B. Static Analysis requirement summary (non-normative)
The purpose of static analysis is to detect any undefined semantics or invalid semantics within a process
definition that was not detected during the schema validation against the XSD found in Appendix D
. Any process definition that fails one or more of these checks MUST be rejected by the WS-BPEL processor.
This Appendix summarizes the normative requirements for static analysis specified in the main body of the specification. This appendix is provided for convenience. In case of any discrepancy between this appendix and the main body of the specification, the text from the main body takes precedence.
	Static Analysis Fault Code
	Static analysis Description
	Section Reference

	SA00001
	A WS-BPEL processor MUST reject a WS-BPEL that refers to a portType that contain solicit-response or notification operations as defined in the WSDL 1.1 specification.
	Section 3

	SA00002
	A WS-BPEL processor MUST reject any WSDL portType definition
 that includes overloaded operation names.
	Section 3

	SA00003
	If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”, then a fault handler that explicitly targets the WS-BPEL standard faults MUST NOT be used in that scope. A process definition that violates this condition MUST be detected and rejected by static analysis.
	Section 5.2

	SA00004
	Determine which languages are referenced by queryLanguage or expressionLanguage attributes either in the WS-BPEL process definition itself or in any WS-BPEL property definitions in associated WSDLs and if any referenced language is unsupported by the WS-BPEL processor then the processor MUST reject the submitted WS-BPEL process definition.
	Section 5.2

	SA00005
	If the portType attribute is included for readability, in a <receive>, <reply>, <invoke>, <onEvent> or <onMessage> element, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity.
	Section 5.2

	SA00006
	The <rethrow> activity MUST only be used within a faultHandler (i.e. <catch> and <catchAll> elements). This syntactic constraint MUST be statically enforced.
	Section 5.2

	SA00007
	The <compensateScope> activity MUST only be used from within a faultHandler, another
 compensationHandler, or a terminationHandler.
	Section 5.2

	SA00008
	The <compensate> activity MUST only be used from within a faultHandler, another
 compensationHandler, or a terminationHandler.
	Section 5.2

	SA00009
	In the case of mandatory extensions declared in the <extensions> element not supported by a WS-BPEL implementation, the process definition MUST be rejected.
	Section 5.3

	SA00010
	A WS-BPEL process definition MUST import all XML Schema and WSDL definitions it uses. This includes all XML Schema type and element definitions, all WSLD port types and message types as well as property and property alias definitions used by the process.
	Section 5.4

	SA00011
	If a namespace attribute is specified on an <import> then the imported definitions MUST be in that namespace. This requirement MUST be statically enforced.
	Section 5.4

	SA00012
	If no namespace is specified then the imported definitions MUST NOT contain a targetNamespace specification. This requirement MUST be statically enforced.
	Section 5.4

	SA00013
	The value of the importType attribute of element <import> MUST be set to http://www.w3.org/2001/XMLSchema when importing XML Schema 1.0 documents, and to http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 documents.
	Section 5.4

	SA00014
	A WS-BPEL process definition MUST be rejected if the imported documents contain conflicting definitions of a component used by the importing process definition (as could be caused, for example, when the XSD redefinition mechanism is used).
	Section 5.4

	SA00015
	To be instantiated, an executable business process MUST contain at least one <receive> or <pick> activity annotated with a createInstance="yes" attribute.
	Section 5.5

	SA00016
	A partnerLink MUST specify the myRole or the partnerRole, or both. This syntactic constraint MUST be statically enforced.
	Section 6.2

	
	
·
·
·

	

	
	
	

	SA00017
	The initializePartnerRole attribute MUST NOT be used on a partnerLink that does not have a partner role; this restriction MUST be statically enforced.
	Section 6.2

	SA00018
	The name of a partnerLink MUST be unique amongst the names of all partnerLinks defined within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 6.2

	SA00019
	Either the type or element attributes MUST be present in a <property> element but not both.
	Section 7.2

	SA00020
	A <propertyAlias> element MUST use one of the three following combinations of attributes:

· messageType and part,

· type or

· element

This requirement MUST be statically enforced.
	Section 7.3

	SA00021
	Static analysis MUST detect property usages where propertyAliases for the associated variable's type are not found in any WSDL definitions directly imported by the WS-BPEL process.
	Section 7.3

	SA00022
	A WS-BPEL process definition MUST NOT be accepted for processing if it defines two or more propertyAliases for the same property name and WS-BPEL variable type.
	Section 7.3

	SA00023
	The name of a variable MUST be unique amongst the names of all variables defined within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 8.1

	SA00024
	Variable names are NCNames (as defined in XML Schema specification) but in addition they MUST NOT contain the “.” character.
	Section 8.1

	SA00025
	The messageType, type or element attributes are used to specify the type of a variable. Exactly one of these attributes MUST be used.
This requirement MUST be validated using static analysis.
	Section 8.1

	SA00026
	Variable initialization logic contained in scopes that contain or whose children contain a start activity MUST only use idempotent functions in the from-spec.
	Section 8.1

	SA00027
	When XPath 1.0 is used as an expression or query language in WS-BPEL, with the exception of propertyAlias definitions, there is no context node available. Therefore the legal values of the XPath Expr (http://www.w3.org/TR/xpath#NT-Expr) production must be restricted in order to prevent access to the context node.

Specifically, the "LocationPath" (http://www.w3.org/TR/xpath#NT-LocationPath) production rule of "PathExpr" (http://www.w3.org/TR/xpath#NT-PathExpr) production rule MUST NOT be used when XPath is used as an expression or query language (except in the case of propertyAlias which is covered separately). The previous restrictions on the XPath Expr production for the use of XPath as an expression language MUST be statically enforced.
	Section 8.2.4

	
	
	

	SA00028
	WS-BPEL functions MUST NOT be used in joinConditions.
	Section 8.2.5

	SA00029
	WS-BPEL variables and WS-BPEL functions MUST NOT be used in query expressions of propertyAlias definitions.
	Section 8.2.6

	SA00030
	The arguments to bpel:getVariableProperty MUST be given as quoted strings. The previous requirement MUST be statically enforced. It is therefore illegal to pass into a WS-BPEL XPath function any XPath variables, the output of XPath functions, a XPath location path or any other value that is not a quoted string. This means, for example, that bpel:getVariableProperty("varA","b:propB") meets the previous requirement while bpel:getVariableProperty($varA, string(bpel:getVariableProperty("varB","b:propB")) does not. Note that the previous requirement institutes a restriction which does not exist in the XPath standard.
	Section 8.3

	
	
·
·

·
	

	SA00031
	The function signature of bpel:getVariableProperty is:

object bpel:getVariableProperty(string, string)

This function extracts property values from variables. The first argument names the source variable for the data and the second is the QName of the property to select from that variable (see Error! Reference source not found.). The second argument MUST be a string literal conforming to the definition of QName in [XML Namespaces] section 3, and these constraints MUST be enforced by static analysis.

	Section 8.3

	
	
	

	SA00032
	For <assign>, the <from> and <to> element must MUST be one of the specified variants.
The <assign> activity copies a type-compatible value from the source ("from-spec") to the destination ("to-spec"), using the <copy> element. Except in Abstract Processes, the from-spec MUST be one of the following variants:

<from variable="NCName" part="NCName"?/>
<from partnerLink="NCName" endpointReference="myRole|partnerRole"/>
<from variable="NCName" property="QName"/>
<from expressionLanguage="anyURI"?>expression</from>
<from><literal>literal value</literal></from>

In Abstract Processes, the from-spec MUST be either one of the above or the opaque variant described in section Error! Reference source not found.
The to-spec MUST be one of the following variants:

<to variable="NCName" part="NCName"?/>
<to partnerLink="NCName"/>
<to variable="NCName" property="QName"/>
<to queryLanguage="anyURI"?>query</to>
This requirement MUST be validated during static analysis
	Section 8.4

	
	
	

	SA00033
	The XPath query in <to> MUST begin with an XPath VariableReference. This restriction MUST be statically enforced.
	Section 8.4

	SA00034
	When the variable used in <from> or <to> is defined using XML Schema types (simple or complex) or element, the part attribute MUST NOT be used.
	Section 8.4

	SA00035
	In the from-spec of the partnerLink variant of <assign> the value "myRole" for attribute endpointReference is only permitted when the partnerLink specifies the attribute myRole.
	Section 8.4

	SA00036
	In the from-spec of the partnerLink variant of <assign> the value "partnerRole" for attribute endpointReference is only permitted when the partnerLink specifies the attribute partnerRole.
	Section 8.4

	SA00037
	In the to-spec of the partnerLink variant of assign only partnerLinks are permitted which specify the attribute partnerRole.
	Section 8.4

	SA00038
	The literal from-spec variant returns values as if it were a from-spec that selects the children of the <literal> element in the WS-BPEL source code. Those return values MUST consist of EIIs or Text Information Items (TIIs) only.
	Section 8.4

	SA00039
	In addition to <copy> specifications, other extensibility data manipulation elements MAY be included in an assign activity, inside an <extensibleAssign> element.
	Section 8.4

	SA00040
	For the bpel:doXslTransform() XPath 1.0 extension function, as described below
object bpel:doXslTransform(string, node-set, (string, object)*)

The first parameter is an XPath string providing a URI naming the style sheet to be used by the WS-BPEL processor. This MUST take the form of a string literal.

	Section 8.4

	SA00041
	For the bpel:doXslTransform() XPath 1.0 extension function, as described below

object bpel:doXslTransform(string, node-set, (string, object)*)
The optional parameters after the second parameter MUST appear in pairs. Each pair is defined as:
· an XPath string parameter providing the qualified name of an XSLT parameter

· an XPath object parameter providing the value for the named XSLT parameter. It can be an XPath Expr.

The WS-BPEL processor MUST enforce the pairing of these parameters by static analysis (i.e., an odd number of parameters must cause a static analysis error).

·
·

	Section 8.4

	SA00042
	For the bpel:doXslTransform() XPath 1.0 extension function, as described below

object bpel:doXslTransform(string, node-set, (string, object)*)
For the third and subsequent parameters, XSLT global parameters ([XSLT 1.0], section 11.4) are used to pass additional values from the WS-BPEL process to the XSLT processor. These optional parameters for doXslTransform function come in the form of name-value pair in the argument list, as described in section 8.4 above. They are used to identify the XSLT global parameters by QName, and to supply values for the named global parameters. The global parameter names MUST be string literals conforming to the definition of QName in section 3 of [Namespaces in XML], and these constraints MUST be enforced by static analysis.
	Section 8.4

	SA00043
	For <copy> the optional keepSrcElementName attribute is provided to further refine the behavior. It is only applicable when the results of both from-spec and to-spec are EIIs, and MUST NOT be explicitly set in other cases. A WS-BPEL processor MAY enforce this checking through static analysis of the expression/query language.
	Section 8.4.2

	SA00044
	For a copy operation to be valid, the data referred to by the from-spec and the to-spec MUST be of compatible types.
The following situations are considered type incompatible:

· the selection results of both the from-spec and the to-spec are variables of a WSDL message type, and the two variables are not of the same WSDL message type (two WSDL message types are the same if their QNames are equal).

· the selection result of the from-spec is a variable of a WSDL message type and that of the to-spec is not, or vice versa (parts of variables, selections of variable parts, or endpoint references cannot be assigned to/from variables of WSDL message types directly).
	Section 8.4.3

	SA00045
	The name of a <correlationSet> MUST be unique amongst the names of all <correlationSet> defined within the same immediately enclosing scope.

	Section 9.1

	SA00046
	Properties used in a <correlationSet> MUST be defined using XML Schema simple types. This restriction MUST be statically enforced.
	Section 9.2

	SA00047
	The pattern attribute used in <invoke> is required for request-response operations, and disallowed when a one-way operation is invoked. Any violation of this rule MUST be detected during static analysis.
	Section 9.2

	
	
	

	SA00048
	The name of a named activity MUST be unique amongst all named activities present within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 10.1

	
	
	

	
	
	

	
	
	

	
	
	

	SA00049
	One-way invocation requires only the inputVariable (or its equivalent <toPart>’s) since a response is not expected as part of the operation. Request-response invocation requires both an inputVariable (or its equivalent <toPart>’s) and an outputVariable (or its equivalent <fromPart>’s). If a WSDL message definition does not contain any parts, then the associated variable attribute, inputVariable or outputVariable, MAY be omitted. The outputVariable (or its equivalent <fromPart>’s) must be only specified for request-response invocations.
This requirement MUST be statically validated.
	Section 10.3

	SA00050
	When the optional inputVariable and outputVariable attributes are being used in an <invoke> activity, the variables referenced by inputVariable and outputVariable MUST be messageType variables whose QName matches the QName of the input and output message type used in the operation, respectively, except as follows: if the WSDL operation used in an <invoke> activity uses a message containing exactly one part which itself is defined using an element, then a variable of the same element type as used to define the part MAY be referenced by the inputVariable and outputVariable attributes respectively.
	Section 10.3

	SA00051
	In the case of a request-response invocation, the operation might return a WSDL fault message. This results in a fault identified in WS-BPEL by a QName formed by the target namespace of the corresponding portType and the fault name. To ensure uniqueness, this uniform naming mechanism MUST be followed even though it does not match the WSDL’s fault-naming model.
	Section 10.3

	SA00052
	When a <toPart> is present in an <invoke>, it is not required to have a <toPart> for every part in the WSDL message definition, nor is the order in which parts are specified relevant. Parts not explicitly represented by <toPart> elements would result in uninitialized parts in the target anonymous WSDL variable used by the <invoke> or <reply> activity. Such processes with missing <toPart> elements MUST be rejected during static analysis.
	Section 10.3.1

	SA00053
	The inputVariable attribute MUST NOT be used on an Invoke activity that contains <toPart> elements.

This requirement MUST be validated during static analysis.
	Section 10.3.1

	SA00054
	The outputVariable attribute MUST NOT be used on an <invoke> activity that contains a <fromPart> element.
This requirement MUST be validated during static analysis.
	Section 10.3.1

	SA00055
	For all <fromPart> elements the part attribute MUST reference a valid message part in the WSDL message for the operation.

This requirement MUST be validated during static analysis.
	Section 10.3.1

	SA00056
	For all <toPart> elements the part attribute MUST reference a valid message part in the WSDL message for the operation.

This requirement MUST be validated during static analysis.
	Section 10.3.1

	SA00057
	For <receive>, if <fromPart> elements are used on a <receive> activity then the variable attribute MUST NOT be used on the same activity.
This requirement MUST be validated during static analysis.
	Section 10.4

	SA00058
	A "start activity" is a <receive> or <pick> activity that is annotated with a createInstance="yes" attribute. Activities other than the following: start activities, <scope>, <flow>, <sequence>, and <empty> MUST NOT be performed prior to or simultaneously with start activities.
	Section 10.4

	SA00059
	If a process has multiple start activities with correlation sets then all such activities MUST share at least one common correlationSet and all common correlationSets defined on all the activities MUST have the value of the initiate attribute be set to "join"
	Section 10.4

	SA00060
	In a <receive> or <reply> activity, the variable referenced by the variable attribute MUST be a messageType variable whose QName matches the QName of the input (for <receive>) or output (for <reply>) message type used in the operation, except as follows: if the WSDL operation uses a message containing exactly one part which itself is defined using an element, then a WS-BPEL variable of the same element type as used to define the part MAY be referenced by the variable attribute of the <receive> or <reply>activity.
	Section 10.4

	SA00061
	For <reply>, if <toPart> elements are used on a <reply> activity then the variable attribute MUST NOT be used on the same activity.
This requirement MUST be validated during static analysis
	Section 10.4

	
	

	

	
	

	

	
	
	

	SA00062
	The explicit use of messageExchange is needed only where the execution can result in multiple IMA-<reply> pairs (e.g. <receive>-<reply> pair) on the same partnerLink and operation being executed simultaneously. In these cases, the process definition MUST explicitly mark the pairing-up relationship.
	Section 10.4.1

	SA00063
	The name used in the optional messageExchange attribute MUST resolve to a messageExchange declared in a scope (where the process is considered the root scope) which encloses the <reply> activity and its corresponding IMA. This resolution follows the same scoping rules as correlation set resolution.
	Section 10.4.1

	SA00064
	If a reply activity cannot be associated with an incomplete receive activity by matching the tuples then this requirement MAY be caught during static analysis. If this is not caught during static analysis then at runtime bpel:missingRequest fault MUST be thrown within the WS-BPEL process on the reply activity. Because conflicting requests should have been rejected at the time inbound message activity is executed, there cannot be more than one corresponding inbound message activity at the time <reply> is executed.
	Section 10.4.1

	SA00065
	The semantics of the <onMessage> event are identical to a <receive> activity regarding the optional nature of the variable attribute or <fromPart> elements, >, if <fromPart> elements on an activity then the variable attribute MUST NOT be used on the same activity (see SA00040)
This requirement MUST be validated during static analysis.
	Section 11.5

	SA00066
	A link’s name MUST be unique amongst all link names defined within the same immediately enclosing flow. This requirement MUST be statically enforced.

	Section 11.6

	SA00067
	Every link declared within a flow activity MUST have exactly one activity within the flow as its source and exactly one activity within the flow as its target. Moreover, at most one link may be used to connect two activities; that is, two different links MUST NOT share the same source and target activities.
	Section 11.6

	
	
	

	SA00068
	An activity MAY declare itself to be the source of one or more links by including one or more <source> elements. Each <source> element MUST use a distinct link name.
	Section 11.6.1

	SA00069
	An activity MAY declare itself to be the target of one or more links by including one or more <target> elements. (…) Each <target> element associated with a given activity MUST use a link name distinct from all other <target> elements at that activity.
	Section 11.6.1

	SA00070
	It is illegal for a link to have an activity as a target if the source activity of the link is an ancestor of the target activity of the link. This requirement MUST be statically enforced.

	Section 11.6.1

	SA00071
	The expression for a join condition for an activity MUST be constructed using only Boolean operators and the control links variable values for the incoming links at the activity.
	Section 11.6.1

	
	
	

	SA00072
	For the <forEach> activity, <branches> is an integer value expression which is used to define condition of flavor N out of M. The actual value of the expression is calculated at the beginning of the forEach activity. It will not change as the result of the forEach execution. At the end of execution of each directly enclosed activity the number of completions is checked against this value. This condition has "at least N out of M" semantics. (The exact N out of M condition semantics involves resolving racing condition among directly enclosed activities.)

If the integer value is larger than the number of directly enclosed activities, then bpel:invalidBranchCondition fault MUST be thrown. Note that the number of branches may be known only during runtime in some cases. Static analysis MAY be used to detect this erroneous situation at design time when possible. (For example, when the branches expression is a constant.)

	Section 11.7

	SA00073
	For <forEach> during each repetition, a variable of type xsd:unsignedint is implicitly declared in the <forEach> activity's child <scope>. This implicit variable has the name specified in the counterName attribute. The counter variable is local to the enclosed <scope>. The enclosed scope MUST NOT declare a variable with the same name.
This requirement MUST be validated during static analysis.
	Section 11.7

	SA00074
	During each repetition, a variable of type xsd:unsignedint is implicitly declared in the <forEach> activity's child <scope>. This implicit variable has the name specified in the counterName attribute. The counter variable is local to the enclosed <scope>. The enclosed scope MUST NOT declare a variable with the same name.
This requirement MUST be validated during static analysis.
	Section 11.7

	SA00075
	References to resources (eg: <variable>, <partnerLink>, ...) follow the common lexical scoping rules such that an enclosing construct MUST provide an explicit or implicit declaration of the resource in order for its reference to be valid.

This requirement MUST be validated during static analysis.
	Section 12

	SA00076
	The value of the scope attribute on a compensate activity MUST NOT resolve to the name of a scope nested immediately inside a handler. This rule MUST be statically enforced.
	Section 12.3.3

	SA00077
	All scopes and activities directly nested in a scope (i.e. not within a nested scope) MUST be uniquely named. If the value of the target attribute specified on a compensateScope activity does not resolve to a unique scope or activity name in the same scope as the compensateScope activity, the WS-BPEL definition MUST be rejected from processing. This requirement MUST be statically enforced.
	Section 12.3.3

	
	

	

	SA00078
	If a scope is nested inside of a fault handler then the scope’s compensation handler is available only for the lifetime of the enclosing fault handler. If the fault handler is left then any installed compensation handlers within it are uninstalled. Especially, a root scope nested inside a fault handler cannot have a compensation handler associated because it is not reachable at all from anywhere within the process. Therefore, the root scope inside a fault handler MUST not have a compensation handler. This rule MUST be statically enforced.
	Section 12.3.4.3

	SA00079
	If a scope is nested inside a compensation handler then the scope’s compensation handler is available only for the lifetime of the enclosing compensation handler. It can be used to ensure “all or nothing” semantics for compensation handlers, but not for reversing the work of a successfully completed compensation handler. If the compensation handler completes successfully then any installed compensation handlers for scopes nested within it are uninstalled. Especially, a root scope nested inside a compensation handler cannot have a compensation handler associated because it is not reachable at all from anywhere within the process. Therefore, the root scope inside a compensation handler MUST not have a compensation handler. This rule MUST be statically enforced.
	Section 12.3.4.4

	SA00080
	For the <catch> construct; to have a defined type associated with the fault variable, the faultVariable attribute MUST only be used if either the faultMessageType or faultElement attributes, but not both, accompany it. The faultMessageType and faultElement attributes MUST NOT be used unless accompanied by faultVariable attribute.
This requirement MUST be validated during static analysis
	Section 12.4

	SA00081
	Rule 2: The peer-scope dependency relation MUST NOT include cycles. In other words, WS-BPEL forbids a process in which there are peer scopes S1 and S2 such that S1 has a peer-scope dependency on S2 and S2 has a peer-scope dependency on S1.
	Section 12.4.2

	SA00082
	There MUST be at least one <catch> or <catchAll> element within a <faultHandlers> element. This requirement MUST be statically enforced.
	Section 12.5

	SA00083
	An event handler MUST contain at least one <onEvent> or <onAlarm> element. This MUST be statically enforced.
	Section 12.6

	SA00084
	The syntax and semantics of the <fromPart> elements as used on the <onEvent> element are the same as specified for the receive activity. This includes the restriction that if <fromPart> elements are used on an onEvent element then the variable, element and messageType attributes MUST NOT be used on the same element.
This requirement MUST be validated during static analysis
	Section 12.6.1

	SA00085
	For <onEvent>, the variable and messageType/element attributes constitute the implicit declaration of a variable of that name and type within the associated scope associated of the event handler. The associated scope MUST NOT declare a variable with the same name.
This requirement MUST be validated during static analysis.
	Section 12.6.1

	
	

	

	SA00086
	The variable attribute identifies a variable local to the eventHandler that will contain the message received from the partner. The messageType attribute specifies the type of the variable by referencing a message type definition using its QName. The type of the variable (as specified by the messageType attribute) MUST be the same as the type of the input message defined by operation referenced by the operation attribute. Optionally the messageType attribute may be omitted and instead the element attribute substituted if the message to be received has a single part and that part is defined with an element type that matches the element type referenced by the element attribute.
	Section 12.6.1

	SA00087
	[About onEvent elements] This includes the restriction that if <fromPart> elements are used on an onEvent tag then the variable attribute MUST NOT be used on the same tag.
	Section 12.6.1

	SA00088
	If a variable reference is opaque in an inbound message activity, then the abstract process MUST NOT – and has no way to - subsequently refer to the received message or its properties, if any.
	Section 13.3.4

�There are abstract and executable processes. Does this list summarize the requirements for both types or only for executable processes?

�Replace this with a reference to the final Appendix number.

�What does it mean to reject a WSDL portType definition? I think the original spec text should change to read something like: A process definition that contains web service activities that use overloaded operation names in WSDL portTypes MUST be rejected.

�The current spec text contains “another”.

�The current spec text contains “another”.

