registration of participants in activity groups;
• Allows for propagation of group-specific information across the network by enhancing the

default context structure provided by WS-Context;
The main components involved in using and defining the WS-CF are:
• A Registration service: Provides an interface for the registration of participants within a

specific protocol semantic.
• A Participant service, which may define the operation or operations that are performed as

part of the protocol. It is possible to register participants that have no protocol specific
callback operations.

• A registration context, which allows participants to join an activity group. The group
membership facilities are used to build and manage relationships between services. For
example, an activity group can be used as the basic definition of a participant set in a
coordination protocol.

• A RecoveryCoordinator interface, which accommodates location migration for Participant
service endpoints.

While the services that are described in WS-CF may be used without the facilities defined in WS-
Context, the explicit encapsulation of group management concepts is based on extensions to the
WS-Context specification. The activity model in WS-Context is extended to define the notion of an
activity group. An activity group includes all services that register with for participation in a
protocol in the context of an activity. The Registration service provides normative rules for
registration in an activity group, thought he specification does not preclude the use of out-of-band
or protocol specific enlistment mechanisms. This specification allows group membership to be
managed with reference to a specific context; the relationship between different contexts is
defined by the WS-Context specification; specific protocols based on activity groups may support
subgroups and interposed activities. Activity groups are particularly useful for structuring
relationships in the kinds of coordination protocols found in transaction systems and data
replication/consistency protocols for clustered services. .

3.2 Invocation of Service Operations
How application services are invoked is outside the scope of this specification: they MAY use
synchronous or asynchronous message passing.

Comment: Page: 1
This part really needs to be
made longer – it really ought to
provide an encapsulation of
the abstract model. In
particular it ought to lay out the
concept of the activity group
and the centrality of the group
membership paradigm in
detail.

Comment: We really need to
determine what the
relationship to context is, i.e.,
are group members
(optionally) reflected in the
context structure itself; when
does membership in the
activity group begin, when
does it end – there should be
some model level explanation,
since the presence of group
members in contexts opens up
the possibility of autonomous
entry into group membership
via direct modification of the
context, etc. Thoughts?

 7

Irrespective of how remote invocations occur, context information related to the sender’s activity
needs to be referenced or propagated. This specification determines the format of the context,
how it is referenced, and how a context may be created.
In order to support both synchronous and asynchronous interactions, the components are
described in terms of the behavior and the interactions that occur between them. All interactions
are described in terms of correlated messages, which a referencing specification MAY abstract at
a higher level into request/response pairs.
Faults and errors that may occur when a service is invoked are communicated back to other Web
services in the activity via SOAP messages that are part of the standard protocol. The fault
mechanism of the underlying SOAP-based transport isn’t used. For example, if an operation fails
because no activity is present when one is required, then it will be valid for the
InvalidContextFault message to be received by the response service. To accommodate other
errors or faults, all response service signatures have a generalFault operation.
Note: in the rest of this specification we will use the term “invokes operation X on service Y” when
referring to invoking services. This term does not imply a specific implementation for performing
such service invocations and is used merely as shorthand for “sends message X to service Y.” As
long as implementations ensure that the on-the-wire message formats are compliant with those
defined in this specification, how the end-points are implemented and how they expose the
various operations (e.g., via WSDL [1]) is not mandated by this specification. However, a
normative WSDL binding is provided by default in this specification.

Note, this specification does not assume that a reliable message delivery
mechanism has to be used for message interactions. As such, it MAY be
implementation dependant as to what action is taken if a message is not
delivered or no response is received.

3.3 Relationship to WSDL
Where WSDL is used in this specification it uses one-way messages with callbacks. This is the
normative style. Other binding styles are possible (perhaps defined by referencing specifications),
although they may have different acknowledgment styles and delivery mechanisms. It is beyond
the scope of WS-Context to define these styles.
For clarity WSDL is shown in an abbreviated form in the main body of the document: only
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1].

3.4 Referencing and addressing conventions
There are multiple mechanisms for addressing messages and referencing Web services currently
proposed by the Web services community. This specification defers the rules for addressing
SOAP messages to existing specifications; the addressing information is assumed to be placed in
SOAP headers and respect the normative rules required by existing specifications.

However, the Context message set requires an interoperable mechanism for referencing Web
Services. For example, context structures may reference the service that is used to manage the
content of the context. To support this requirement, WS-CAF has adopted an open content model
for service references as defined by the Web Services Reliable Messaging Technical Committee
[5]. The schema is defined in [6][7] and is shown in Figure 1.

<xsd:schema targetNamespace="http://docs.oasis-
open.org/wsrm/2004/06/reference-1.1.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.1">
 <xsd:complexType name="ServiceRefType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" />

Comment: Let’s review this
issue sometime in the TC in
case there are some errors we
should be using SOAP fault
for.

Comment: Whether WSDL is
mandated or not seems related
to the dependency on WSDL
interfaces for defining
operations, in any case I think
it would be good to clear up
the distinction between
statements like WSDL isn’t
mandated yet there’s a
normative binding. Can we
agree to mandate WSDL (and
SOAP for that matter)?

Comment: Now that WS-
Addressing is an open spec we
should revisit the addressing
format to see if it still makes
sense to keep it generic or
adapt WS-Addressing
specifically.

Deleted: Figure 1

Inserted: Figure 1

Deleted: Figure 1

8

 </xsd:sequence>
 <xsd:attribute name="reference-scheme" type="xsd:anyURI"
use="optional" />
 </xsd:complexType

Figure 1, service-ref Element
The ServiceRefType is extended by elements of the context structure as shown in Figure 2.

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/>

Figure 2, ServiceRefType example.
Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery
specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery. The value for WSRef
defined in the WS-Addressing specification [8] would be
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need
only be used if the namespace URI of the QName of the Web service reference cannot be used
to unambiguously identify the addressing specification in which it is defined.
Messages sent to referenced services MUST use the addressing scheme defined by the
specification indicated by the value of the reference-scheme element if present. Otherwise, the
namespace URI associated with the Web service reference element MUST be used to determine
the required addressing scheme. A service that requires a service reference element MUST use
the mustUnderstand attribute for the SOAP header element within which it is enclosed and MUST
return a mustUnderstand SOAP fault if the reference element isn’t present and understood.

Note, it is assumed that the addressing mechanism used by a given
implementation supports a reply-to or sender field on each received message so
that any required responses can be sent to a suitable response endpoint. This
specification requires such support and does not define how responses are
handled.

To preserve interoperability in deployments that contain multiple addressing schemes, there are
no restrictions on a system, beyond those of the composite services themselves. However, it is
RECOMMENDED where possible that composite applications confine themselves to the use of
single addressing and reference model.
Because the prescriptive interaction pattern used by WS-Context is based on one-way messages
with callbacks, it is possible that an endpoint may receive an unsolicited or unexpected message.
The recipient is free to do whatever it wants with such messages.

Deleted: Figure 2

Inserted: Figure 2

Deleted: Figure 2

http://schemas.xmlsoap.org/ws/2004/08/addressing

 9

4 WS-CF components
WS-CF provides four components that may be used to build collaborative protocols and complex
composite applications: the Participant service, the Registration service, the Registration context,
and Recovery service. The components are described in terms of their behavior and the
interactions that occur between them. All interactions are described in terms of message
exchanges, which an implementation may abstract at a higher level into request/response pairs
or RPCs, for example. Like WS-Context, the components are organized in a hierarchical
relationship, where individual components may be used without reference to higher level
constructs that build on them. For example, the Registration and Participant services can be used
without reference to an activity group.
Participant ServiceMany distributed protocols require software agents to enlist as participants
within a protocol to achieve an application visible semantic. For example, participants may enlist
in a transaction protocol in order to receive messages at coordination points defined by the
protocol. The termination of one activity may initiate the start/restart of other activities in a
workflow-like environment. Messages can be used to infer a flow of control during the execution
of an application. The information encoded within a message will depend upon the
implementation of the protocol model.
A Participant will use the message in a manner specific to the protocol and (optionally) return a
result of it having done so. For example, upon receipt of a specific message, a Participant could
commit any modifications to a database when it receives one type of message, or undo them if it
receives another type. In some cases (ie, monitoring protocols) Participants may register for
protocols that do not include any subsequent signaling. In other cases, such as publish-and-
subscribe scenarios, Participants may register for a stream of messages that have no fixed
semantic content with respect to the protocol itself. In general, rules governing the subsequent
interaction between Participants and Registration endpoints are defined by specifications that
make use of WS-CF.
In order to perform message exchanges with a Participant, two service roles are defined
(illustrated in Figure 3), with the following operations (messages):
• The Participant: this accepts getStatus and AssertionType messages. The reply-to endpoint

address is propagated with all of these messages. The callback messaging style and
addressing rules for WS-CF are discussed in Section XXX.

• The ParticipantCallback: this accepts status, AssertionType, wrongState and generalFault
call-back messages. Other error or fault messages are expected to be returned as specific
instances of the AssertionType response.

The client sends an AssertionType message to the Participant with an accompanying reply-to
address to a ParticipantCallback service to which the Participant may eventually call-back with
the response. The Participant may then send back a specific AssertionType message if
successful, which will be interpreted in a manner specific to the governing protocol. The
wrongState and generalFault messages are used to indicate error conditions.
The getIdentity message is used to obtain the unique identification for the relevant Participant.

Comment: Given the vote to
use specific participant WSDL
in referencing specifications,
does this not just go away?

Deleted: Figure 3

Inserted: Figure 3

Deleted: Figure 3

Comment: Page: 1
I guess this is an issue: what is
the WSDL for this
transmission? As it stands, I
believe this should be struck,
but I need some validation or
correction here.

10

Participant Coordinator
Participant

AssertionTy pe message

wrongState

AssertionTy pe message

identity

Coordinator generated

Participant generated

generalFault

getIdentity

getStatus

status

Figure 3, Coordinator-to-participant interactions.

The interactions depicted in Figure 3, are presented on a per-role basis in the WSDL interface
shown in Figure 4.

<wsdl:portType name="ParticipantPortType">
 <wsdl:operation name="getStatus">
 <wsdl:input message="tns:GetStatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getIdentity">
 <wsdl:input message="tns:GetIdentityMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="CoordinatorParticipantPortType">
 <wsdl:operation name="status">
 <wsdl:input message="tns:StatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="identity">
 <wsdl:input message="tns:IdentityMessage"/>
 </wsdl:operation>
 <wsdl:operation name="wrongState">
 <wsdl:input message="asw:WrongStateFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="generalFault">
 <wsdl:input message="tns:GeneralFaultMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 4, WSDL portType Declarations for Participant and CoordinatorParticipant Roles

4.1 Registration Service
In order to become a Participant in a protocol, a service must first enlist with a Registration
service. The protocol that the Registration implementation uses will depend upon the type of
activity, application or service using the Registration service. For example, if the Registration
service is being used for within an extended transaction infrastructure, then one protocol
implementation will not be sufficient. For example, if Saga model is in use then a compensation
message may be required to be sent to Participants if a failure has happened, whereas a

Deleted: Figure 3

Inserted: Figure 3

Deleted: Figure 3

Deleted: Figure 4

Inserted: Figure 4

Deleted: Figure 4

 11

coordinator for a strict transactional model may be required to send a message informing
participants to rollback.
How an Registration service for a specific protocol(s) is located and ultimately registered with the
Context Service is out of scope of this specification. An Registration service may identify the type
of coordination protocol it supports deployment specific mechanisms may be used.
A Registration Service implementation provides:
• Support for the Participant service interface between Registration Service and Participant.
Operations on the Registration service MAY be implicitly associated with a Registration context,
i.e., it is propagated to the Registration service in order to identify which activity group the
Participant is interested in joining. Protocols that do not require explicit group membership
support such as registration for publish-subscribe messages will invoke the Registration service
without a Registration context. Protocols that rely explicitly on group membership like transactions
or data replication will require that the Registration service be invoked with a Registration context.
In the following sections we shall discuss the different Registration service interactions and their
associated message exchanges.

4.1.1 Service-to-Registration interactions
These interactions define how a service may enlist or delist a Participant with the Registration
service and perform other service-specific operations. The message exchanges are illustrated in
Figure 5. They are factored into two different roles:
• ServiceCoordinator: this accepts the addParticipant, removeParticipant, messages. All

messages contain the ServiceRespondant endpoint for callback messages. The
ServiceRespondant endpoint address is propagated on all of these messages.

• ServiceRespondant: this accepts the participantAdded, participantRemoved, qualifiers,
generalFault, , wrongState, duplicateParticipant, invalidProtocol, invalidParticipant,
participantNotFound messages.

addParticipant
This message is sent to the coordinator in order to register the specified Participant with the
protocol supported by the Registration service. If the addParticipant message is contextualized
with a RegistrationContext, the participant is added to the activity group identified in the context.
The protocol may support multiple sub-protocols (e.g., synchronizations that are executed prior to
and after a two-phase commit protocol); in order to define with which protocols to enlist the
participant, the a list of protocolType URIs may be propagated in the message. If any of the
protocols are not supported by the Registration service then the invalidProtocol message will be
sent to the ServiceRespondant indicating which protocol was at fault.
Upon success, the Registration service calls back to the ServiceRespondant with the
participantAdded message, including in this message the ParticipantCoordinator address.
If the Activity has begun completion, or has already completed, then the wrongState message is
sent.
If the same participant has been enrolled with the Registration service more than once and the
protocol does not allow this, then the duplicateParticipant message is sent to the
ServiceRespondant

removeParticipant
This message causes the Regisration service to delist the specified Participant . If the Participant
is associated with an activity group, it is removed from the activity group. If the Participant has not
previously been registered with the Registration service for the specified protocol, then it will send
the participantNotFound message to the ServiceRespondant.

Deleted: Figure 5

Inserted: Figure 5

Deleted: Figure 5

Comment: Do we want to say
that registration is atomic (all
or nothing) then?

Comment: Page: 1
First of all, these names are
just way too confusing:
participant coordinator,
coordinator participant, etc.
Second, we need to determine
if this is even a supported
interface. If so, I think it needs
to be factored out to the
highest level of the CF stack.

12

Removal of a participant need not be supported by the specific protocol implementation and may
also be dependant upon where in the protocol the system is as to whether it will allow the
participant to be removed.The rules governing removal of participants from particiption in a
protocol or activity group are governed by referencing specifications. For activity groups, if the
Activity has begun completion, or has completed, then the wrongState message is sent.

Figure 5, Service-to-coordinator interactions.
The ServiceRespondant and ServiceCoordinator roles are elucidated in WSDL form in Figure 6.

<wsdl:portType name="ServiceCoordinatorPortType">
 <wsdl:operation name="addParticipant">
 <wsdl:input message="tns:AddParticipantMessage"/>
 </wsdl:operation>
 <wsdl:operation name="removeParticipant">
 <wsdl:input message="tns:RemoveParticipantMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getQualifiers">
 <wsdl:input message="tns:GetQualifiersMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getParentCoordinator">
 <wsdl:input message="tns:GetParentCoordinatorMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="ServiceRespondantPortType">
 <wsdl:operation name="participantAdded">
 <wsdl:input message="tns:ParticipantAddedMessage"/>
 </wsdl:operation>
 <wsdl:operation name="participantRemoved">
 <wsdl:input message="tns:ParticipantRemovedMessage"/>
 </wsdl:operation>
 <wsdl:operation name="qualifiers">
 <wsdl:input message="tns:QualifiersMessage"/>

Comment: There seems to be
some confusion overall in the
definition of the protocol as to
which part belongs in the
referencing spec and which
part belongs in the WS-CF
spec (i.e. is there a minimal
protocol or set of operations
that each protocol must
support, such as getStatus).

Comment: Page: 1
Requires modification

Deleted: Figure 6

Inserted: Figure 6

Deleted: Figure 6

 13

 </wsdl:operation>
 <wsdl:operation name="parentCoordinator">
 <wsdl:input message="tns:ParentCoordinatorMessage"/>
 </wsdl:operation>
 <wsdl:operation name="generalFault">
 <wsdl:input message="tns:GeneralFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="unknownCoordinator">
 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="wrongState">
 <wsdl:input message="asw:WrongStateFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="duplicateParticipant">
 <wsdl:input message="tns:DuplicateParticipantFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidProtocol">
 <wsdl:input message="tns:InvalidProtocolFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidParticipant">
 <wsdl:input message="tns:InvalidParticipantMessage"/>
 </wsdl:operation>
 <wsdl:operation name="participantNotFound">
 <wsdl:input message="tns:ParticipantNotFoundFaultMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 6, WSDL portType Declarations for ServiceRespondant and ServiceCoordinator Roles.

4.1.2 Client-to-coordinator interactions
These interactions (illustrated in Figure 7) essentially define how a client (user) of the coordinator
service can obtain the status of the coordinator or ask it to perform coordination. They are
factored into two different services:
• ClientCoordinator: supports the coordinate and getStatus messages. All messages contain

the ClientRespondant endpoint for call-back results. The ClientRespondant endpoint address
is propagated on all of these messages.

• ClientRespondant: supports the coordinated, status, wrongState, notCoordinated,
protocolViolation, invalidCoordinator, invalidActivity and generalFault messages.

coordinate
If the coordination protocol supports it then the coordinator will execute a particular coordination
protocol (specified by a protocol URI) on the currently enlisted participants, upon receiving the
coordinate message at any time prior to the termination of the coordination scope. This message
instructs the ActivityCoordinator to send protocol messages to all of the registered Participants;
since the coordinator may be invoked multiple times during the lifetime of an activity, it is possible
that different protocol messages may be sent each time coordinate is called. Once the
Participants have processed the messages and returned outcomes, it is up to the
ActivityCoordinator to consolidate these individual outcomes into a single result, which is sent to
the ClientRespondant via the coordinated message.
If there is no Activity associated with the context then the invalidCoordinator message will be
generated.
Because this operation can be used to cause messages to be sent to Participants at times other
than when the Activity completes, the implementation of the coordinator must ensure that such
messages clearly identify that the Activity is not completing. If the Activity has begun completion,
or has completed, then the invalidActivity message is sent to the ClientRespondant.

Comment: Page: 1
Is this an out of band problem?
At a minimum, coordination
should be layered on top of the
rest of this stuff, so this should
be moved to the end of this
section.

Deleted: Figure 7

Deleted: Figure 7

Inserted: Figure 7

14

The coordinator may also send the protocolViolation or wrongState messages to the
ClientRespondant to indicate appropriate error conditions that may occur while executing the
coordination protocol.
The notCoordinated response is used to indicate that the coordinator (and hence coordination
protocol) does not allow coordination to occur at any time other than the termination of the
activity. Other, protocol specific errors are expected to be returned as data encoded within the
AssertionType.

getStatus
The status of the coordinator may be obtained by sending the getStatus message to the
coordinator. The status, which may be one of the status values specified by the Context Service,
or may be specific to the coordination protocol, identified by its QName, is returned to the
ClientRespondant via the status message.

Figure 7, Client-to-coordinator interactions.

The ClientRespondant and ClientCoordinator roles are shown in WSDL form in Figure 8.

<wsdl:portType name="ClientCoordinatorPortType">
 <wsdl:operation name="coordinate">
 <wsdl:input message="tns:CoordinateMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <wsdl:input message="tns:GetStatusMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="ClientRespondantPortType">
 <wsdl:operation name="status">
 <wsdl:input message="tns:StatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="coordinated">
 <wsdl:input message="tns:CoordinatedMessage"/>

Deleted: Figure 8

Inserted: Figure 8

Deleted: Figure 8

 15

 </wsdl:operation>
 <wsdl:operation name="notCoordinated">
 <wsdl:input message="tns:NotCoordinatedMessage"/>
 </wsdl:operation>
 <wsdl:operation name="wrongState">
 <wsdl:input message="asw:WrongStateFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="protocolViolation">
 <wsdl:input message="asw:ProtocolViolationFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidCoordinator">
 <wsdl:input message="tns:InvalidCoordinatorFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="invalidActivity">
 <wsdl:input message="tns:InvalidActivityFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="generalFault">
 <wsdl:input message="tns:GeneralFaultMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 8, WSDL portType Declarations for ClientRespondant and ClientCoordinator Role

4.1.3 Registration Context
In order to support registration in activity groups. Activity groups are described in Section XXX., it
is necessary for the participants to be enlisted in the activity group via some mechanism. This
specification defines a Registration service to support enlistment in n activity group.. In a
distributed environment, this requires information about the Registration service (essentially its
network endpoint) to be available to remote participants. The Context Service is already
responsible for propagating basic context information between distributed activities. As we have
seen, the information contained within this basic activity context is simply the unique activity
identity and optional information associated with the demarcation activity and management of the
context. However, it has been designed to be extensible such that additional, service-specific
information may be added to the contextby other specifications.

<xs:complexType name="ContextType">
 <xs:complexContent>
 <xs:extension base="wsctx:ContextType">
 <xs:sequence>

 <xs:element name="registration-service"
type="wsctx:ServiceRefType"
 maxOccurs="unbounded"/>
 <xs:any namespace="##any" processContents="lax"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Figure 9, WS-CF ContextType derives from the WS-Context ContextType.

The Registration context contains the following elements in addition to the WS-Context
ContextType structure:
• A service reference to a Registration service. This enables Participant services to be enlisted

or delisted in an activity group.
• XXXparticipant list? (see comment)

Comment: Need to include
this description somewhere.

Comment: Page: 1
This needs a lot of work to
bring it up to speed with WS-
Context. I would favor
renaming this explicitly to
RegistrationContextType.
Moreover, I strongly believe
that we ought to reexamine the
idea of a list of participating
services in this layer. It didn’t
have a clear enough semantic
(in my view at least) in WS-
Context, so we struck it. In
WS-CF, I believe we might
have an appropriate home for
the idea.

Comment: Page: 1
Need to check the type for
consisteny with how this is
used in WS-CTX.

Comment: Page: 1
Should we, as a second bullet
item, consider formally defining
the list of participants in an
activity group? This would be
useful for peer discovery of
participants, particularly when
network access to the
Registration service is
unavailable.

Comment: Are we dropping
this since it was dropped from
WS-Context?

16

The XML below shows an example of a Registration context for a coordinator implementation of a
two-phase completion protocol.

<context
xmlns="http://www.webservicestransactions.org/schemas/wsctx/2003/03"
 timeout="100">
 <context-identifier>
 http://www.webservicestransactions.org/wsctx/abcdef:012345
 </context-identifier>
 <activity-service>
 http://www.webservicestransactions.org/wsctx/service
 </activity-service>
 <type>
 http://www.webservicestransactions.org/wsctx/context/type1
 </type>
 <activity-list>
 <service>http://www.webservicestransactions.org/service1</service>
 <service>http://www.webservicestransactions.org/service2</service>
 </activity-list>
 <child-contexts>
 <child-context timeout="200">
 <context-identifier>
 http://www.webservicestransactions.org/wsctx/5e4f2218b
 </context-identifier>
 <activity-service>
 http://www.webservicestransactions.org/wsctx/service
 </activity-service>

<type>http://www.webservicestransactions.org/wsctx/context/type1</type>
 <activity-list mustUnderstand="true" mustPropagate="true">
 <service>http://www.webservicestransactions.org/service3</service>
 <service>http://www.webservicestransactions.org/service4</service>
 </activity-list>
 </child-context>
 </child-contexts>
 <protocol-reference
protocolType="http://www.webservicestransactions.org/some-ref"/>
 <coordinator-reference
coordinator="http://www.webservicestransactions.org/coord"
 activityIdentity="http://www.webservicestransactions.org/some-
activity"/>
/context>

Interposition
Consider the situation depicted in Figure 10, where there is a registration service and three
participants. If we assume that each of these participants are on the same machine, but which is
different to the registration service, then there is obviously an overhead involved in registering
each of them separately.

Coordinator

Participant

Figure 10, Coordinator-participant distributed interactions.

Comment: Page: 1
This needs to be cleaned up a
bit.

Comment: Editorial issue –
might be better to move this
toward the end of the spec.

Deleted: Figure 10

Inserted: Figure 10

Deleted: Figure 13

Deleted: 10

Deleted: 13

Inserted: 10

 17

A common approach to reducing this overhead is to allow a participant on each machine to act as
a proxy registration service. This technique of using proxies (or subordinates) is known as
interposition. Each domain that imports a context may create a subordinate service that enrolls
with the imported registration service as though it were a participant. Interposition obviously
requires the importing domain to use a different context when communicating with services and
participants within that domain since the registration service endpoint will be different, as shown
in Figure 11.

Participant/
proxy-coordinator

Coordinator

Participant

Figure 11, Participant coordinator.

4.2 Recovery Service
It is inherently complex to recover applications after failures (e.g., machine crashes). For
example, the states of objects in use prior to the failure may be corrupt. The advantage of using
transactions to control operations on persistent objects is that transaction systems ensure the
consistency of the objects, regardless of whether or not failures occur. A transaction system
guarantees that regardless of (non-catastrophic) failures, all transactions that were in flight when
the failure occurred will either be committed or rolled back, making permanent or undoing any
changes to objects.
Rather than mandate a particular means by which objects should make themselves persistent,
many transaction systems simply state the requirements they place on such objects if they are to
be made recoverable, and leave it up to the object implementers to determine the best strategy
for their object’s persistence. The transaction system itself will have to make sufficient information
persistent such that, in the event of a failure and subsequent recovery, it can tell these objects
whether to commit any state changes or roll them back. However, it is typically not responsible for
the application object’s persistence.
In a similar way, the WS-CF specification does not mandate a specific persistence and recovery
mechanism. Rather it states what the requirements are on such a service in the event of a failure,
and leaves it to individual implementers to determine their own recovery mechanisms. In a
distributed application, where an individual activity may run on different implementations of the
WS-CF during its lifetime, recovery is the responsibility of these different implementations. Each
implementation may perform recovery in a completely different manner, forming recovery
domains.
Note, failure recovery semantics are strongly tied to the protocol that the Registration service
supports. As such, information about for how long a protocol engine must remember failures and
their participants cannot be mandated by this specification. It is important that the contract that
exists between protocol engine and participant is defined by the implementer of the protocol,
especially in the case of failures. It is this contract that will be used by both the protocol engine
and participant to interpret responses to the recovery protocol.
• Unlike in a traditional transactional system, where crash recovery mechanisms are only

responsible for guaranteeing consistency of object data, applications that use Registration

Deleted: Figure 11

Inserted: Figure 11

Deleted: Figure 14

Deleted: 11

Inserted: 11

Deleted: 14

Comment: Another editorial
issue – draw a clearer
distinction between what
happens at the
coordinator/protocol level and
what happens within the
execution environment? I.e.
when do signals pass between
one and the other?

18

Service’s will typically also require the ability to recover the participants and potentially the
activity group structure that was present at the time of the failure, enabling the application to
progress onwards.

The following roles are defined to assist in recovery; the message interactions are shown in
Figure 12:
• RecoveryCoordinator: this service is used to drive recovery on behalf of a participant. It

supports the recover and getStatus messages. The RecoveryParticipant endpoint address is
propagated on all of these messages for callback results.

• RecoveryParticipant: this service is used to return the recovery information to a recovering
participant via callbacks. It supports the recovered, status, wrongState and generalFault
messages.

recover
This operation is used by participants that have previously successfully enlisted with a
Registration service. When a Participant fails and subsequently recovers it may not be able to
recover at the same address that it used to enlist with the Registration service. The recover
operation allows the participant to inform the Registration service that the participant has moved
from the original address to a new address. It may also be used to start recovery operations by
the protocol engine.
If successful, the recoverResponse message is sent to the RecoveryParticipant. If the recovery
handshake occurs in the context of an activity, the message also contains the current status of
the activity. This status may be used by the recovering participant to perform local recovery
operations, although this will depend upon the protocol in use. For example, if the participant was
enrolled in a presumed-abort transaction protocol and recover indicated that the transaction no
longer exists, then the participant can cancel any work it may be controlling.
If the coordinator cannot be located, then the unknownCoordinator message is sent back.
If the status of the coordinator is such that recovery is not allowed at this time, the wrongState
message is sent to the RecoveryParticipant by the coordinator.

getStatus
The status of the activity group may be obtained by sending the getStatus message to the
recovery coordinator. The status, which may be one of the status values specified by the Context
Service, or may be specific to the protocol, identified by its QName, is returned to the
RecoveryParticipant via the status message.

Deleted: Figure 12

Inserted: Figure 12

Deleted: Figure 10

Comment: Page: 1
I had deleted this above, but at
this point this would have to be
unknownActivity, no?

 19

Figure 12, Participant recovery.

The RecoveryCoordinator and RecoveryParticipant interfaces are presented in Figure 13.

<wsdl:portType name="RecoveryCoordinatorPortType">
 <wsdl:operation name="recover">
 <wsdl:input message="tns:RecoverMessage"/>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <wsdl:input message="tns:GetStatusMessage"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="RecoveryParticipantPortType">
 <wsdl:operation name="recovered">
 <wsdl:input message="tns:RecoveredMessage"/>
 </wsdl:operation>
 <wsdl:operation name="status">
 <wsdl:input message="tns:StatusMessage"/>
 </wsdl:operation>
 <wsdl:operation name="unknownCoordinator">
 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="wrongState">
 <wsdl:input message="asw:WrongStateFaultMessage"/>
 </wsdl:operation>
 <wsdl:operation name="generalFault">
 <wsdl:input message="tns:GeneralFaultMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 13, WSDL portType Declarations for RecoveryParticipant and RecoveryCoordinator Roles

Deleted: 12

Deleted: 10

Inserted: 12

Deleted: Figure 13

Inserted: Figure 13

Deleted: Figure 11

Deleted: 13

Inserted: 13

Deleted: 11

20

5 References
[1] OMG, Additional Structuring Mechanisms for the OTS Specification, September 2000,
document orbos/2000-04-02.
[2] WSDL 1.1 Specification. See http://www.w3.org/TR/wsdl

Comment: May need
additional references for WS-
Context, WS-TXM, and WS-
Addressing

	Note on terminology
	Namespace
	Prefix Namespace

	Referencing Specifications

	Introduction
	WS-CF architecture
	Overview
	Invocation of Service Operations
	Relationship to WSDL
	Referencing and addressing conventions

	WS-CF components
	Registration Service
	Service-to-Registration interactions
	addParticipant
	removeParticipant
	Client-to-coordinator interactions
	coordinate
	getStatus
	Registration Context

	Interposition
	Recovery Service
	recover
	getStatus

	References

