
SecurityPolicy Usecases

Working Draft 02, September 12, 2006

Contributors:

Prateek Mishra, Oracle
Ramana Turlapati, Oracle

Ashok Malhotra, Oracle
Rich Levinson, Oracle
Abstract:

This document describes several practical security scenarios. The purpose of this document is to get agreement on a set of typical scenarios that that would be useful to users. If and when we reach agreement, and if the WG so agrees we can define message formats for them, but this may not be necessary.

Table of Contents

31
Introduction

42
Scenarios

42.1
Username Token

42.1.1
Username token

42.1.1.1
Username token with plain text password

42.1.1.2
Username token without password

42.1.1.3
Username token with timestamp, nonce and password hash

52.1.2
Use of SSL

52.1.2.1
Username token as supporting token

62.1.3
(WSS 1.0) User Name token with Bilateral X.509v3 Authentication, Sign, Encrypt

82.1.4
(WSS 1.1), User Name with Certificates, Sign, Encrypt

102.2
X.509 Token Authentication Scenario Assertions

102.2.1
(WSS1.0) Anonymous with X.509 Certificates, Sign, Encrypt

122.2.2
(WSS1.0) Mutual Authentication with X.509 Certificates, Sign, Encrypt

142.2.3
(WSS1.1) Anonymous with X.509 Certificate, Sign, Encrypt

162.2.4
(WSS1.1) Mutual Authentication with X.509 Certificates, Sign, Encrypt

182.3
SAML Token Authentication Scenario Assertions

182.3.1
WSS 1.1 SAML Token Scenarios

182.3.1.1
(WSS1.0) SAML10 Assertion (Sender Vouches/Bearer)

192.3.1.2
(WSS1.0) SAML10 Assertion (Sender Vouches/Bearer/HoK) over SSL

202.3.1.3
(WSS1.0) SAML10 Assertion (Sender Vouches/Bearer/HoK) over SSL

212.3.1.4
(WSS1.0) SAML10 Sender Vouches with X.509 Certificates, Sign, Encrypt

232.3.1.5
(WSS1.0) SAML10 Holder of Key, Sign, Encrypt

252.3.2
WSS 1.1 SAML Token Scenarios

252.3.2.1
(WSS1.1) SAML2.0 Sender Vouches/Bearer

252.3.2.2
(WSS1.1) SAML2.0 Sender Vouches/Bearer/HoK over SSL

252.3.2.3
(WSS1.1) SAML2.0 Sender Vouches/Bearer/HoK over SSL

272.3.2.4
(WSS1.1) SAML1.1/2.0 Sender Vouches/Bearer with X.509 Certificate, Sign, Encrypt

292.3.2.5
(WSS1.1) SAML1.1/2.0 Holder of Key, Sign, Encrypt

302.4
Kerberos Security

302.4.1
Kerberos V5 GSS APREQ

323
References

1 Introduction

This document describes several security scenarios. A security scenario is a high-level security use-case with several variable components. The purpose of this document is to get agreement on a set of typical scenarios that that would be useful to users. If and when we reach agreement, and if the WG so agrees, we can reference example messages either in an appendix to this document or by referencing other documents such as published interop documents.

In the policy examples below, the “wsp” prefix refers to the elements defined in the WS-Policy namespace and the “sp” prefix to the elements defined in the WS-SecurityPolicy namespace.
Where uses cases are based on existing scenarios, those scenarios are referenced at the beginning of the use case section.
2 Scenarios

2.1 Username Token

Username Token Authentication scenarios that use simple username password token for authentication. There are several sub-cases.
2.1.1 Username token

In this model a user name token is placed within the SOAP security header. No other security measure is used.

2.1.1.1 Username token with plain text password

<sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken/>
 </wsp:Policy>
</sp:SupportingToken>

2.1.1.2 Username token without password

<sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>
 <wsp:Policy>
 <sp:NoPassword/>
 </wsp:Policy>
 </sp:UserNameToken>
 </wsp:Policy>
</sp:SupportingToken>

2.1.1.3 Username token with timestamp, nonce and password hash

<sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>
 <wsp:Policy>
 <sp:HashPassword>
 </wsp:Policy>
 </sp:UserNameToken>
 </wsp:Policy>
</sp:SupportingToken>

2.1.2 Use of SSL

Both server-authentication and mutual authentication SSL are supported via use of the TransportBinding policy assertion. (For mutual authentication, a RequireClientCertificate assertion may be inserted within the HttpsToken assertion.)

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
</wsp:Policy>

2.1.2.1 Username token as supporting token

Additional credentials can be included as supporting tokens. So, for example, including a user name token over server authentication SSL we have:

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>...</sp:UserNameToken>
 </wsp:Policy>
 </sp:SupportingToken>
</wsp:Policy>

2.1.3 (WSS 1.0) User Name token with Mutual X.509v3 Authentication, Sign, Encrypt

This scenario is based on WS-I SCM Security Architecture Technical requirements for securing the SCM Sample Application, March 2006 (available from the WS-I site)

This usecase corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The requestor includes a user name token that may stand for the entity on-behalf-of which the requestor is acting. The user name token is included as a supporting token; this is also encrypted.
We model this by using asymmetric binding with a user name supporting token.

The message level policies cover a different scope of the web service definition than the binding policy and so appear as separate policies and are attached at Message Policy Subject. These are shown below as input and output policies. Thus, we need a set of coordinated policies one with endpoint subject and two with message subjects to achieve this use case.

<wsp:Policy wsu:Id="wss10_up_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 <sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedEncryptedSupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10UsernameForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10UsernameForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.1.4 (WSS 1.1), User Name with Certificates, Sign, Encrypt

This scenario is based on WCF (Indigo) Interoperability Lab: Web Services Security September 1st, 2005 http://mssoapinterop.org/ilab/WSSecurity/WCFInteropPlugFest_Security.doc

The use case here is the following: the requestor generates a symmetric key; the symmetric key is encrypted using the recipient’s certificate and placed in an encrypted key element. The user name token and message body are signed using the symmetric key. The body and user name token are also encrypted.

We can use symmetric binding with X509token as the protection token to illustrate this case. If derived keys are to be used, then the derived keys property of X509Token should be set.

<wsp:Policy wsu:Id="WSS11UsernameWithCertificates_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never”>
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="UsernameForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="UsernameForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2 X.509 Token Authentication Scenario Assertions

2.2.1 (WSS1.0) X.509 Certificates, Sign, Encrypt

This use-case corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The requestor identifies itself to the service. The message exchange is integrity protected and encrypted.
This modeled by use of an asymmetric binding assertion.

<wsp:Policy wsu:Id="wss10_anonymous_with_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10Anonymous with Certificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10anonymous with certs_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.2 (WSS1.0) Mutual Authentication with X.509 Certificates, Sign, Encrypt

This scenario is based on WSS Interop, Scenario 3, Web Services Security: Interop 1, Draft 06, Editor, Hal Lockhart, BEA Systems

This use case corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The requestor wishes to identify itself to the service using its X.509 credential (strong authentication). The message exchange needs to be integrity protected and encrypted as well. The difference from previous use case is that the X509 token inserted by the client is included in the message signature (see <ProtectTokens />).

<wsp:Policy wsu:Id="wss10_mutual_with_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10 mutual with Certificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10 mutual with certs_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.3 (WSS1.1) Anonymous with X.509 Certificate, Sign, Encrypt

This scenario is based on WCF (see sec 2.1.4)

In this use case the Request is signed using DerivedKeyToken1(K), then encrypted using a DerivedKeyToken2(K) where K is ephemeral key protected for the server's certificate. Response is signed using DKT3(K), (if needed) encrypted using DKT4(K). The requestor does not wish to identify himself; the message exchange is protected using derived symmetric keys. As a simpler, but less secure, alternative, ephemeral key K (instead of derived keys) could be used for message protection by simply ommitting the sp:RequireDerivedKeys assertion.

<wsp:Policy wsu:Id="AnonymousForCertificateSignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts >
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.4 (WSS1.1) Mutual Authentication with X.509 Certificates, Sign, Encrypt

This scenario is based on WCF (see sec 2.1.4)

Client and server X509 certificates are used for client and server authorization respectively. Request is signed using K, then encrypted using K, K is ephemeral key protected for server's certificate. Signature corresponding to K is signed using client certificate. Response is signed using K, encrypted using K, encrypted key K is not included in response. Alternatively, derived keys can be used for each of the encryption and signature operations by simply adding an sp:RequireDerivedKeys assertion.

<wsp:Policy wsu:Id="MutualCertificate11SignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:EndorsingSupportingTokens>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken=”AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:EndorsingSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts >
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
2.3 SAML Token Authentication Scenario Assertions

For SAML, the combination of SAML and WSS version numbers is supported (WssSamlV11Token10, WssSamlV11Token11, WssSamlV20Token11).

Instead of explicitly including the SAML assertion, a key identifier reference can also be used. To enable this last behavior, the IncludeToken attribute is set to http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/Never.

In all of the SAML scenarios, the SAML assertion confirmation method expected to be used by the initiator is communicated implicitly by the context of the sp: binding in use and type of sp: element containing the SAML token. There are 3 general SAML use cases covered: holder-of-key (hk), sender-vouches (sv), and bearer (br).
· For the holder-of-key case, there is always a contained reference (or value) in the assertion to key material that may be used for message protection in the scenario. In the hk use cases where key material is used for message protection, the WssSamlV**Token** version number will appear in the InitiatorToken element (or, in general, possibly in the RecipientToken element, but that case is not covered in this document). In the TransportBinding case the hk assertion appears in a SupportingTokens element.
· For the sender-vouches case the WssSamlV**Token** version will always appear in a SignedSupportingTokens element to indicate that the SAML Authority associated with this token is the Initiator that signs the message.

· For the bearer case the WssSamlV**Token** version will always appear in a SupportingTokens element (it may be signed as a SignedPart, but it is not involved in the message protection).

It is recognized that other uses cases might exist, where these guidelines might need further elaboration in order to address all contingencies, however that is outside the scope of this document.
2.3.1 WSS 1.0 SAML Token Scenarios
2.3.1.1 (WSS1.0) SAML10 Assertion (Bearer)

Requestor adds a SAML assertion (bearer) to the SOAP security header. The SAML assertion itself could be signed. Since the token is listed in the SupportingTokens element, and it is not explicitly covered by the message signature, the initiator may infer that a Saml Bearer Assertion is acceptable to meet this requirement.
<sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
</sp:SupportingToken>

2.3.1.2 (WSS1.0) SAML10 Assertion (Sender Vouches) over SSL

This scenario is based on first WSS SAML Profile InterOp, WSS site.

Requestor adds a SAML assertion (sv) to the SOAP Security Header. Because the TransportBinding requires a Client Certificate AND the SAML token is in a SignedSupportingTokens element, the Initiator may be considered as acting as a SAML Authority (i.e. the issuer of the sv assertion). By including the sv assertion in the header and using the Client Certificate to protect the message, the initiator takes responsibility for binding the Subject of the Assertion to the contents of the message.
<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>
 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>
 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SignedSupportingToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingToken>

2.3.1.3 (WSS1.0) SAML10 Assertion (HK) over SSL

Requestor adds a SAML assertion (hk) to the SOAP Security Header. Because the TransportBinding requires a Client Certificate AND the SAML token is in a SupportingTokens element that is within the TransportBinding element, the Initiator may be considered to be authorized by the issuer of the hk SAML assertion to bind message content to the Subject of the assertion. If the Client Certificate matches the certificate identified in the hk assertion, the initiator may be regarded as executing SAML hk responsibility of binding the Subject of the hk assertion to the content of the message.
<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>

2.3.1.4 (WSS1.0) SAML10 Sender Vouches with X.509 Certificates, Sign, Encrypt

This scenario is based on first WSS SAML Profile InterOp, WSS site.

In this case, SAML token is included as part of the message signature and sent only to the recipient. The message security is provided using X.509 certificates with both requestor and service having exchanged credentials via some out of band mechanism.

<wsp:Policy wsu:Id="wss10_saml_cert_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.3.1.5

2.3.1.6 (WSS1.0) SAML10 Holder of Key, Sign, Encrypt

This scenario is based on first WSS SAML Profile InterOp, WSS site.

Here the SAML token provides the key material for message security hence acts as the initiator token. SAML assertion points to the public key of the signer of the message. The client knows recipient's public key but does not share a direct trust relation with the recipient. The recipient has a trust relation with the authority that issues the SAML token. On the request the message body is signed using client's private key referenced in the SAML HK Assertion
 and it is encrypted using server's certificate
. On the response, the server signs the message using its private key and encrypts the message using the key provided within SAML HK Assertion.

<wsp:Policy wsu:Id="wss10_saml_hok_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <wsp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken=”Never”>
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlHok_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlHok_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
2.3.2 WSS 1.1 SAML Token Scenarios
2.3.2.1 (WSS1.1) SAML2.0 Bearer

Similar to 2.3.1.1, except token is of version 2.0.

<sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
</sp:SupportingTokens>

2.3.2.2 (WSS1.1) SAML2.0 Sender Vouches over SSL

This scenario is based on second WSS SAML Profile InterOp (WS11), WSS site.

Similar to 2.3.1.2 except SAML token is of version 2.0.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>

 <wsp:Policy>

 <sp:WssSamlV20Token11/>

 </wsp:Policy>

 </sp:SamlToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

</wsp:Policy>
2.3.2.3 (WSS1.1) SAML2.0 HoK over SSL

This scenario is based on second WSS SAML Profile InterOp (WS11), WSS site.

Similar to 2.3.1.3 except SAML token is of version 2.0.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>

</wsp:Policy>

2.3.2.4 (WSS1.1) SAML1.1/2.0 Sender Vouches with X.509 Certificate, Sign, Encrypt

Here the message and SAML token are signed using a key derived from the ephemeral key K. The ephemeral key is encrypted using service’s public key.

Alternatively, derived keys can be used for each of signing and encryption operations.

<wsp:Policy wsu:Id="WSS11SamlWithCertificates_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never”>
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:RequireDerivedKeys/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV11Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.3.3

2.3.4

2.3.4.1 (WSS1.1) SAML1.1/2.0 Holder of Key, Sign, Encrypt

This scenario is based on IBM WS-SecureConversation Interop, WS-SecureConversation and WS-Trust Interop Scenarios Version 1.0a August 24, 2004, available from WS-SX web site.

SAML Assertion contains the ephemeral key K in the EncryptedKey construct encrypted using server’s certificate. The body of the message is signed using DKT1(K) and encrypted using DKT2(K). Response is also signed using derived keys. In a simpler alternative, ephemeral key K itself could be used for message protection.

<wsp:Policy wsu:Id="WSS11SamlHok_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SAmlHok_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlHok_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.4 Kerberos Security

2.4.1 Kerberos V5 GSS APREQ

This use case deals exclusively with Kerberos. The message exchange pattern is specified in WSS Kerberos Token Profile. The kerberos token is included as V5 GSS APREQ, which is as per WS-I, the most interoperable representation of Kerberos token. The body of the request and response are signed and encrypted.

<wsp:Policy wsu:Id="WSS11Kerberos_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:KerberosToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:WssGssKerberosV5ApReqToken11/>
 </wsp:Policy>
 </sp:KerberosToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Kerberos_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Kerberos_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

3 References

TBD

�I think WSS defines the broad message format, with some detail being in WS-Trust and SecureConv and the strict layout details being the WS-SP. Net, I think the specs define the message formats. If they don't, we should fix the specs.

[RAL1]I agree we don’t need to define “message formats”, however, it might be useful, when the ws-sp scenarios are agreed upon that we put together some sample messages that conform to the policies, similar to what is done in App C of the WS-SP spec, or in cases where existing scenarios, such as interop specs are used, that they be referenced.

> [RAL1] - OK.

�I'm not sure I'd agree that they are unwieldy, although I'll grant you long. They certainly look more unwieldy if they are not well-formed and/or not consistently indented. I've taken the liberty of cleaning this up. I also don't think they are that hard to understand once one has read the WS-SP spec assuming familiarity with WSS et.al.

[RAL2] Agree, once the character of the xml is familiar these use cases are pretty straight-forward to follow, so this comment will be removed.

> [RAL2] - Great. Thanks.

�Do you mean server-authentication only?

[RAL3] Yes, will change.

> [RAL3] - Great.

�Do you mean mutual authentication?

[RAL4] Yes, will change.

> [RAL4] - Great.

�See earlier comment.

[RAL5] ok

> [RAL5] - OK

�See earlier comment

[RAL6] ok

> [RAL6] - OK

�I believe the resolution for issue 74 addresses this.

[RAL7] OK, it sounds like from the refs in the issue to the resolution that there will be changes to sections 7.4,7,5 + 3 new sections in section 8, the net of which will allow us to specify an element: /sp:AsymmetricBinding/wsp:Policy/sp:EncryptSupportingTokens which will tell the initiator to encrypt the UsernameToken in this use case.

> [RAL7] - I believe the sp:EncryptedSupportingTokens assertion actually appears as a peer of the sp:AsymmetricBinding. But apart from that, I think we are in agreement.

 I was assuming based on what I thought I read in:

 http://lists.oasis-open.org/archives/wssx/200606/msg00021.html

 I agree that the supporting tokens themselves are peers of

 AsymmetricBinding, but the text for 7.4 and 7.5 in the message

 says the assertion indicating that those tokens need to be

 encrypted is within the AsymmetricBinding element.

� If the use case is X509 mutual auth with supporting username token than I don't believe this statement is accurate. Separate policies are not required to achieve this use case.

[RAL8] Assuming we are talking about the same thing, the Message Level input and output policies at the end of the xml in section 2.1.3, it seems, based on wssp sec C.2.1, C.3.1, that this is the recommended approach for specifying that the body must be encrypted for input and output. It also appears consistent with WS-Policy 1.5 - Attachment ex. 4.1.5. Possibly there is some default behavior or binding level option that would imply this that we are missing?

> [RAL8] - OK. From the context, it seemed that the statement about multiple policies was specific to the particular auth mechanism. From your response I see that the statement is just saying 'when we're using message level security, we specify the protection requirements at one scope and the binding specifics at a different scope'.

�While I understand why one needs these message level assertions for real-world policy, I don't understand what they add to the use-case description, esp. given that they are all identical in the examples you give. Perhaps it would be better to state earlier in the document that all the policies assume an appropriate message level policy describing the protection requirements.

[RAL9] Agree in principle. How would it be if we described them a preliminary section as you suggest and then reference them in each appropriate message with a <wsp:PolicyReference URI=”#…”>?

[MJG9] - That would be great!

[RAL9] – still plan to do – next rev – this takes some time and

probably is second level priority to agreeing on set of cases

�It what way is this anonymous? The initiator token identifies the client.

[RAL10] Agree. The intent here is to distinguish between this WS10

use case where the requestor wishes to remain anonymous, however

is unable to because of the key referencing limitations, and

the corresponding ws11 scenario, 2.2.3 where anonymity is achieved

by using an ephemeral or derived key encrypted to an EncryptedKey

using the server cert, where there is a ws11 STR available to

ref the EncryptedKey as the message signer. We suggest renaming

this scenario by removing the “anonymous”, and modifying the

text accordingly, as indicated above.

> [MJG10] - OK.

�In the HOK case I believe this would need to be some form of Endorsing supporting token.

[RAL11] Yes, and it can also be explained that in this case, the HK assertion must have its contained key be the client key that is used for SSL, otherwise the hk has no real meaning here. Possibly, sv and hk for SSL should be 2 separate use cases.

> [MJG11] - I'm not sure what you mean by 'client key that is used for SSL'. Do you mean the master secret? Or something else?

 In my comment, I was assuming that this was mutual auth ssl,

 in which case I believe the only meaningful role for the

 hk key would be as the protector of the message, which in this

 case would be the client side key of the ssl. I agree

 for server-side ssl only, there really isn't any key that appears

 to be in use that the hk could be referencing. Maybe

 this one needs some more discussion.

 [RAL11] This has been split to 2 use cases. The intention

 of that split is this issue will be clarified and any

 ambiguities removed.

�In the HOK case I believe this would need to be some form of Endorsing supporting token.

[RAL12] In the general hk case, the saml hk assertion may contain the requestor’s public certificate, in which case the requestor’s private key must be used for the signing, which is probably only approach viable for ws10 since EncryptedKey not referencable by STR. Scenario 2.3.8 (ws11) is an example of the type you are describing in this comment.

> [MJG12] - I thought holder-of-key could also include shared secret key material.

 [RAL12]I agree. It can. However, this use case is an asymmetric binding,

 and in that case there is no shared secret key that is being

 considered from my interpretation - referring to the request

 portion of section 2.3.4. My additional comment there was to the

 viability of ws10 supporting a shared key in an hk assertion. In

 that case one would have an STR in the message signature pointing

 to the hk assertion. If this assertion were to then include as

 the signing key to use for verification of the signature, an

 EncryptedKey element as would probably be used for the symmetric

 key, then I think this would be too much for current ws10

 implementations. I am assuming it is implicitly supported in

 ws11, as the EncryptedKey is officially referencible by an STR

 and it would seem to me that saml implementations would take the

 hint and support this construct in the hk assertion as well. It

 is probably a topic for the WS11 SAML Token Profile to discuss,

 although my opinion is that ws11 soap message security should

 imply at least the acceptability of using this technique.

 [RAL12]

�In the HOK case I believe this would need to be some form of Endorsing supporting token.

[RAL13] Yes, that is correct, the text will be expanded accordingly.

> [RAL13] - Great. Thanks.

�Do you mean the key material from the SAML assertion?

�I hope you mean encrypted using a symmetric key, K, which is in turn encrypted using the server's certificate.

[RAL13] Yes, that is correct, the text will be expanded accordingly.

> [RAL13] - Great. Thanks.

�If the SAML assertion contains a symmetric key, why not just sign and encrypt with keys derived from that key?

[RAL14] For this use case the saml assertion contains a ref to an X509 public cert with a public key – see also response to comment 12.

> [RAL14] - OK. I need to think more about 12 and 14.

�For HOK case wouldn't this need to be an EndorsingSupportingToken?

[RAL15] Agree, this should probably be split in 2 use cases. The nature of Sender-Vouches is that one signature is in play, whereas for Holder-of-Key 2 signatures are in play, in which case the signature on the assertion plays the role of (signed) endorsing token. For sender-vouches the message signature covers the (unsigned or unsigned) supporting token.

> [RAL15] - Great. Sounds like we agree on the number of sigs in the sender/holder-of-key case.

 OK. My only point was that I agreed that the

 "SignedSupportingToken" would be replaced by SupportingToken in

 the sv case and EndorsingSupportingToken in the hk case, since

 there is no signing going on here with SAML over SSL, however,

 one can interpret the hk token as "endorsing" the client-side

 cert in the mutual auth case. My comment on number of sigs

 relevant to hk and sv were for the non-SSL case. For sv on SSL

 there are zero "sigs". For hk over SSL, the hk assertion itself

 is previously signed by the issuer, but no signing takes

 place explicitly on the SSL based request.

�For HOK case wouldn't this need to be an EndorsingSupportingToken?

[RAL15] Agree, this should probably be split in 2 use cases. The nature of Sender-Vouches is that one signature is in play, whereas for Holder-of-Key 2 signatures are in play, in which case the signature on the assertion plays the role of (signed) endorsing token. For sender-vouches the message signature covers the (unsigned or unsigned) supporting token.

> [RAL15] - Great. Sounds like we agree on the number of sigs in the sender/holder-of-key case.

 OK. My only point was that I agreed that the

 "SignedSupportingToken" would be replaced by SupportingToken in

 the sv case and EndorsingSupportingToken in the hk case, since

 there is no signing going on here with SAML over SSL, however,

 one can interpret the hk token as "endorsing" the client-side

 cert in the mutual auth case. My comment on number of sigs

 relevant to hk and sv were for the non-SSL case. For sv on SSL

 there are zero "sigs". For hk over SSL, the hk assertion itself

 is previously signed by the issuer, but no signing takes

 place explicitly on the SSL based request.

�For HOK case wouldn't this need to be an EndorsingSupportingToken?

[RAL15] Agree, this should probably be split in 2 use cases. The nature of Sender-Vouches is that one signature is in play, whereas for Holder-of-Key 2 signatures are in play, in which case the signature on the assertion plays the role of (signed) endorsing token. For sender-vouches the message signature covers the (unsigned or unsigned) supporting token.

> [RAL15] - Great. Sounds like we agree on the number of sigs in the sender/holder-of-key case.

 OK. My only point was that I agreed that the

 "SignedSupportingToken" would be replaced by SupportingToken in

 the sv case and EndorsingSupportingToken in the hk case, since

 there is no signing going on here with SAML over SSL, however,

 one can interpret the hk token as "endorsing" the client-side

 cert in the mutual auth case. My comment on number of sigs

 relevant to hk and sv were for the non-SSL case. For sv on SSL

 there are zero "sigs". For hk over SSL, the hk assertion itself

 is previously signed by the issuer, but no signing takes

 place explicitly on the SSL based request.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 1
2
securitypolicy-for-scenarios-02

12-Sep-2006

Oracle Corporation

Page 30 of 34

