Web Services Coordination
Framework Specification (WS-CF)

CommitteeEditors draft version 6:20.3
22 Jure-2004

4 April 2005

Abstract

WS-CEF defines interfaces that drive the coordination of multiple Web service executions related
in_ an activity, according to the requirements of a WS-TXM protocol type such as ACID, long
running actions, or business process, or of a protocol type defined in another specification.

WS-CEF defines an open, pluggable coordination framework that supports multiple protocol types.
The coordination framework ensures the set of Web service participants in an activity is notified of
actions required of them, and that any protocol actions initiated by the participants are
communicated to the other participants, to ensure a common outcome.

Coordination in general refers to the ability of multiple Web services to act in combination through
a software agent such as a broker, even though they were not designed to do so, and conform to
a common, predefined outcome such as commit, rollback, or compensate, based upon conditions
recognized and acted upon by the protocal.

Coordination is a-requirement-presentrequired in a variety of different aspects of distributed
applications—For-instanee;applications, such as orchestration, workflow, atomic transactions,
cachlng and repllcatlon securlty, auctlonlng, and busmess to busmess aeWﬁresaH—reqwre—seme

30

OCoOoO~NOURW NP

The fundamental capability offered by the WS-CF specification is the ability to register a web
service as a participant in an activity.

WS-CF extends the WS-Context late binding session model SOAP messages processed within
the scope of an activity contain context headers that uniguely identify a single activity. WS-CF
extends the session model using a reqistration context. Reqgistration in the context of an activity
adds the registered service to an activity group. Membership in the group drives a group specific
protocol (e.qg. data replication) over the lifetime of the activity group or may be used to coordinate
signals associated with a termination protocol (e.g., two phase commit). The purpose and
semantics of activity group membership are protocol specific.

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Table of contents

1 NOtE ON tEIMINOIOGY ..o 64
1.0 NAMESPACE iiiieeeeeiiit ittt ettt ettt ettt ettt ittt ettt e 6
1.1.1 Prefix NaMeSPacCe ...oooueeeieeiiiieeeeeeeeeeeeeeeeeeeeeeeee e 6

1.2 Referencing SPeCifiCatioNS.uuuuuueeeieiii 6

2 [T i (oo [T 1o] o PSPPSR 7
3 WS-CF @rChitECIUI. ...ccvie et e e e e e e et e e e e et e e e e et eaens 97
3oL OVEIVIEW i 9
3.2 Invocation of Service OpPerationsceveeeeiiiiiiiiiieeeeeeeeeeeeeee 138
3.3 Relationship tO WSDL......coo oo 148
3.4 Referencing and addressing CONVENLIONS..........coooviiiiiiiiiiee e, 148

4 W S-CF COMPONENTS ...ttt e et e e e e e e e e e e e e e e e e 1610
4.1 PartiCIPANT SEIVICE.....ciiiiiiiiiiiiiiiieii ettt ee e 1710
4.2 REQISIIAlION SEIVICE......ciiiiiiiiiiiiiiiiiiie ettt 2111
4.2.1 Service-to-Registration iNTEraCtioNS.uuuuuuiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeaee 2111

=T [0 | = 1y (ol o F= | SRR PPPPPPPPPP 2241
FEMOVEPAMICIPANTeeiiiiiiiiiiiiii ittt 2242
FECOVEIPAMICIDANT ...t e e e e e e e e e e e e e e e eeer e e e eeeeeennes 2412
TECOVEIREGISIIALIONeeiiiiiiiiiiiiiiii e 2513
(0T = LT PP UPPPPPPPTT 2513
o =T K= LA [0] g I 0] 1= q TR 2745

4.3 INLErPOSITION....cciiiiiiiiiiiiiiiiiiiiieeeeeeeee e Error! Bookmark not defined.16

5 RETEIENCES. ... et e e et e e et e e e e e e aa s 3947

35

36
37
38

39
40

41
42
43

44

45

46
47
48

49
50

51
52

53

1 Note on terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [2].

Namespace URIs of the general form "some-URI" represents some application-dependent or
context-dependent URI as defined in RFC 2396 [3].

1.1 Namespace

The XML namespace URI that MUST be used by implementations of this specification is:

http://docs. oasi s- open. or g/ wscaf / 2005/ 02/ wscf

1.1.1 Prefix Namespace

Prefix Namespace

Wscf http://docs.oasis-open.org/wscaf/2005/02/wscf

WSsCtx http://docs.oasis-open.org/wscaf/2004/09/wsctx

Ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

Wsdl http://schemas.xmlsoap.org/wsdl/

Xsd http://www.w3.0rg/2001/XMLSchema

Wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

Tns targetNamespace

1.2 Referencing Specifications

One or more other specifications, such as (but not limited to) WS-TXM may use the interfaces
defined in the WS-CF specification by reference. The usage of optional items in WS-CF is
typically determined by the requirements of such a referencing specification.

A referencing specification generally defines the protocol types based on WS-CF. Any protocol
type that uses WS-CF must specify what optional features are required.

WS-CF uses WS-CTX as a referenced specification, and WS-TXM uses WS-CF as a referenced
specification.

52 2 Introduction

55
56
57

58
59
60
61

62
63
64
65
66
67

68
69
70
71
72
73

74
75
76
77
78

79

80

81
82
83
84
85
86

87
88

89
90

91

92
93 i

94 Service:
95
96
97

98
99

100
101
102
103
104

105
106
107
108
109

110
111
112
113
114
115
116

117

118
119

120
121

122
123

124
125

126
127
128

129
130

131
132

133

134
135
136
137
138
139
140
141

142
143
144
145

146

registration function to participate in the protocol. Examples of protocols that require explicit
registration functions include notifications, transactions, virtual synchronous replica models based
on group membership paradigms, and security. The WS-Coordination Framework provides a
WSDL interface for registering Web services as participants in various protocols types, as defined
using referencing specifications.

Context information in support of a registration action can flow implicitly (transparently to the
application) within normal messages sent to the participants, or it may be an explicit action on
behalf of the client/service. This context is specific to the type of activity being performed, e.q., it
may identify reqistration endpoints, the other participants in an activity, recovery information in the
event of a failure, etc.

Furthermore, it may be required that additional application specific context information (e.g., extra
SOAP header information) flow to these participants or the services which use them. WS-CF
introduces a regqistration context type that builds on the context type defined in WS-Context to
provide additional information required to enlist as a participant in an activity. Applications may
use the reqistration context to define collections of services called “activity groups”. WS-
Coordination Framework provides support for protocols that depend on group membership
paradigms, such as coordination and security.

2.1 Definitions

¢ Protocol type: A set of messages exchanged among participants in an activity for the
purpose of determining or executing a common outcome agreed upon by all participants.

e Coordination: The act of a software agent exchanging messages with the participants in
an activity for the purpose of determining a common outcome.

e Composite application: An application comprised of multiple Web services (including their
execution or implementation environments) joined to achieve a common purpose.

¢ Common outcome: A way in which Web services in a composite application can agree in
common as to whether or not the desired purpose of the composite was achieved.

e Activity: See also WS-Context. An activity represents a mechanism external to WS-CF
according to which multiple Web services are placed in combination to achieve a

common goal.

* Reqistration: The act of an individual Web service within a composite application of
reqgistering to participate in a given protocol type.

*+ Termination: The end or completion of a given protocol type so that the participants in an
activity can agree upon a common outcome, as defined by the protocol type.

¢ Activity group: (Do we need a separate definition for an activity group?)

A Web service becomes a participant in an activity through its inclusion in an orchestration flow or
other means by which Web services can be combined into a composite application. An activity
becomes known to a coordinator via the reqistration of the individual Web services within the
activity for inclusion within a particular protocol. Various protocol types can be used to drive a
common outcome among the services, such as two-phase commit, compensations, and
asynchronous business process management. When a Web service registers, it registers for a
particular protocol type. The set of Web services in an activity group therefore is defined as the
set of services reqistering on behalf of the activity for the same protocol type.

The coordination protocol is executed using a sequence of correlated one-way message
exchange patterns. The use of correlated one-ways is required because HTTP is an unreliable
transport, and a coordinated protocol type needs to know whether or not a message was received

and processed.

147

148
149

150

151
152
153
154
155
156

157
158

159
160

161
162

163
164

165
166
167

168

169
170
171
172
173
174

175
176

177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192

3 WS-CF architecture

The following sections outline the architecture of WS-CF, describing the components that
implementations provide and those that are required from users.

3.1 BExtended-coordination-modelsOverview

Fhe-WS-CFWS-CF provides an interface for services to enlist with a coordinator for a specific
protocol type, and allows the management and coordination in a Web services interaction of a
number of activities related to an overall application. It builds on the WS-Context specification to

prowde a registration context that leverages the act|V|tv model and context structure Web

services to reqister as part|C|pants ina protocol

* Introduces the notion of an activity group;

* Allows for the registration of participants in activity groups;

* Propagatescoordination-specific-information-across-the-networkAllows for propagation of

group-specific protocol information by enhancing the default context structure provided by
WS-CTXContext;WS-Context;

e The main components involved in using and defining the WS-CF are:

193
194
195
196

197
198
199
200
201

202

203
204

205

206
207
208
209
210
211
212
213
214

215
216

coordinator

Coordination
Service

Context Service ALS members

Application
Web
Service

Participant

10

217

218
219

220
221

222
223
224
225
226
227

228
229
230
231
232
233
234

235

236
237
238

239
240
241

11

242

243
244
245
246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261

262
263
264
265
266

267

268
269
270
271
272
273
274
275
276

277

12

A

278

279
280
281
282
283
284

285

286
287
288
289
290
201
292

293
294

295

296
297
298

299
300
301
302
303

304
305
306

307
308
309
310

311
312
313
314
315
316

317
318
319

320

321
322

323
324
325

_reqistration service, which provides an interface for the

registration of participants within a specific protocol.

¢ A participant service, which defines the operation or operations that are performed as
part of the protocol.

* A reqistration context, which allows participants to join an activity group.

The group membership facilities are used to build and manage relationships among services. For
example, an activity group can be used as the basic definition of a participant set for a given
coordination protocol.

WS-CF builds upon the activity concept defined in the WS-Context specification by narrowing the
notion of an activity to that of an activity group: such a group contains members (participants) that
will be driven through the same protocol. WS-CF says nothing about specifics of such
coordination protocols and when or where participants may join and leave: this is left up to the
protocol types.

Because WS-CF is meant to support a range of coordination protocols, each possessing different
protocol messages and potentially different coordinator interfaces, WS-CF does not define how or
when coordination occurs. This is left to the protocol types.

WS-CF defines the activity group and associated service (the Registration Service). The group
paradigm is central to coordination, whether it is coordinating the outcome of distributed
transactions, security domains, replica consistency, cache coherency etc. The activity group is
tied to an underlying WS-Context activity such that their lifetimes coincide.

Web services that wish to join or leave the group use of the Registration Service. The
membership of the group may also be obtained from the Registration Service. Specific
implementations of the Reqistration Service may impose restrictions on how and when group
membership changes may occur; these are outside the scope of the WS-CF specification. In
addition, some uses of group membership may place constraints on consistent views of group
membership, particularly in the presence of member failures.

This specification allows group membership to be managed with reference to a specific context;
the relationship between different contexts is defined by the WS-Context specification; specific
protocols based on activity groups may support subgroups and interposed activities.

3.2 Invocation of Service Operations

How application services are invoked is outside the scope of this specification; however, context
information related to the sender’s activity needs to be referenced and/or propagated.

All interactions are described in terms of correlated messages, which a referencing specification
MAY abstract at a higher level into request/response pairs. As long as implementations ensure
that the on-the-wire message formats are compliant with those defined in this specification, how

13

326
327
328

329
330
331

332
333

334
335
336
337
338

339
340
341
342
343
344
345
346

347

348
349
350
351

352
353
354
355

356
357

358

359
360
361
362

363
364
365
366
367

368
369
370
371
372
373
374

the end-points are implemented and how they expose the various operations (e.q., via WSDL [1])
is not mandated by this specification. However, a normative WSDL binding is provided by default
in this specification.

Note, this specification does not assume that a reliable message delivery mechanism has to be
used for message interactions. As such, it MAY be implementation dependant as to what action is
taken if a message is not delivered or no response is received.

The WSDL binding is normative; however other implementations that are semantically equivalent
and preserve interoperability are allowed.

Faults and errors that may occur when a service is invoked are communicated back to other Web
services in the activity via SOAP messages that are part of the standard protocol. If an operation
fails because no activity is present when one is required, then the InvalidContextFault message
will be sent to the requester. To accommodate other errors or faults, all response service
signatures have a generalFault operation and as a transientFault operation.

Note, a transientFault message is produced when the implementation finds it
cannot successfully execute the requested operation at that time from some
temporary reason. This reason may be implementation or referencing
specification specific. A receiver of a transientFault is free to retry the operation
which originally generated it on the assumption that eventually a different
response will be produced. Sub-types of transientFault MAY be further defined
using the fault model described which can allow for the communication of more
specific information on the type of fault.

3.3 Relationship to WSDL

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the
normative style. Other binding styles may be used as long as interoperability is preserved,
although they may have different acknowledgment styles and delivery mechanisms. It is beyond
the scope of WS-Coordination Framework to define these styles.

Note, conformant implementations MUST support the normative WSDL defined
in the specification where those respective interfaces are required. WSDL for
optional components in the specification is REQUIRED only in the cases where
the respective components are supported.

For clarity WSDL is shown in an abbreviated form in the main body of the document: only
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1].

3.4 Referencing and addressing conventions

There are multiple mechanisms for addressing messages and referencing Web services currently
proposed by the Web services community. This specification defers the rules for addressing
SOAP messages to existing specifications; the addressing information is assumed to be placed in
SOAP headers and respect the normative rules required by existing specifications.

However, the Coordination Framework message set requires an interoperable mechanism for
referencing Web Services. For example, context structures may reference the service that is used
to manage the content of the context. To support this requirement, WS-CAF has adopted an open
content model for service references as defined by the Web Services Reliable Messaging
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 3.

<xsd: schenma target Nanmespace="http://docs. oasi s-
open. or g/ wsr ml 2004/ 06/ ref erence- 1. 1. xsd"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schenma"
el ement For mDef aul t =" qual i fi ed" attri buteFornmDef aul t="unqualified"
version="1.1">
<xsd: conpl exType nane="Ser vi ceRef Type" >
<xsd: sequence>

14

378

377
378
379

380
381

382

383

384
385
386
387
388
389
390

391
392
393
394
395
396

397
398
399
400
401

402
403
404
405

406
407
408

<x<sd' anv namprsnace="##nt her" nrocecxCnnt ent e="1 ax" />
</ xsd: sequence>

<xsd:attribute name="ref erence-schene" type="xsd: anyUR "
use="optional" />
</ xsd: conpl exType

Figure 3, service-ref Element

The ServiceRefType is extended by elements of the context structure as shown in Figure 4.

<xsd: el enent nane="cont ext - manager” type="ref: Servi ceRef Type”/>

Figure 4, ServiceRefType example.

Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery
specification [4] would be http://www.w3.0rq/2004/04/ws-messagedelivery. The value for WSRef
defined in the WS-Addressing specification [8] would be
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need
only be used if the namespace URI of the OName of the Web service reference cannot be used
to unambiquously identify the addressing specification in which it is defined.

Messages sent to referenced services MUST use the addressing scheme defined by the
specification indicated by the value of the reference-scheme element if present. Otherwise, the
namespace URI associated with the Web service reference element MUST be used to determine
the required addressing scheme. A service that requires a service reference element MUST use
the mustUnderstand attribute for the SOAP _header element within which it is enclosed and MUST
return a mustUnderstand SOAP fault if the reference element isn’t present and understood.

Note, it is assumed that the addressing mechanism used by a given
implementation supports a reply-to or sender field on each received message so
that any required responses can be sent to a suitable response endpoint. This
specification requires such support and does not define how responses are
handled.

To preserve interoperability in deployments that contain multiple addressing schemes, there are
no restrictions on a system, beyond those of the composite services themselves. However, it is
RECOMMENDED where possible that composite applications confine themselves to the use of
single addressing and reference model.

Because the prescriptive interaction pattern used by WS-Coordination Framework is based on
one-way messages with callbacks, it is possible that an endpoint may receive an unsolicited or
unexpected message. The recipient is free to do whatever it wants with such messages.

15

409

410
411
412
413
414
415
416
417
418
419

420
421
422
423
424
425

426
427
428
429
430
431

432

433

434
435
436
437

438
439
440
441
442
443

4 WS-CF components

WS-CF provides five components that may be used to build collaborative protocols and complex
composite applications: the Participant service, the Reqistration service, and the Registration
context. The components are described in terms of their behaviourbehavior and the interactions
that occur between them. All interactions are described in terms of message
messages;exchanges, which an implementation may abstract at a higher level into
request/response pairs or RPCs, for example. As-such,-allcommunicated-messages-are-required
to-contain-response-endpointLike WS-Context, the components are organized in a hierarchical
relationship, where individual components may be used without reference to higher level

constructs that build on them. For example, the Registration and Participant services addresses

5 1Participantscan be used without reference to an activity group.

4.1 Interposition

WS-CF supports the notion of interposition: where a Participant Service that is enlisted with a
Registration Service also behaves as a Registration Service to other Participant Services. In this
way, WS-CF supports the building of graphs and trees by the addition of participants to an activity
structure that are themselves reqistration endpoints.

The technigue of interposition uses proxies (or subordinates). Each domain that imports a WS-CF
context MAY create a subordinate registration service that enrolls with the imported registration
service as though it were a participant. This specification does not prescribe how and when this
may occur. Interposition then requires the importing domain to use a different context when
communicating with services and participants that are required to register with the subordinate
reqgistration service, as shown in Figure 5.

16

444
445

446
447

448

449
450
451
452
453
454
455
456
457

458
459
460
461
462

463
464
465
466
467

468
469

470
471

472
473

474
475

476
477

478
479
480

Registration Service

Participant []

Participant/
proxy-registration
service

Figure 5, Participant coordinator.

This specification does not define what are allowable forms of graphs that may be created using
interposition. Such definitions are the responsibility of referencing specifications.

4.2 Participant Service

AtMany distributed protocols require software agents to enlist as participants within a protocol to
achieve an application visible semantic. For example, participants may enlist in a transaction
protocol in order to recelve messaqes at coordlnatlon pomts deflned by the appheaﬂen%r—sewre&

e*ehang&e#preteeeﬂ—speemmessages—FeFemmple—thegrotocol Th termlnatlon of one

activity may initiate the start/restart of other activities in a workflow-like environment. Messages
can be used to infer a flow of control during the execution of an application. The information

encoded within a message will depend upon the implementation-of the-coordinationprotocol

model.
A Participant{coordination-participant) will use the message in a manner specific to the
Coeordination-Service-andprotocol and (optionally) return a result of it having done so. For

example, upon receipt of a specific message, a Participant couldstart-anetheractivity-running
{e-g—a-compensation-activity)anotherParticipant-could commit any modifications to a database

when it receives one type of message, or undo them if it receives another type.

In some cases (e.q., monltorlnq protocols) Eaeh—pamerpam—sempertsﬂareeerdmaaen—pre%eeei

17

481
482
483
484
485

486

487
488

489
490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513

514
515

s eemTTTTTTT el ~
- -<

S getStatus RN
/ Vil \\ .
;S . N
I AssertionTypemessage \ \
L e
¥ T . \
PPta ~. A

o] Coordinator
Participant

Participant
AssertionTy pemessage

identity

z z

status

wrongState

generalFault

--------------- > Coordinator generated

—_— Participant generated

516
517
518
519

520
521

522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538
539
540
541
542
543

544
545

unknownCoordinator

response Sat
¥
s
Participant N
Responda ParticipantC
nt setResponse cordinator
__A >
[
generalFault
wrongState
protocolViclation

* Participant generated

> Coordinator generated

19

546
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

570

571

572
573
574
575
576
577
578
579

580
581
582
583
584
585

586

587

588
589
590
501
592
593
594
595
596

edtcomes-generated-by-the Participants:Participants may register for protocols that do not include
any subsequent signaling. In other cases, such as publish-and-subscribe scenarios, Participants
may register for a stream of messages that have no fixed semantic content with respect to the

20

597
598
599
600
601

602

603
604
605
606
607
608
609
610

611
612
613
614

615
616
617
618
619

620

621
622

623

624
625
626
627
628

629
630

631

632
633
634
635

636
637
638
639
640
641
642

643

644
645

protocol itself. In general, rules governing the subsequent interaction between Participants and
Reqistration endpoints are defined by specifications that make use of WS-CF. As such, there is
no defined WSDL interface defined for the Participant Service; it is an abstract entity that is given
concrete representation by referencing specifications and is only discussed within the scope of
this specification for clarity of the overall model concept.

4.3 Registration Service
Fhe-protocolthatthecoordinatoerIn order to become a Participant in a protocol, a service must

first enlist with a Reqistration service. The protocol that the Registration implementation uses will
depend upon the type of activity, application or service using the eoerdinationReqistration service.
For example, if the eserdinationReqistration service is being usedfer within an extended
transaction infrastructure, then one protocol implementationtype will not be sufficient. For
example, if Saga model is in use then a compensation message may be required to be sent to
Participants if a failure has happened, whereas a coordinator for a strict transactional model may
be required to send a message informing participants to rollback.

How an-ALSa Registration service for a specificeoordination protocol(s) is located and ultimately
registered with the CFXEontext Service is out of scope of this specification. AR-ALS-mayA
Registration service MAY identify the type of coordlnatlon protocol it supports via-the-ALS-identily

A+I—eperatrense+%he~eeerdu4ate|’—sewree~areprOV|des support for Registering Services to enlist

Participant Services with a specific activity group. Operations on the Registration service MAY be
implicitly associated with the-eurrenta Registration context, i.e., it is propagated to the

coordinatorRegistration service in order to identify Wh4eh4seerdﬂ4atepﬁ4e—be~eperatea—ewthe

specific activity group.

In the following sections we shall discuss the different eoerdinaterReqistration service interactions
and their associated message exchanges.

5.3.14.3.1 Service-to-coordinatorService-to-Reqgistration interactions

These mteractlons define how a service (the Recusterlnq Serwce) may enlist or delist a participant
Participant (Service) with
the Recustratlon Ser\/lce The message exchanqes are |IIustrated |n Figure 11Figure-8. They are
factored into two different roles:

—ServiceCoordinator:Reqgistration Service: this accepts the addParticipant, removeParticipant,

getQualifiers-and-getParentCoordinatorrecoverParticipant, registrationRecovered and getStatus
messages All messages contain the SeMeeRespendan{—endpemt—feFeaH-baelemessages—H—rs

Recusterlnq Ser\/lce endpomt for callback

messages, aIthouqh it is OPTIONAL as to whether the Reqistration Service remembers these
beyond a specific interaction.

—ServiceRespondant:Reqistering Service: this accepts the participantAdded,
participantRemoved, gquatifiers,parentCoerdinatorparticipantRecovered, status,

21

646
647

648

649
650
651
652
653

654
655

656
657
658
659
660
661
662

663

664
665
666

667
668
669
670
671

672
673
674

675
676

677
678
679

680
681
682
683
684

685

686
687
688
689
690
691
692

recoverRegistration, generalFault,unrkrewnCeerdinater; wrongState, duplicateParticipant,
invalidProtocol, invalidParticipant, and participantNotFound messages.

addParticipant

This message is sent to the coordinator in order to register the specified Participant with the
ActivityCoordinaterprotocol supported by the Registration service. A valid RegistrationContext
MUST accompany this messade and the participant will be added to the activity group |dent|f|ed
in the context.
the-ServiceRespondant:

This context MAY be passed by reference or by value. It is implementation dependant as to
whether any context information other than the basic reference values is required.

The eoordinaterprotocol may support multiple sub-protocols (e.g., synchronizations that are
executed prior to and after a two-phase commit protocol); in order to define with which protocols
to enlist the participant, the list of protocolType URHsURIs may be propagated in the message.
The Reqistration Service MUST ensure that all protocols specified are supported before H-the
protocokisany reqistration happened. If some of the protocols are not supported by this
coordinator-thenthe Registration service then no registration occurs and the invalidProtocol
message wHIMUST be sent to the Registering Service indicating which protocols were at fault.
ServiceRespondant:

Upon success, the eoordinatorRegistration service calls back to the
ServiceRespondantReqistering Service with the participantAdded message, including in this

message the-ParticipantCoordinator-address:

a uniqgue OPTIONAL endpoint reference that MAY be used by the Registering Service or
Participant Service for further interactions. How and when this endpoint reference should be used
is outside the scope of this specification and is left to referencing specifications to determine. For
example, it may be used by a coordination service to refer to the endpoint that the participant
should use for the coordination protocol.

HA referencing specification MAY decide to send the wrongState message if the Activity has

begun completion, or has already completed-then-the-wrongState-message-is-sent.completed

when this operation is attempted.

The termination of the activity group MAY be triggered by the completion of the WS-Context
service activity.

If the same participant has been enrolled with the eserdinatorReqistration service more than once
and the eoordination-protocolreferencing specification does not allow this, then the
duplicateParticipant message is sent to the ServiceRespondant-

ServiceRespondant. How the registration of the same participant multiple times is dealt with at
the protocol level is outsrde the scope of thls specrflcatron and is Ieft to #—th&partrerpant—r&mvahd

SewreeRespendanHeferencrnq specrflcatlons to deflne, as the rules governing the protocol are
defined by a referencing specification

removeParticipant

This message causes the Reqistration service to delist the specified Participant. A valid
RegistrationContext MUST accompany this message to identify the activity group from which the
participant should be removed. This context MAY be passed by reference or by value. It is
implementation dependant as to whether any context |nformat|on other than the eeerdmater—te

basic reference values is requrred If successful the PartrcrpantRemoved message is sent to the

invoker.

22

If the Participant has not previously been registered with the eeerdinaterRegistration service for

the specified eoerdinationprotecelactivity group, then it will send the participantNotFound
message to the SewreeRespendan%Remstermq Service.

Removal of a participant need not be supported by the specific coordination-implementation-and
oebvioushyitprotocol and may also be dependant upon where in the protocol the

coordinatorsystem is as to whether ita referencing specification will allow the participant to be
removed:

removed. The rules governing removal of participants from participation in a protocol or activity
group are governed by referencing specifications. H#A referencing specification MAY decide to
send the wrongState message if removal is disallowed; for example, the Activity has begun

completion, or has completed-thenthe-wrongState-message-is-sent.already completed when this

operation is attempted.

23

,-r"'para"ﬂ:nnrdll'lhq_'
r.i "F-——-!'-_“‘ '\._“‘

Fauns " E
generalFauls - qualifiers won
P -y w N
q F — Ty, Wb
f - . - Wy 4
P smvalidProtocot ., 5 ,
i o - b
'y e . Wy ok
‘lr.l _; - . "a"‘ [
b _.r J—‘ -~ 5 % '11
anicipantaddad ® L
iy oE ot P P W b b

~

%
re invaligParticipant h,'_‘ Wov ko

duplicateParicpant —_— Sarvice genarated

]

- —

EEEL LT o CoordinamT e

Lt parbcipantRemoved |, f ri
£ g

L # ¢
L "y * 4

- o !

L ‘HH & F r‘r
% - -
VN e e - L4 wrengSiate
&

>

N -
% e m’l.-ﬂlld':d-ét‘dﬂalﬁf £
- - #

\‘wﬁ-;j;r:a_nfm'o:r'ugw’f
717 | - In addition,

718 some protocols may allow for Reqistration service to autonomously delist Participant services. In
719 this case, the Reqistration Service will send an unsolicited ParticipantRemoved message to the
720 service that was responsible for enlisting the Participant.

721 | recoverParticipant

722 This operation is used by a participant that has previously successfully enlisted with a

723 Reqistration service: when the Participant fails and subsequently recovers it may not be able to
724 recover at the same address that it used to enlist with the Registration service. The

725 recoverParticipant operation allows the participant to inform the Registration service that it has
726 moved from the original address to a new address. It may also be used to start recovery

727 operations by the protocol engine.

728 A valid ReqistrationContext MUST accompany this message in order to identify the group in

729 which the failed participant previously existed. This context MAY be passed by reference or by
730 value. It is implementation dependant as to whether any context information other than the basic
731 reference values is required.

732 If successful, the participantRecovered message is sent to the invoker. If the recovery handshake
733 occurs in the context of an activity, the message also contains the current status of the activity.
734 This status may be used by the recovering participant to perform local recovery operations,

735 although this will depend upon the protocol in use. For example, if the participant was enrolled in
736 a presumed-abort transaction protocol and recovery indicated that the transaction no longer

737 exists, then the participant can cancel any work it may be controlling.

738 If the coordinator cannot be located, then the invalidActivityFault message is sent back.

739 If the status of the coordinator is such that recovery is not allowed at this time, the wrongState
740 message is sent to the Regqistering Service by the coordinator.

741 If the Registration Service cannot deal with recovery of the participant for a temporary reason, the
742 transientFault message is sent and the receiver MAY try again.

24

743

744
745
746
747
748
749

750
751
752
753

754
755
756

757
758
759
760

761

762
763

764

765
766
767
768

769
770
771
772

773
774

recoverRegistration

This operation on the Registering Service MAY be used by a recovered Registration Service to
indicate that it has recovered on a new endpoint address. When a Registration Service fails and
subseguently recovers it may not be able to recover at the same address that prior Registering
Services used to enlist with the Registration service. This OPTIONAL operation allows the
Registration Service to inform Registering Services that it has moved from the original address to
a new address. It may also be used to start recovery operations by the protocol engine.

The use of recoverRegistration SHOULD only be attempted when the Registration Service has
failed and recovered on another endpoint because to do otherwise MAY result in continued use of
stale RegistrationContext information elsewhere in the application; the context refers to the old
endpoint address for the Registration Service.

A valid ReqistrationContext MUST accompany this message. This context MAY be passed by
reference or by value. Itis implementation dependant as to whether any context information other
than the basic reference values is required.

If successful, the reqistrationRecovered message is sent to the Registration Service. If the
recovery handshake occurs in the context of an activity, the message also contains the current
status of the activity. This status may be used by recipients to perform local recovery operations,
although this will depend upon the protocol in use

If the Registering Service cannot be located, then the unknownService message is sent back.

If the Registering Service cannot deal with recovery of the Registration Service for a temporary
reason, the transientFault message is sent and the receiver MAY try again.

getStatus

The status of the activity group may be obtained by sending the getStatus message to the
recovery coordinator. A valid RegistrationContext MUST accompany this message. This context
MAY be passed by reference or by value. It is implementation dependant as to whether any
context information other than the basic reference values is required.

The status, which may be one of the status values specified by the Context Service, or may be
specific to the protocol, identified by its QName, is returned to the invoker via the status message.
GetStatus will return the same Status value that is returned by the getStatus operation on the
Context Service, assuming the gueries occur at the same point in the activity lifecycle.

25

———

- .
L paraniCoordifkgs
Fa pEm——— - ™
- L '\‘
O s %
generalFauts - qualifiers LY
i ' -y ™ *
S - ., N N
Lo - . - |
S s nvalidProtacot . '-" "‘I
¢ .l'l r‘] - ta y &
L _; - - "I-;‘ N [1
¢ , & -~ hJ 5 4
"'rl . participantdddad s v %Y
e L]
Il L £Y 1L
”'-J . El -‘-"'-; Yoo
Ty, 7 invaligPartigipant s, % v A
"I ! '_" L T v 811
"'irr P o == "‘..l.l.l L
I'r” e ";_1 MR
i & yL Ll
r‘llrl ; N getQualifiers % Wit
Py VoM
1 1 TR
P duplicateParticipant —_—— Sarvice geraraied
[, T, SRR
ServiceRe o ServiceCoo
=pondant : i
P addParticipant rdnator | emeemem- # Cosrdinator generated
]

» £

it ™ nu!Faruﬁ!Cl}l}lﬂinalur_,-‘r e
-

Ly b
\'\ [e - or o
Wy v T e L]
(R . :‘ for
Ly parbcipantRemoved 7 F ri
‘\"\ s P
LIRY L + # ¢
L s N o FJ r‘r
% - -
'-'| v e - L4 wrengSiate

N - &
v M invalldCoordnator
B RL Ty -
N . -,
« partispaniMatFound
L. -

775

776 | Figure 11, Service-to-coordinator interactions.

777 | The ServiceRespondantand-ServiceCoeordinaterRedistration Service and Reqistering Service
778 roles are elucidated in WSDL form in Figure 1213Figure-Figure 1213Figure-9-.

779 <wsdl : port Type

780 | pare="Servi-ceCoordi-natorPort Frpe“>nane="Regi st rat i onSer vi cePort Type" >
781 <wsdl : oper ati on nane="addParti ci pant">

782 <wsdl : i nput nessage="t ns: AddParti ci pant Message"/ >

783 </ wsdl : operati on>

784 <wsdl : operati on nane="renoveParticipant">

785 <wsdl : i nput nessage="t ns: RenoveParti ci pant Message"/ >
786 </ wsdl : operati on>

787 —<wsdl--operati-on—npane="getQual-ifiers">

788 i =t : - -

789 : i

790 <wsdl : oper ati on nane="get Par ent Coor di nat or " >

791 <wsdl : i nput nessage="t ns: Get Par ent Coor di nat or Message"/ >
792 </ wsdl : operati on>

793 </ wsdl : port Type>

794 <wsdl : port Type nane="Servi ceRespondant Port Type" >

795 <wsdl : operati on nane="partici pant Added" >

796 <wsdl : i nput nessage="tns: Parti ci pant AddedMessage"/ >
797 </ wsdl : operati on>

798 <wsdl : operati on nane="partici pant Renoved" >

799 <wsdl : i nput nessage="tns: Parti ci pant RenovedMessage"/ >
800 </ wsdl : operati on>

801 —<wsdl--operati-on—hane="gualifiers">

802 = = : i .

803 —</wsdloperati-on>

804 <wsdl : oper ati on nane="parent Coor di nat or" >

805 <wsdl : i nput nessage="t ns: Par ent Coor di nat or Message"/ >
806 </ wsdl : operati on>

| 26

385 <uwedl - aner at i nn namp="nener al Fanl t ">
<wsdl : i nput nessage="t ns: Gener al Faul t Message"/ >

809 </ wsdl : operati on>

810 <wsdl : oper at i on ranre="unkhrownCoordi-nator">nane="i nval i dActivity">
811 <wsdl : i nput

812 ressage="tns+-UnknownCoordi-natorFaul-t Message™/>nessage="wsct x: | nval i dAct i
813 vi tyFaul t Message"/ >

814 </ wsdl : operati on>

815 <wsdl : oper ati on nane="w ongSt ate" >

816 <wsdl : i nput nessage="asw. W ongSt at eFaul t Message"/ >

817 </ wsdl : operati on>

818 <wsdl : oper ati on nane="dupl i catePartici pant">

819 <wsdl : i nput nessage="t ns: Dupl i cateParti ci pant Faul t Message"/ >
820 </ wsdl : operati on>

821 <wsdl : oper ati on nane="inval i dProtocol ">

822 <wsdl : i nput nessage="t ns: | nval i dPr ot ocol Faul t Message"/ >

823 </ wsdl : operati on>

824 <wsdl : oper ati on nane="invali dPartici pant">

825 <wsdl : i nput nessage="tns: | nval i dPartici pant Message"/ >

826 </ wsdl : operati on>

827 <wsdl : oper ation nane="partici pant Not Found" >

828 <wsdl : i nput nessage="t ns: Parti ci pant Not FoundFaul t Message"/ >
829 </ wsdl : operati on>

830 </ wsdl : port Type>

831 Figure 12139\ 2
832 portType Declarations for Remstratlon Service and Reqlsterlnq Serwce Roles

833

834
835
836

837
838
839

840
841

842

843
844
845
846
847
848
849
850
851

852
853

854
855
856
857

27

858
859
860

861
862
863
864

865

866
867
868
869

870
871

872

873
874
875
876
877
878
879
880
881
882
883
884
885
886

ClizntRes
pondant

- -
P invalidActivity -
-

i,

nigtor

Cliant genaratad

-

Coordinator generabed

b
% =

.
v . |"|'\.-.H|dl'_'-5|:|rdlﬁ.‘.lj}r’ ’

BT & 7

- -
[——— ¥

* ganaralFault ~

28

B8

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

907

908

909
910
911
912
913
914
915
916
917
918
919
920

921
922
923

924

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

5.3.34.3.2 Context-enhancementReqistration Context

In order to perferm-coordination;support reqistration in activity groups it is necessary for the
participants to be enrolled-with-coordinaters.enlisted in the activity group via some mechanism.
This specification defines a Registration service to support enlistment in an activity group. In a
distributed environment, this requires information about the eeerdinaterRegistration service
(essentially its network endpoint) to be available to remote participants. The CFXContext-Service
is-already-responsibleWS-Context provides mechanisms for propagating basic context
informationbetween-distributed activities-betweenservices. As we have seen, the information
contamed within this baS|c act|V|ty context is S|mply the unlque act|V|ty +dent|ty—l=tewe\+er—|t—has

sewree—thr&mfermaﬂetorlstheldentltv and optlonal mformatlon assomated Wlth the demarcatlon

activity and management of the context. WS-hierarchy-of coordinatorreferences:
<xs:complexType-name="ContextFype“>Coordination Framework extends the ContextType

defined in WS-Context to allow services to reqgister as Participants in an activity. The
RegsitrationContextType is shown in Figure 5.

<xs: conpl exType nanme="Regi strati onCont ext Type">
<xs: conpl exCont ent >
<xs: extensi on base="wsct x: Cont ext Type" >
<XS: sequence>

<xs: el ement nare="protocol-reference™

—— rexOceurs="unbounded~/=nane="regi strati on-servi ce"
type="ref: Servi ceRef Type"
m nCccurs="1"/>

<XS: any namespace="##any" processContents="|ax"
raxOceurs="unbeunded/=ni nCccurs="0"/>

</ Xs: sequence>

</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType> |

942 Figure 161742 \WS-CFCentextType, WS-CF RegistrationContextType derives from the WS-CFXContext
943 ContextType.

944 The Registration context contains the following elements in addition to the WS-Context
945 ContextType structure:

946 A service reference to a Reqistration service. This enables Participant services to be enlisted or
947 delisted in an activity group.

948 XXXparticipant list? (see comment)
949

950 | The XML below shows an example of a eoordinationRedgistration context fora-coordinatoer
951 | implementation-of a two-phase completion protocol.

952 <cont ext

953 | xm ns="htt p: // ww. webser vi cest ransacti ons. or g/ schemas/ wsct x/ 2003/ 03"
954 ti meout =" 100" >

955 <context-identifier>

956 ht t p: / / ww. webser vi cest r ansact i ons. or g/ wsct x/ abcdef : 012345

957 </ cont ext-identifier>

958 <activity-service>

959 ht t p: / / ww. webser vi cest r ansact i ons. or g/ wsct x/ servi ce

960 </ activity-service>

961 <t ype>

962 ht t p: / / ww. webser vi cest r ansact i ons. or g/ wsct x/ cont ext/ t ypel

963 </ type>

964 <activity-list>

965 <servi ce>http://ww. webser vi cest ransacti ons. or g/ servi cel</servi ce>
966 <servi ce>http://ww. webser vi cest ransacti ons. or g/ servi ce2</ servi ce>
967 </activity-list>

968 <chi | d- cont ext s>

969 <chi | d-cont ext ti meout ="200">

970 <context-identifier>

971 ht t p: / / ww. webser vi cest r ansact i ons. or g/ wsct x/ 5e4f 2218b

972 </ context-identifier>

973 <activity-service>

974 htt p: // ww. webser vi cest ransact i ons. or g/ wsct x/ ser vi ce

975 </activity-service>

976

977 <type>http://ww. webservi cestransacti ons. org/wsct x/ cont ext/typel</type>
978 <activity-list nustUnderstand="true" nustPropagate="true">

979 <servi ce>htt p://ww. webser vi cest ransacti ons. or g/ servi ce3</ servi ce>
980 <servi ce>htt p://ww. webser vi cest ransacti ons. or g/ servi ce4</ servi ce>
981 </activity-list>

982 </ chi | d- cont ext >

983 </ chi | d- cont ext s>

984 <pr ot ocol - ref erence

985 | pr ot ocol Type="http://ww. webservi cestransactions. org/ sone-ref"/>

986 <coor di nat or - r ef er ence

987 coordi nat or="htt p: // ww. webser vi cest ransacti ons. or g/ coord"

988 activityldentity="http://ww. webservicestransacti ons. org/ sone-

989 activity"/>

990 / cont ext >

991

992

993

994

995

30

Coordinator

Participant] []

996
997

998
999
1000
1001

1002
1003
1004
1005
1006

Coordinator

Parti cipant []

Participant/
proxy-coordinator

1007 -
1008

1009
1010
1011
1012
1013

1014
1015
1016
1017
1018
1019
1020
1021
1022

31

1023
1024

1025
1026
1027
1028

1029

1030
1031
1032
1033
1034
1035
1036

1037
1038
1039
1040
1041
1042
1043

1044
1045
1046
1047
1048
1049
1050

1051
1052
1053
1054
1055
1056

1057
1058

32

Subordinate
coordinator

Root coordinator

L eaf
participant

1059
1060

1061

1062
1063
1064
1065

1066
1067

1068
1069

1070
1071
1072

1073
1074
1075

1076

1077
1078
1079
1080
1081

1082
1083
1084
1085
1086

1087

1088
1089

1090

1091
1092
1093
1094

33

1095
1096

1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

1123

34

genaralFault

-

- -
- = l -
- -
” \\.
¥ a
£ ~
LY
Fl %
i wrongState 'l‘
+ [
- = %
.rlr - - e %
- - LY
! - ~u]
; o o i
" ! L 1
] S racaverReaponae ‘-‘ "l
[] Iy g i amammESa
- - 1 i
¥ - » H
Recoverny .| Resoveryo
. . -
T recovar [:Te2gedlgt=10e] g
\ A ! i
YT getStatus . ‘
- '
Y S -
* T - .r‘
».\ - i
b -
s status -
- -
l-"--. ..rl' 1
e == ==" unknownCoordinator
-------- L Coordinater generated
B e

Participant generated

1127
1128

1129

1130
1131
1132
1133

1134

1135
1136
1137
1138
1139
1140
1141

1142

1143
1144

Application

[HighLevel Service

Coordi nation
Framework

(XML)
included on

gpplicaionflow or
service flows

WSDL faor Coordinati on
Serviceand Adtivity Service
to communi cate.

[Hidh Level Savice

Coordination

35

1145

1146
1147

1148
1149
1150
1151

1152
1153
1154

1155

36

1156

1157
1158
1159
1160
1161

1162

1163
1164
1165

1166
1167

1168
1169
1170

1171
1172
1173

1174
1175

a:Activity | | b:Activity | | c:Activity | | d:Activity |
| | |
) | I I
‘start” L | |
“start_ack’ | |
“start” _!_ I
“start_ack’ |
T n 1
< UULCUTTIE ||
| |
P : outcome | :
“start”
“start_ack’ | |
| |
| I ; ;
1 1 outcome
] |]] T
- | | | |
. , : ination.

37

1176

1177
1178

1179
1180
1181

1182
1183

1184
1185
1186
1187
1188
1189

1190
1191
1192

1193
1194

38

1195
1196
1197
1198
1199
1200

5 References

(1]

docume

OMG, Additional Structuring Mechanisms for the OTS Specification, September 2000,
nt orbos/2000-04-02.

[2] WSDL 1.1 Specification. See http:Hwwan-w3-orgHFRAwsdihttp://www.w3.org/TR/wsdl

[3]

OASIS Web Services Context Specification,

4

39

