
WS-BPEL Issue 157 – Proposal
Last modified: August 17, 2005 – 10am PDT

Below is the proposed resolution for Issue 157 as developed in our small-group meetings
in June-July 2005:

(A) Update Section 9.3, “Assignment”, as follows:

• Update the second bullet item in paragraph 9 (“a sequence of one or more
character information items….”) to read (changes denoted by «»):
• a sequence of «zero» or more «character information items»: this is mapped to

a Text Node «or a String» in the «XPath 1.0» data model

• Update the <copy> syntax to read (changes denoted by «»):
 <copy «keepSrcElementName="yes|no"?»>
 from-spec
 to-spec
 </copy>

• Insert the following before paragraph 16 (“An optional validate attribute can be
used with the assign activity….”) as follows:
“An optional keepSrcElementName attribute of the <copy> construct can be used
to specify whether the element name of the destination (as selected by the to-spec)
will be replaced by the element name of the source (as selected by the from-spec)
during the copy operation. For details, please refer to Section 9.3.1, "Replacement
Logic of Copy Operations".”

(B) Insert a new Section 9.3.1, “Selection Result of Copy Operations”,
before the existing 9.3.1, “Type Compatibility in Assignment”, as follows:

• Selection Result of Copy Operations

There are 11 different types of information items in the XML Infoset Information
model. Most of these are not relevant in the context of XML data manipulation as
performed by <copy> operation – examples include Processing Instruction
Information Item, Comment Information Item, and Document Type Declaration
Information Item.

The selection result of the from-spec or to-spec used within a <copy> operation
MUST be one of the following three Information Items: Element Information
Item (EII), Attribute Information Item (AII), or Text Information Item (TII). Note
that EII and AII are defined in [Infoset], while TII is defined to bridge the gap

Deleted: 0

Deleted: 6

Deleted: -

Deleted: 11

Deleted: 5

Deleted: p

Deleted: L

between the XML Infoset Model and other common XML data models, such as
XPath 1.0. TII is defined as follows:

Text Information Item (TII): This is an Information Item solely of which an
attribute points to a sequence of zero or more Character Information Items,
according to the document order; as such, a TII is not manifested in and of itself
directly in XML serialization When mapped to the XPath 1.0 model, it is a
generalization of String-Value (which has zero or more characters) and Text Node
(which has one or more characters). A TII LValue MUST NOT be empty. A TII
RValue MAY be mapped to a Text node, a String/Boolean/Number object in
XPath 1.0, while a TII LValue MUST be mapped to a Text node.

If the selection result of a from-spec or a to-spec belongs to Information Items
other than EII, AII or TII, a bpws:selectionFailure fault MUST be thrown. Note
that if any of the unsupported Information Items are contained in the selection
result, they MUST be preserved; the only restriction is that they MUST NOT be
directly selected by the from-spec or the to-spec as the top-level item.

In WS-BPEL, the <copy> operation is essentially a one-to-one replacement
operation. This requires that both the from-spec and to-spec MUST select exactly
one information item each, which includes the case of one TII. Note that this
restriction indicates that literal values (the literal variant of from-spec) MUST
only contain either a TII, or a single EII, as its top-level value; when the RValue
is an AII, a TII is constructed from the normalized value property to be copied as
specified in Section 9.4.1, “Replacement Logic of Copy Operations”.

When using a partnerLink-based from-spec and to-spec, such as:
 <from partnerLink="partnerLinkX"
endpointReference="myRole|partnerRole" />
 <to partnerLink="partnerLinkY" />

with another non-partnerLink-based from-spec and to-spec in a <copy> operation,
these should be treated as if they produce an LValue and RValue of an EII of
which [local name] is “service-ref” and [namespace name] is the WS-BPEL
namespace.

(C) Insert a new Section 9.4.1, “Replacement Logic of Copy Operations”,
before the existing Section 9.4.1, “Type Compatibility of Assignment”, as
follows:

• Replacement Logic of Copy Operations

Replacement Logic for WSDL Message Variables

Deleted: in

Deleted: .

Deleted: implies

Deleted: .

Comment [CB1]: We will now
address this issue of validation as
part of Issue 51

Deleted:

Deleted: (C) Update Section
9.3.2, “Type Compatibility in
Assignment”, as follows:¶
<#>Update the section title to “Type
Compatibility in Copy
Operations”¶
¶
<#>Update the first paragraph of the
section and first two bullet items
following to read (changes denoted
by «»):
“For «a copy operation» to be valid,
the data referred to by the from and
to specifications MUST be of
compatible types. The following
points make this precise:¶
<#>The «selection result of the»
from-spec is a variable of a WSDL
message type, and the «selection
result of the» to-spec is a variable of
a WSDL message type. In this case,
both variables MUST be of the same
message type, where two message
types are said to be equal if their
qualified names are the same. ¶
<#>The «selection result of the»
from-spec is a variable of a WSDL
message type, and the «selection
result of the» is not, or vice versa.
This is not legal because parts of
variables, selections of variable
parts, or endpoint references cannot
be assigned to/from variables of
WSDL message types directly.”
¶
<#>Update the third bullet item to
read (changes denoted by «»): ¶
<#>In all other cases, «if the
selection results of the source (from-
spec) and destination (to-spec) are
XML Infoset Information or XML
data model items, and the XML
Schema types of these are known»,
then the source value MUST possess
«the type» associated with the
destination. Note that this does not
require the types associated with the
source and destination to be the
same. In particular, the source type

Deleted: D
... [1]

When the from-spec and to-spec of a <copy> operation both select WSDL
message variables, the following replacement logic MUST be executed:

The value of the source message variable MUST be copied and the copy will
become the value of the destination message variable. The original value of
the destination message variable will no longer be available after the <copy>
operation.

• Replacement Table for XML Data Item:

When the from-spec (Source) and to-spec (Destination) select one of three
Information Items types, a conforming WS-BPEL processor MUST use the
replacement rules for the combinations of Source and Destination Information
Item types for <copy> operation, as defined in the following Replacement Logic
Table:

Source\Destination EII AII TII

EII RE RC RC

AII RC RC RC

TII RC RC RC
 Replacement Logic Table

 Definitions

• RE (Replace-Element-properties): Replace the element at the destination with
a copy of the entire element at the source, including [children] and [attribute]
properties. An OPTIONAL keepSrcElementName attribute is provided to
further refine the behavior:

o The default value of the keepSrcElementName attribute is “no”, in
which case the name (i.e. [namespace name] and [local name]
properties) of the original destination element is used as the name of
the resulting element.

o When the keepSrcElementName attribute is set to “yes”, the source
element name is used as the name of the resulting destination element

o When the keepSrcElementName attribute is explicitly set, the selection
results of the from-spec and to-spec MUST be elements. A BPEL
processor MAY enforce this checking through static analysis of the
expression/query language. If a violation is detected during runtime, a
bpws:selectionFailure fault MUST be thrown.

• RC (Replace-Content):
o To obtain the source content:

 The source (from-spec) MUST yield one and only one
Information Item. Otherwise, a selectionFailure fault MUST be
thrown.

Deleted: All existing message
parts in the destination WSDL
message variable (referenced by the
to-spec) will be removed, and all
existing message parts in the source
WSDL message variable (referenced
by the from-spec) will be copied and
added to the destination WSDL
message variable

 Once the Information Item is yielded from the source, a TII
will be computed based on the source Information Item as the
source content. The source content TII is based on a series of
Character Information Items, generally based on the document
order (unless a sorting specification is present in the underlying
expression or query), taken from the returned Information Item.
These Character Information Items are copied, concatenated,
and the resulting value assigned to the TII. This is semantically
similar to the use of the XPath 1.0 "string()" function.

 If the source is an EII with an xsi:nil="true", a selectionFailure
fault MUST be thrown (where this check is performed during
EII-to-AII or EII-to-TII copy).,

o To replace the content:
 If the destination is an EII, remove all [children] properties (if

any) and add the source content TII as the child of the EII.
 If the destination is an AII, replace the value of AII with the

TII from the source. The value MUST be normalized, in
accordance with the XML 1.0 Recommendation (section 3.3.3
Attribute Value Normalization:
http://www.w3.org/TR/1998/REC-xml-
19980210#AVNormalize).

 If the destination is a TII, replace the TII in the destination with
the TII from the source.

Note that:

• Attribute values are not text nodes in XPath 1.0. Attribute nodes have a
string value that corresponds to the XML normalized attribute value,
which is a TII.

• Information Items referenced by the to-spec MUST be an LValue. In the
XPath 1.0 data model, a TII LValue MUST be a Text Node.

Using <copy> to initialize variables
When the destination (either an entire BPEL variable or message part) selected by
the to-spec in <copy> is un-initialized, the destination variable or message part
MUST first be initialized before executing the above replacement logic. The
initialization details are as follows:

• For complex type and simple type variables, a skeleton structure,
composed of a DII and an anonymous EII (Document Element), will be
created as an integral part of the initialization of the <assign>/<copy>
operation. Once this skeleton structure is created, the above "replacement"
logic can be reused.

• For element based variables, a skeleton structure, composed of a DII and
an EII (Document Element) with the name matching the element name
used in variable declaration, will be created as an integral part of the
initialization of the <assign>/<copy> operation. Once this skeleton
structure is created, the above "replacement" logic can be reused.

Deleted:

Deleted: . The XPath "string()"
function will be applied to the
Information Item to obtain its string-
value as the source content, if the
default XPath 1.0 binding is used in
the from-spec. If another expression
language is used, an XPath function
other than "string()" MAY be
applied to the node to obtain the
source content.

http://www.w3.org/TR/1998/REC-xml-19980210#AVNormalize
http://www.w3.org/TR/1998/REC-xml-19980210#AVNormalize

• For an uninitialized message part, the above two blocks of logic are
reused, as a message part is either of simple type, complex type, or an
element.

Handling Non- XML-Infoset Data Objects in <copy>
Simple type variables and values MAY be allowed to manifest as non-XML-
Infoset data objects, such as boolean, string, or float, as defined in XPath 1.0.
Some expressions may yield such a non-XML-Infoset data object, for example:
 <from> number($order/amt) * 0.8 </from>

To consistently apply the above replacement logic, such non-XML-Infoset data
are handled as Text Information Items (TII). This logic is achieved through "to-
string" data conversion, as TII resembles a string object. More specifically, when
the XPath 1.0 data model is used in WS-BPEL, "string(object)"
(http://www.w3.org/TR/1999/REC-xpath-19991116#function-string) coercion
MUST be used to convert boolean or number objects to String/TII.

Note that this conversion is used to describe the expected result of <copy>. A
WS-BPEL processor MAY skip the actual conversion for optimization if the
result of <copy> remains the same, which would render the conversion redundant.

XML Namespace Preservation
In the <copy> operation, the [in-scope namespaces] properties (similar to other
XML Infoset Item properties) from the source MUST be preserved in the result at
the destination. For example, when variables are serialized into XML text, a WS-
BPEL processor will make use of a namespace-aware XML infrastructure, which
maintains the XML Namespace consistency in the XML text, where in such a
case the infrastructure adds XML Namespace declarations or renames prefixes
used in XML Namespaces; where these properties can be placed in the Infoset is
at the discretion of the implementor of the XML infrastructure

A precautionary note: In some XML Schema designs, QName may be used for
attribute or element values. For example, where the value of attrX is a QName
("myPrefix:somename") and the value of "foo:bar3" is another QName
("myPrefix:somename2")

 <foo:bar1 xmlns:myPrefix="http://my.com"
 xmlns:foo="http://foo.com">
 <foo:bar2 attrX="myPrefix:somename" />
 <foo:bar3>myPrefix:somename2</foo:bar3>
 </foo:bar1>

When the correponding TII and AII are selected via a schema-unaware
expression/query language, its schema-unaware data model will fail to capture the
namespace properties of any such QName-based attribute and element values.
Therefore, there is the potential for the XML namespace to be lost. WS-BPEL

Formatted: Font: Courier
New, 10 pt

Deleted: .

http://www.w3.org/TR/1999/REC-xpath-19991116#function-string

developers should be aware that, XPath 1.0, the default expression and query
language of WS-BPEL, is schema unaware.

Using the same sample data from above for illustration, when "foo:bar2/@attrX"
is copied as the source with XPath 1.0 data model, the namespace declaration for
"myPrefix" might be missing in the destination.

Examples illustrating the replacement logic of copy operations: (pending
editor group’s decision on incorporating examples in the specification text)

• EII-to-EII

XML Schema Context

<xs:element name="poHeader">
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element name="shippingAddr"
type="tns:AddressType"/>
 <xs:element name="USshippingAddr"
type="tns:USAddressType"/>
 </xs:choice>
 <xs:element name="billingAddr" type="tns:AddressType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

"tns:USAddressType" is a type extended from "tns:AddressType".

o Example 1

<assign>
 <copy>
 <from>$poHeaderVar1/tns:shippingAddr</from>
 <to>$poHeaderVar2/tns:billingAddr</to>
 </copy>
</assign>

The above <copy> will replace the attributes and elements
of the billing address in "poHeaderVar2" with those of
shipping address in "poHeaderVar1".

poHeaderVar1

<tns:poHeader>
 ...
 <tns:shippingAddr verified="true">

 <tns:street>123 Main Street</tns:street>
 <tns:city>SomeWhere City</tns:city>
 <tns:country>UK</tns:state>
 </tns:shippingAddr>
 ...
</tns:poHeader>

poHeaderVar2: (before the copy)

<tns:poHeader>
 ...
 <tns:billingAddr pobox="true" />
 ...
</tns:poHeader>

poHeaderVar2: (after the copy)

<tns:poHeader>
 ...
 <tns:billingAddr verified="true">
 <tns:street>123 Main Street</tns:street>
 <tns:city>SomeWhere City</tns:city>
 <tns:country>UK</tns:state>
 </tns:billingAddr>
 ...
</tns:poHeader>

o Example 2

<assign>
 <copy keepSrcElementName="yes">
 <from>$poHeaderVar3/tns:USshippingAddr</from>
 <to>$poHeaderVar2/tns:shippingAddr</to>
 </copy>
</assign>

poHeaderVar3

<tns:poHeader>
 ...
 <tns:USshippingAddr verified="true">
 <tns:street>123 Main Street</tns:street>
 <tns:city>SomeWhere City</tns:city>
 <tns:country>USA</tns:state>
 <tns:zipcode>98765</tns:zipcode>
 </tns:USshippingAddr>
 ...
</tns:poHeader>

poHeaderVar2: (before the copy)

<tns:poHeader>
 ...
 <tns:shippingAddr pobox="true" />
 ...
</tns:poHeader>

poHeaderVar2: (after the copy)

<tns:poHeader>
 ...
 <tns:USshippingAddr verified="true">
 <tns:street>123 Main Street</tns:street>
 <tns:city>SomeWhere City</tns:city>
 <tns:country>USA</tns:state>
 <tns:zipcode>98765</tns:zipcode>
 </tns:USshippingAddr>
 ...
</tns:poHeader>

• EII-to-AII

XML Data Context

creditApprovalVar:

<tns:creditApplication appId="123-456">
 <tns:approvedLimit code="AXR">4500</tns:approvedLimit>
</tns:creditApplication>

o Example 1

<assign>
 <copy>
 <from>$creditApprovalVar/tns:approvedLimit</from>
 <to>$approvalNotice2Var/@amt</to>
 </copy>
</assign>

approvalNotice2Var: (before <copy>)

<tns2:approvalNotice amt="" />

approvalNotice2Var: (after <copy>)

<tns2:approvalNotice amt="4500" />

• EII-to-TII

XML Data Context

creditApprovalVar:

<tns:creditApplication appId="123-456">
 <tns:approvedLimit code="AXR">4500</tns:approvedLimit>
</tns:creditApplication>

o Example 1

<assign>
 <copy>
 <from>$creditApprovalVar/tns:approvedLimit</from>
 <to>$approvalNotice3Var/text()</to>
 </copy>
</assign>

approvalNotice3Var: (before <copy>)

<tns3:approvalNotice>0</tns3:approvalNotice>

approvalNotice3Var: (after <copy>)

<tns3:approvalNotice>4500</tns3:approvalNotice>

o Example 2

<assign>
 <copy>
 <from>$creditApprovalVar/tns:approvedLimit</from>
 <to>$approvalNotice4Var/text()</to>
 </copy>
</assign>

approvalNotice4Var: (before <copy>)

<tns4:approvalNotice></tns4:approvalNotice>

Since there is no text node under"tns4:approvalNotice",
selectionFailure fault will be thrown. No replacment logic
will be executed.

o Example 3: EII-to-EII for direct comparison to EII-to-TII

<assign>
 <copy>
 <from>$creditApprovalVar/tns:approvedLimit</from>
 <to>$approvalNotice4Var</to>
 </copy>
</assign>

approvalNotice4Var: (before <copy>)

<tns4:approvalNotice></tns4:approvalNotice>

approvalNotice4Var: (after an EII-to-EII <copy>)

<tns4:approvalNotice code="AXR">4500</tns4:approvalNotice>

• AII-to-AII

XML Data Context

orderDetailVar:

<tns:orderDetail amt="2299"/>

o Example 1

<assign>
 <copy>
 <from>$orderDetailVar/@amt</from>
 <to>$billingDetailVar/@amt</to>
 </copy>
</assign>

billingDetailVar: (before <copy>)

<tns:billingDetail amt="" />

billingDetailVar: (after <copy>)

<tns:billingDetail amt="2299" />

• AII-to-EII

XML Data Context

orderDetailVar:

<tns:orderDetail amt="3399" />

o Example 1

<assign>
 <copy>
 <from>$orderDetailVar/@amt</from>
 <to>$billingDetailVar/tns1:billingAmount</to>
 </copy>
</assign>

billingDetailVar: (before <copy>)

<tns1:billingDetail id="8675309">
 <tns1:billingAmount code="F00B2R"></tns1:billingAmount>
</tns1:billingDetail>

billingDetailVar: (after <copy>)

<tns1:billingDetail id="8675309">
 <tns1:billingAmount
code="F00B2R">3399</tns1:billingAmount>
</tns1:billingDetail>

• AII-to-TII

orderDetailVar:

<tns:orderDetail amt="4499" />

o Example 1

<assign>
 <copy>
 <from>$orderDetailVar/@amt</from>
 <to>$billingAmount2Var/text()</to>
 </copy>

</assign>

billingAmount2Var: (before <copy>)

<tns2:billingAmount>0</tns2:billingAmount>

billingAmount2Var: (after <copy>)

<tns2:billingAmount>4499</tns2:billingAmount>

• TII-to-TII

postalCodeVar:

<tns:postalCode>95110</tns:postalCode>

o Example 1

<assign>
 <copy>
 <from>$postalCodeVar</from>
 <to>$shippingPostalCodeVar</to>
 </copy>
</assign>

shippingPostalCodeVar: (before <copy>)

<tns:shippingPostalCode>0</tns:shippingPostalCode>

shippingPostalCodeVar: (after <copy>)

<tns:shippingPostalCode>95110</tns:shippingPostalCode>

• TII-to-AII

XML Data Context

postalCodeVar:

<tns:postalCode>94304</tns:postalCode>

o Example 1

<assign>
 <copy>
 <from>$postalCodeVar/text()</from>
 <to>$shippingAddress1Var/@postCode</to>
 </copy>
</assign>

shippingAddress1Var: (before <copy>)

<tns1:shippingAddress postCode="" />

approvalNotice1Var: (after <copy>)

<tns1:shippingAddress postCode="94304" />

• TII-to-EII

XML Data Context

postalCodeVar:

<tns:postalCode>94107</tns:postalCode>

o Example 1

<assign>
 <copy>
 <from>$postalCodeVar</from>
 <to>$shippingAddress2Var/tns2:postalCode</to>
 </copy>
</assign>

shippingAddress2Var: (before <copy>)

<tns2:shippingAddress id="9035768">
 <tns2:postalCode></tns2:postalCode>
</tns2:shippingAddress>

shippingAddress2Var: (after <copy>)

<tns2:shippingAddress id="9035768">
 <tns2:postalCode>94107</tns:postalCode>
</tns2:shippingAddress>

Below is an explanation of the concepts of XML Namespace Preservation as defined in
the text proposed in part (D).

Explanation of the concepts of XML Namespace Preservation defined in
(D) (not an addition or modification to the specification):

With the replacement logic defined above in the text to be inserted in (D), in most cases
no XML namespace declaration conflicts exist between the source (i.e. the selection
result of the from-spec) and destination (i.e. the self-or-parent of the selection result of
the to-spec). The XML namespace mechanism is flexible enough to address such cases -
for example:

<foo:bar xmlns:foo="http://foo.com">
 <!-- this "foo:bar" element is pointed
 by to-spec as the destination of copy -->
 <foo:abc xmlns:foo="http://foo2.com" />
 <!-- this "foo:bar" element is pointed
 by to-spec as the destination of copy -->
</foo:bar>

However, some cases exist where a non-trivial conflict may be encountered - for
example:
v1:
<foo:bar xmlns:foo="http://foo.com" foo:attr="valueA" />

v2: (before copy)
<p:parent xmlns:p="http://foo.com"
xmlns:foo="http://foo.some.com">
 <p:bar foo:attrX="valueY" />
</p:parent>

With the following <copy> operation, we would encounter a conflict in the use of prefix
"foo" in foo:attr and foo:attrX, which are associated with "http://foo.com" and
"http://foo.some.com":

<assign>
 <copy>
 <from>$v1</from>
 <to xmlns:p="http://foo.com">$v2/p:bar</to>
 <copy>
</assign>

To resolve this conflict, the underlying namespace-aware infrastructure is allowed to
rename prefixes to those which do not conflict, if necessary. For example, after the copy
operation is completed, V2 may look like the following:

v2: (after copy)

<p:parent xmlns:p="http://foo.com"
xmlns:foo="http://foo.some.com">
 <p:bar xmlns:foo2="http://foo.com" foo2:attr="valueA" />
</p:parent>

or

<p:parent xmlns:p="http://foo.com"
xmlns:foo="http://foo.some.com">
 <p:bar p:attr="valueA" />
</p:parent>

The details of renaming prefixes are dependent on the underlying namespace-aware
infrastructure, which is outside of the scope of this specification. As the above examples
illustrate, there is usually more than one way to rename prefixes to handle such a conflict
when producing XML namespace consistent data.

When a schema-aware data model is used at runtime in WS-BPEL, a similar prefix
renaming mechanism MAY be used to handle namespace declaration conflicts, where
QName values of attribute or text form are used.

Page 2: [1] Deleted Charlton Barreto 8/17/2005 10:06:00 AM

(C) Update Section 9.3.2, “Type Compatibility in Assignment”, as follows:

Update the section title to “Type Compatibility in Copy Operations”

Update the first paragraph of the section and first two bullet items following to read

(changes denoted by «»):
“For «a copy operation» to be valid, the data referred to by the from and to
specifications MUST be of compatible types. The following points make this
precise:
The «selection result of the» from-spec is a variable of a WSDL message type,

and the «selection result of the» to-spec is a variable of a WSDL message
type. In this case, both variables MUST be of the same message type, where
two message types are said to be equal if their qualified names are the same.

The «selection result of the» from-spec is a variable of a WSDL message type,
and the «selection result of the» is not, or vice versa. This is not legal because
parts of variables, selections of variable parts, or endpoint references cannot
be assigned to/from variables of WSDL message types directly.”

Update the third bullet item to read (changes denoted by «»):
In all other cases, «if the selection results of the source (from-spec) and

destination (to-spec) are XML Infoset Information or XML data model items,
and the XML Schema types of these are known», then the source value MUST
possess «the type» associated with the destination. Note that this does not
require the types associated with the source and destination to be the same. In
particular, the source type MAY be a subtype of the destination type. «The
required XML Schema type checking can be determined by static analysis
and/or evaluated at runtime. A BPEL processor MAY perform static analysis
of the expression/query language to validate compliance with this
compatibility requirement, and reject a process definition if the requirement is
violated. When a BPEL processor adopts an XML Schema type aware data
model, it MAY perform the same analysis at runtime, where, on encountering
a violation of the compatibility requirement, it MUST throw a
bpws:mismatchedAssignmentFailure fault. Note that when the default XPath
1.0 expression/query language binding is used, XML Schema runtime type-
compatibility checking MUST NOT be performed, as the XPath 1.0 data
model is not XML Schema type aware.»

Remove the last paragraph of the section.

Note that this will address Issue 51
(http://www.choreology.com/external/WS_BPEL_issues_list.html#Issue51) as well as
Issue 157. In addition, Yaron has indicated that we may want to develop a standard
approach to disable schema-type static analysis, but this is part of the discussion
surrounding Issue 9
(http://www.choreology.com/external/WS_BPEL_issues_list.html#Issue9).

	WS-BPEL Issue 157 – Proposal
	(A) Update Section 9.3, “Assignment”, as follows:
	(B) Insert a new Section 9.3.1, “Selection Result of Copy Operations”, before the existing 9.3.1, “Type Compatibility in Assignment”, as follows:
	(C) Insert a new Section 9.4.1, “Replacement Logic of Copy Operations”, before the existing Section 9.4.1, “Type Compatibility of Assignment”, as follows:
	Examples illustrating the replacement logic of copy operations: (pending editor group’s decision on incorporating examples in the specification text)
	
	Explanation of the concepts of XML Namespace Preservation defined in (D) (not an addition or modification to the specification):

