createSequenceRequest Offer

EchoRequest B ackOff 1

2020r408 or broken socket

1. CreateSequence and Offer

2. CSR and Accept

3. EchoRequest A

4. EchoResponse for A and ack for Request A.

5. EchoRequest B succeeds

6. but EchoResponseB is lost. The RM Agent doesn’tktie status of either half of the interaction.

7. At this point we could “GetMessage” or we couldrgan. After all, the RM agent may not be aware

that EchoRequestB had a response. In this cageMhagent sends:

EchoRequestC

EchoResponse for C and also acks the outgoing ges4a3

At some interval, or before closing up the sequetieeclient’'s RM Agent should GetMessage. It

knows to do this because there is an offered segueith an anonymous endpoint.

10. The “waiting” EchoResponseB comes back

11.The RM agent might do another GetMessage, sinclashene returned a message its possible there
are still messages waiting.

12.NoMessage indicates that there are no messagasgwatit the server side.

13.The client is now finished sending messages. 8anitTerminate the outgoing sequence.

14.The TSR comes back

© ®

The offered sequence at this point is still potdiytiopen. Both sides can independently clean tipely are
aware of the MEPs. Alternatively, there may beaditins where the Offered sequence lives beyontiféhef
the outgoing sequence (for example if the messaggeshe in-multi-out MEP). At some point the semnvel

Terminate (or close) the Offered Sequence anéldhelooks like this:
Geihessage -

15. At some point the clients RM agent sends anothév€gsage and in this case gets a
TerminateSequence for the Offered sequence.
16.1t asynchronously responds with the TSR.



