WS-BPEL F2F Minutes (day 1)

Nov 14, 2006

Prepared by Alex Yiu

· Committee draft approval

· Motion from Danny to approve draft (last modified: November 5, 2005) as current committee draft

· Simon seconded the motion

· Motion passed

· R34

· Simon motioned to open this issue

· Charleton and Allen seconded

· Changes applied to the spec text and issue is closed

· R35

· Dieter motioned to open this issue. Simon seconded it.

· No objection. Changes proposed are applied and issue is closed.

· R36

· Thomas motioned to open this issue. Alex seconded it.

· Changes proposed are applied. Issue is closed.

· R37

· Thomas motioned to open this issue. Alex seconded it.

· Changes proposed are applied. Issue is closed.

· R38

· Thomas motioned to open this issue. Allan seconded it.

· Changes proposed are applied. Issue is closed.

· Mark’s new issue (would be R42)

· Mark motioned to open issue. Danny seconded it.

· Alex amended it. Amendment from “>=” to “>=”. Amended proposal got passed. Changes are applied. Issue is closed.

· R40

· Alex motioned to open. Abbie seconded. Issue opened.

· We had some discussion. Proposal pending.

· R39

· Ivana motioned to open it. Dieter seconded it.

· Alex made a proposal. Charleton seconded it.

· Danny made an amendment. Allen seconded it. Amendment was rejected. (voting: 3 no; 2 yes)

· Dieter made a friendly amendment.
“When a <completionCondition> does not have any sub-elements or attributes understood by the WS-BPEL processor, it MUST be treated as if the <completionCondition> does not exist.”
Adding minOccurs=”0” to XSD and adding “?” to psuedo-syntax.

· Changes are applied.

· R25

· Danny made a proposal to make a change from “activities” to “activity instances”. Dieter seconded it.

· Discussion happened. Martin made a proposal: “If during the execution of a business process instance, two or more receive activity instances for the same operation and the same values of partnerLink and correlationSet(s)are simultaneously enabled, then the standard fault bpel:conflictingReceive MUST be thrown (note bpel:conflictingReceive differs from bpel:conflictingRequest, see section 10.4.1. Message Exchanges).”

· Lunch break

· Danny made another proposal: “If during the execution of a business process instance, two or more receive *activity instances* for the same partnerLink, operation and correlationSet(s) are simultaneously enabled, then the standard fault bpel:conflictingReceive MUST be thrown (note bpel:conflictingReceive differs from bpel:conflictingRequest, see section 10.4.1. Message Exchanges). *There are other cases where two or more indistinguishable receive activity instances are enabled. In these cases, a WS-BPEL processor MAY throw a bpel:conflictingReceive fault.*”

· Discussion tabled until tomorrow

<martin takes over>

Issue r30: Clarify when a <repeatEvery> expression is evaluated

Mark motions, Dieter 2nds:

Insert a sentence to the end of Section 12.7.2 that states the interval for the <repeatEvery> is calculated when the parent scope starts. This doesn’t change when the clock starts, it just clarifies when the expression should be evaluated.

FROM:

If the <repeatEvery> expression is specified with either the <for> or the <until> expression, the first alarm is not fired until the time specified in the <for> or <until> expression expires; thereafter it is fired repeatedly at the interval specified by the <repeatEvery> expression. If the specified duration value for <repeatEvery> is zero or negative then the standard fault bpel:invalidExpressionValue MUST be thrown.

TO (bold text between *** has been inserted)

If the <repeatEvery> expression is specified with either the <for> or the <until> expression, the first alarm is not fired until the time specified in the <for> or <until> expression expires; thereafter it is fired repeatedly at the interval specified by the <repeatEvery> expression. *** The duration for the <repeatEvery> is calculated when the parent scope (the scope which directly encloses the event handler) starts. *** If the specified duration value for <repeatEvery> is zero or negative then the standard fault bpel:invalidExpressionValue MUST be thrown.

Danny proposes to amend by removing "(the scope which directly encloses the event handler) "

amendment accepted

TO:

If the <repeatEvery> expression is specified with either the <for> or the <until> expression, the first alarm is not fired until the time specified in the <for> or <until> expression expires; thereafter it is fired repeatedly at the interval specified by the <repeatEvery> expression. *** The duration for the <repeatEvery> is calculated when the parent scope starts. *** If the specified duration value for <repeatEvery> is zero or negative then the standard fault bpel:invalidExpressionValue MUST be thrown.

This will be a Substative change.

No objections, issue closed

Issue - R31 - Clarification for Section 10.4 Given R18 Resolution

Proposed new issue from Monica:

When R18 was resolved another section was impacted but not addressed by those approved changes. See current text in Section 10.4:
(existing 10.4)

WS-BPEL treats faults based on abstract WSDL 1.1 operation definitions, without reference to binding details. This limits the ability of a WS-BPEL process to determine the information transmitted when faults are returned over a SOAP binding.

Reference: resolution of issue R18 (now correctly formatted in the issue list)
Submitter's proposal: Take an abbreviated approach for Section 10.4 and reference 10.3.

Change from:

WS-BPEL treats faults based on abstract WSDL 1.1 operation definitions, without reference to binding details. This limits the ability of a WS-BPEL process to determine the information transmitted when faults are returned over a SOAP binding.

Change to:

WS-BPEL treats faults based on abstract WSDL 1.1 operation definitions. This limits the ability of a WS-BPEL process to determine the information transmitted when faults are returned, such as for a SOAP binding (See Section 10.3, Invoking Web Services Operations - Invoke for fault treatment).

Monica motions to accept as an issue, and the proposal. Abbie 2nd.

Martin amends to close no change, 2nd Charlton.

Vote on the amendment: yes 2, no 3. Fails.

No objections, so passed. R31 is closed

Issue - R32 - Correction needed in Template Process Example in Section 15.2

(note option c in the issue report from Alex not considered.)

After reviewing the example in section 15.2, I think there are some changes needed:

a. Syntax correction from:

<condition>"##opaque"</condition>

to:

<condition opaque="yes" />

b. Rectified opaque from spec usage in a few places: (because of another bug fix in other part of the spec)

<from opaque="yes" />

to

<opaqueFrom />

Alex Motions the above, 2nd Simon.

No objections, so passed. R32 closed.

Issue R40: From/To Extensibility

Description: Almost every WS-BPEL language element is extensible. The current specification defines a number of <from> and <to> element variants for the <copy> operation. The specification text in section 8.4. ("... MUST be one of the following variants: ...") excludes the extensibility of <from> and <to>. This is an unnecessary restriction. It forces every new variant of <copy> to be enclosed in an <extensibleAssignOperation> containing a new <copy> element which repeats the existing copy semantics in order to add different from-specs and to-specs.
Submitter's proposal: Make <from> and <to> elements extensible. That is, allow extension attributes and elements defined in other namespaces to appear within the <from> element and <to> element. The least invasive approach for the specification would be adding a new variant to the from-spec and to-spec. Note that the XML schema does not need to be changed as it already allows these extensions.

In 8.4., add a 6th variant to <from>:

 <from from-attribute-of-another-namespace*>

 from-element-of-another-namespace*</from>

and add a 5th variant to <to>:

 <to to-attribute-of-another-namespace*>to-element-of-another-namespace*

 </to>

After discussion a motion was made:

Danny motions, Abbie 2nds:

FROM: "the from-spec MUST be one of the following variants"

TO: "the from-spec MUST be one of the following variants, an extension of those variants or the special form of empty-variant"

Add the <from/> and <to/> options to each list

Add new sentence before “In addition to copy:”

Empty Variant[in bold]: The sixth from-spec variant and fifth to-spec variant are included to explicitly show that from-spec and to-spec are extensible. Note that if these variants are not extended, or the extensions are not understood, they will throw a bpel:selectionFailure fault.

Discussion:

Amendment from Deiter:

Empty Variant: The sixth from-spec variant and fifth to-spec variant are included to explicitly show that from-spec and to-spec are extensible. Note that if these variants are not extended, or the extensions are not understood, they will throw a bpel:selectionFailure fault.

Accepted as friendly

Amendment from Danny, accepted:

Empty variant: The sixth from-spec variant and fifth to-spec variant are included to explicitly show that from-spec and to-spec are extensible. Note that if these variants are not extended, or the extensions are not understood, they MUST behave as if they were an expression variant returning zero nodes.

Final motion:

Add the <from/> and <to/> options to each list

Add new sentence before “In addition to copy:”

Empty variant[in bold]: The sixth from-spec variant and fifth to-spec variant are included to explicitly show that from-spec and to-spec are extensible. Note that if these variants are not extended, or the extensions are not understood, they MUST behave as if they were an expression variant returning zero nodes.

No objections, passed, issue closed

Issue R27: Faults and Parallelism in Termination Handlers

From Dieter

Description: Consider the following examples of parallelism inside of termination handlers.

Example 1. Assume that a custom termination handler contains a parallel forEach activity or a flow activity. In either case, assume that multiple concurrent branches are active. If one branch faults, the specification does not tell whether the other branches are allowed to complete or terminated.

Example 2. Assume that a default termination handler that compensates a compensation handler instance group. If one compensation handler instance faults, the specification does not tell whether the other compensation handler instances are allowed to complete or terminated.
Submitter's proposal: Add the following to the end of section 12.6.:

"If a custom termination handler contains parallel activities and one of these activities propagates a fault then all concurrent activities in the termination handler MUST be terminated. Likewise, if a default termination handler compensates a compensation handler instance group and one of the compensation handler instances propagates a fault then the other compensation handler instances of the compensation handler instance group MUST be terminated."

Dieter motions to open issue, Abbie 2nd
No objections to opening R27

Dieter motions, Charlton 2nds.

Add the following para in 12.6, before last para “Forced termination is nested:

A fault in a termination handler MUST cause all running contained activities to be terminated.

Danny amends to(friendly)

A fault in a termination handler MUST cause all running contained activities to be terminated (see also section 12.4.4.3. Compensation within FCT-Handlers).

Final Motion:

A fault in a termination handler MUST cause all running contained activities to be terminated (see also section 12.4.4.3. Compensation within FCT-Handlers).

No objections, passed, r27 closed

Issue R26: Default Compensation Order Conflict

Danny motions to close no action, Martin 2nd.

Discussed happened.

Will come back to tomorrow.

Issue 28 and 41: IPR

Since IPR and Public review are separate process this is not a concern for PR.

Motion: Mike, 2nd Abbie. Close no action. Letter to this effect will be mailed out.

Meeting Recessed.

