

Web Services Business Process Execution Language Version 2.0

Primer Initial Draft, 10th November, 2006

Document identifier:

wsbpel-primer-draft
Location:

TBD
Editors and Contributors:

Charlton Barreto, Adobe < cbarreto@adobe.com>
Vaughn Bullard, Amberpoint <vbullard@amberpoint.com>

Thomas Erl, SOA Systems <thomas.erl@soasystems.com>

John Evdemon, Microsoft <John.Evdemon@microsoft.com>

Diane Jordan, IBM <drj@us.ibm.com>
Dieter König, IBM <dieterkoenig@de.ibm.com>

Simon Moser, IBM <smoser@de.ibm.com>

Ralph Stout, iWay Software <ralph_stout@ibi.com>

Ron Ten-Hove, Sun <Ronald.Ten-Hove@sun.com>

Ivana Trickovic, SAP < ivana.trickovic@sap.com>

Danny van der Rijn, Tibco <dannyv@tibco.com>

Alex Yiu, Oracle <alex.yiu@oracle.com>
Abstract:

The WS-BPEL 2.0 specification
 provides a language for formally describing business processes and business interaction protocols. WS-BPEL was designed to extend the Web Services interaction model to support business transactions.

The WS-BPEL Primer is a non-normative document intended to provide an easy to read explanation of the WS-BPEL 2.0 specification. The goal of this document is to help readers understand the concepts and major components of the WS-BPEL language. This document will also assist readers in recognizing appropriate scenarios for using WS-BPEL. This document describes several features of WS-BPEL using examples and extensive references to the normative specification.

Status:

This is the initial draft version of the WS-BPEL Primer.
Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

61. Introduction

61.1. Terminology

61.2. Objective

61.3. Non-Normative Status

61.4. Relationship to the WS-BPEL Specification

61.5. Outline of this Document

72. History of WS-BPEL

72.1. Design Goals

82.2. XLANG and WSFL

82.3. What’s new in WS-BPEL 2.0

113. Scenario

113.1. Description

124. Basic Concepts

124.1. The Structure of BPEL Processes

124.2. Relationship to Business Partners

134.3. State of a BPEL Process

134.4. Behavior of a BPEL Process

134.4.1. Providing and Consuming Web Services

154.4.2. Structuring the Process Logic

164.4.3. Repetitive Activities

174.4.4. Parallel Processing

214.4.5. Data Manipulation

214.4.6. Exception Handling

225. Advanced Concepts I

225.1. Refining the Process Structure

225.1.1. Scoped Fault Handling

235.1.2. Terminating Running Work

235.1.3. Undoing Completed Work

245.1.4. Event Handling

245.2. Advanced Web Service Interactions

245.2.1. Selective Event Processing

255.2.2. Multiple Event Processing

265.2.3. Concurrent Event Processing

275.2.4. Message Correlation

305.2.5. Concurrent Message Exchanges

315.3. More Parallel Processing

335.4. Delayed Execution

335.5. Immediately Ending a Process

345.6. Doing Nothing

345.7. Data Validation

355.8. Concurrent Data Manipulation

365.9. Dynamic Business Partner Resolution

396. Advanced Concepts II

396.1. Language Extensibility

396.2. Abstract Processes

407. Using WS-BPEL

407.1. Applying WS-BPEL to our scenario

407.1.1. Getting Started: Defining the process element

407.1.2. Defining <partnerLinks> and <partnerLink>s

427.1.3. Defining <partnerLinkType>s

437.1.4. Defining <variables>

447.1.5. The getVariableProperty function

447.1.6. Defining Process Logic

447.1.7. Defining a <sequence> activity

457.1.8. Defining an <if> activity

467.1.9. Defining a <while> activity

467.1.10. Defining a <repeatUntil> activity

477.1.11. Defining a <flow> activity

477.1.12. Defining a <link>

477.1.13. Defining a <forEach> activity

477.1.14. Defining <assign> activities

487.1.15. Interacting with Partners

487.1.16. Defining an <invoke> activity

497.1.17. Defining a <receive> activity

497.1.18. Defining a <reply> activity

507.1.19. Defining a <pick> activity

517.1.20. Defining a <wait> activity

517.1.21. Defining an <exit> activity

517.1.22. Defining <faultHandlers>, <catch>, and <catchall>

517.2. Considerations

538. Summary

538.1. Benefits of WS-BPEL

538.2. Next Steps

54A. WS-BPEL FAQ

56B. References

58C. Acknowledgements

1. Introduction
1.1. Terminology

WS-BPEL is an acronym for Web Services Business Process Execution Language. WS-BPEL is a revision of the original acronym BPEL4WS (Business Process Execution Language for Web Services).

The preferred acronym is WS-BPEL for the following reasons:

BPEL4WS refers to the 1.1 and 1.0 versions of the specification

BPEL may cause confusion because it does not refer to either version of the specification

1.2. Objective

Blah blah blah

1.3. Non-Normative Status

Blah blah blah

1.4. Relationship to the WS-BPEL Specification

Blah blah blah
1.5. Outline of this Document

Section 2 explains …

Section 3 explains …

Section 4 explains …

…

2. History of WS-BPEL

2.1. Design Goals

Goal 1: Define business processes that interact with external entities through Web service operations defined using WSDL 1.1 and that manifest themselves as Web services defined using WSDL 1.1. The interactions are “abstract” in the sense that the dependence is on portType definitions, not on port definitions.

Goal 2: Define business processes using an XML based language. Do not define a graphical representation of processes or provide any particular design methodology for processes.

Goal 3: Define a set of Web service orchestration concepts that are meant to be used in common by both the external (abstract) and internal (executable) views of a business process. Such a business process defines the behavior of a single autonomous entity, typically operating in interaction with other similar peer entities. It is recognized that each usage pattern (i.e. abstract view and executable view) will require a few specialized extensions, but these extensions are to be kept to a minimum and tested against requirements such as import/export and conformance checking that link the two usage patterns.

Goal 4: Provide both hierarchical and graph-like control regimes, and allow their usage to be blended as seamlessly as possible. This should reduce the fragmentation of the process modeling space.

Goal 5: Provide limited data manipulation functions that are sufficient for the simple manipulation of data that is needed to define process relevant data and control flow.

Goal 6: Support an identification mechanism for process instances that allows the definition of instance identifiers at the application message level. Instance identifiers should be partner defined and may change over time.

Goal 7: Support the implicit creation and termination of process instances as the basic lifecycle mechanism. Advanced lifecycle operations like suspend, resume may be added in future releases for enhanced lifecycle management.

Goal 8: Define a long-running transaction model that is based on practically proven techniques like compensation actions and scoping to support failure recovery for parts of long-running business processes.

Goal 9: Use Web services as the model for process decomposition and assembly.

Goal 10: Build on compatible Web services standards and standards proposals as much as possible in a composable and modular manner.

2.2. XLANG and WSFL

The Business Process Execution Language for Web Services (BPEL4WS) was first conceived in July, 2002 with the release of the BPEL4WS 1.0 specification, a joint effort by IBM, Microsoft, and BEA. This document proposed an orchestration language inspired by previous variations, such as IBM’s Web Services Flow Language (WSFL) and Microsoft’s XLANG specification.
Joined by other contributors from SAP and Siebel Systems, version 1.1 of the BPEL4WS specification was released less than a year later, in May of 2003. This version received more attention and vendor support, leading to a number of commercially available BPEL4WS-compliant orchestration engines. Just prior to this release, the BPEL4WS specification was submitted to an OASIS technical committee so that the specification could be developed into an official, open standard.
2.3. What’s new in WS-BPEL 2.0

As a result of the OASIS Technical Committee’s issues process, the original BPEL4WS 1.1 specification has received several updates. The following list summarizes the major changes that have been incorporated in the WS-BPEL 2.0 specification.
Data Access
Variables can now be declared using XML schema complex types

XPath expressions are simplified by using the ‘$’ notation for variable access, for example, $myMsgVar.part1/po:poLine[@lineNo=3]
Access to WSDL messages has been simplified by mapping directly mapping WSDL message parts to XML schema element/type variables
Several clarifications have been added to the description of the <assign> activity’s <copy> semantics

The keepSrcElementName option has been added to <copy> in order to support XSD substitution groups or choices

An extension operation has been added to the <assign> activity

A standardized XSLT 1.0 function has been added to XPath expressions

The ability to validate XML data has been added, both as an option of the <assign> activity and as a new <validate> activity

Variable initialization as part the of variable declaration has been added

Scope Model

New scope snapshot semantics have been defined
Fault handling during compensation has been clarified

The interaction between scope isolation and control links have been clarified

Enrichment of fault catching model
A <rethrow> activity has been added to fault handlers
The <terminationHandler> has been added to scopes
The exitOnStandardFault option has been added to processes and scopes

Message Operations

The join option has been added to correlation sets in order to allow multiple participants to rendezvous at the same process with a deterministic order

Partner link can now be declared local to a scope

The initializePartnerRole option has been added to specify whether an endpoint reference must be bound to a partner link during deployment
The messageExchange construct has been added to pair up concurrent <receive> and <reply> activities

Activity types

Added serial and parallel <forEach> with optional completion condition
Added <repeatUntil>
Added new extension activity
Changed <switch> to <if>-<elseif>-<else>
Changed <terminate> to <exit>
Differentiate different cases of <compensate> by renaming them to <compensate> and <compensateScope>

Miscellaneous changes

Added repeatEvery alarm feature to event handlers

Clarified resources resolution (e.g. variable, partner link) for event handlers

Added formal <documentation> support
Added extension namespace declarations in order to specify what extension must be understood
Add <import> support to import WSDL and XSD formally

Abstract Processes

Clarified Abstract Process usage patterns

Introduced Abstract Profiles to address different needs in Abstract Processes, and two concrete profiles “Observable Behavior” and “Process Template”
3. Scenario

3.1. Description

The case study in this primer follows the step-by-step process which a consulting firm named Perspective Technology Corp. (hereafter referred to as “PTC”) uses to build a WS-BPEL process definition for their new Timesheet Submission Process.
Add overview diagram for the PTC process … (avoid XML syntax in this chapter) …

4. Basic Concepts

4.1. The Structure of BPEL Processes

First of all, a BPEL Process is a container where you can declare relationships to external partners, declarations for process data, handlers for various purposes and, most importantly, the activities to be executed. On top, the process container has a couple of attributes, i.e. a (mandatory) name and a (also mandatory) declaration of a namespace – as shown in the example below. You should note that not all possible attributes of the process element are shown in this example.

<process name="PrimerProcess"

 targetNamespace="http://oasis-open.org/WSBPEL/Primer/"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" />

The namespace declaration “http://docs.oasis-open.org/wsbpel/2.0/process/executable” specifies that this is an Executable Process. An additional namespace is available for Abstract Processes. Abstract Processes describe the externally visible behavior of the process towards business partners without exposing the internal business logic. Executable Processes, by contrast, define the internal business logic behind the external protocol.
TODO: explain scopes
4.2. Relationship to Business Partners

BPEL Business Processes offer the possibility to aggregate web services and define the business logic between each of these service interactions. It is also said that BPEL orchestrates such web service interactions. Each service interaction can be regarded as a communication with a business partner. In BPEL terms, each party that a process interacts with is called partner. The interaction takes place with the help of so-called Partner Links. Partner links are instances of typed connectors which specify the WSDL Port Types the process offers to and requires from a partner at the other end of the Partner Link.

TODO: picture
Note that for one partner, there can be a set of Partner Links. You can regard one Partner Link as one particular communication channel. Such an interaction is potentially two sided: the process invokes the partner and the partner invokes the process. Therefore, each partnerLink is characterized by a Partner Link Type and a role name. This information identifies the functionality that must be provided by the business process and by the partner service.

<partnerLinks>

 <partnerLink name="ClientStartUpLink"

 partnerLinkType="wsdl:ClientStartUpPLT"

 myRole="Client" />

</partnerLinks>

4.3. State of a BPEL Process

Variables hold the data that constitute the state of a BPEL business process during runtime. Data in BPEL is written to and read from typed variables. The values contained in such variables can be of two sources: either they come from messages exchanged with a partner, or it is intermediate data that is private to the process. In order to fulfill type-contracts with the partner, all variables in BPEL must either be WSDL message types, XML schema simple types or XML schema elements. In order to change the state of a process by changing the content of its variables, an expression language for manipulating and querying variables is required. In BPEL, the default language for that is XPath.

You can declare a variable by specifying a name and one of the three types mentioned above.

<variables>

 <variable name="myVar1" type="myNS:myXMLDataType"/>

 <variable name="myVar2" type="xsd:string"/>

</variables>

Variable declarations can take place directly under the process element, which means that they are visible to all BPEL constructs within the BPEL process.

4.4. Behavior of a BPEL Process

The major building blocks of BPEL processes are activities. There are two types: structured activities can contain other activities and define the business logic between them. In contrast, simple activities only perform their intended purpose (like calling a service, or manipulating data) and have no means to define any kind of activity internal logic.

4.4.1. Providing and Consuming Web Services

In BPEL, there exist a couple of simple activities with the purpose of consuming messages from and providing messages to web service partners. These activities are the receive activity, the reply activity and the invoke activity. All these activities allow exchanging messages with external partners (services).

The purpose of the receive activity is receiving messages from an external partner. Therefore, a receive activity always specifies the partner link and the WSDL port type and operation of the partners the web service. You need also to specify a variable that holds the requested data that will be received from the partner. A receive activity has one or more associated reply activities if it is used to provide a WSDL request-response operation.

<receive name="ReceiveRequestFromPartner"
 createInstance="yes"

 partnerLink="ClientStartUpPLT"

 portType="wsdl:ProcessInitiationInterface"

 operation="StartProcess" />

The attribute called createInstance on the receive activity means that you can use a receive activity with createInstance="yes" to create a new process instance, whereas createInstance="no" means that the incoming message will be consumed by the (already running) process instance.

As already mentioned, one receive activity can have an associated reply activity. You might think of a client that wants to order a book from a book selling process. The client would send a request to the receive activity of the book selling process, the process then would do some internal logic (like determining whether the book is available, checking if the delivery address and the provided credit card number are correct etc.). After that logic is done, it would be natural for the process to respond to the client to let him know whether the order was successful or not.

You should be aware that a reply activity can come in two flavors: It can reply normal data (which would yield to a normal reply), or it can reply faulted data (like a “the book is out of Stock” exception in the example above), which would then yield to a “faulted reply”. If so, you should specify an additional faultName attribute on the reply activity.

As you see, the reply activity is typically used in conjunction with the receive activity to implement a WSDL request-response operation on a particular communication channel (Partner Link). It provides means to return data to the caller by specifying a partnerLink and the WSDL portType and operation for the Web service. The specified variable holds the response data or fault data returned to the caller of the Web service. If fault data is returned, the faultName identifies the corresponding WSDL fault.

<reply name="ReplyResponseToPartner"
 partnerLink="ClientStartUpPLT"
 portType="wsdl:ProcessInitiationInterface"
 operation="StartProcess" />

The third web-service related activity is the Invoke activity. The Invoke activity is used to call a web service provided by a partner. A Partner link as well as a WSDL port Type and operation of the web service to be called must be specified.
<invoke name="InvokePartnerWebService"

 partnerLink="BusinessPartnerServiceLink"
 portType="wsdl:PartnerServiceInterface"
 operation="partnerOperation" />

In WSDL 1.1 there exist multiple types of operations. Two of them are supported by BPEL: one-way operations and request-response operations. An Invoke activity can therefore either call a one-way operation (and would then continue with the process logic without waiting for the partner to reply), or a request-response operation (which would block the process (or a part of it) until it receives a response from the partner service. If the operation that is invoked is of type request-response operation, you must provide both an input and output variable. In case it is a one-way operation, you only have to specify an input variable.

//TODO: @DK - example w/ in- and output
//TODO2: I think we should remove this here, since a.) handlers are not yet introduced and b.) scopes are not know yet – however: where to move this ?
Besides, you can specify various handlers on an Invoke activity. This is because an invoke Activity can be regarded as a shorthand notation of a scope activity that contains the handlers allowed as well as the invoke activity itself. The handlers allowed are fault handlers, compensation handlers and termination handlers.

For more information on scopes see section XXX, the various types of handlers will be explained in greater detail in section XXX

For the sake of completeness it should be mentioned that there are more web-service related constructs like the Pick Activity and a handler called Event Handler which will be described in sections XXX and XXX, respectively.

4.4.2. Structuring the Process Logic

BPEL provides means to structure the business logic according to your needs. If you need a number or activities executed in a sequential order (e.g. first receive the order, then check the payment, then ship the goods, then send a confirmation) you can do so by using BPEL’s sequence Activity. In other words, the sequence activity is used to define a collection of activities which are executed sequentially in lexical order.

<sequence name="InvertMessageOrder">

 <receive name="receiveOrder" ... />

 <invoke name="checkPayment" ... />

 <invoke name="shippingService" ... />

 <reply name="sendConfirmation" ... />

</sequence>

Another activity used for structuring the business logic is the if-else activity. The construct might be known from traditional programming languages. The if-else activity allows you to select exactly one branch of the activity from a given set of choices. For each choice, the behavior is to check a condition and if that condition evaluates to true, the associated branch is executed, otherwise an alternative path is taken. As with all expressions in BPEL, you can use XPath expressions to formulate your condition. Note that only the first branch with a true condition is executed. If no condition evaluates to true, then a default choice can be specified using the else branch.

<if name=”isOrderBiggerThan5000Dollars”>

 <condition expression-language="XPath">

 bool-expr: if order > 5000 $

 </condition>

 <invoke name=”calculateTenPercentDiscount” … />

 <elseif>

 <condition expression-language="XPath">

 bool-expr: if order > 2500 $

 <invoke name=”calculateFivePercentDiscount” … />

 </elseif>

 <else>

 <reply name=”sendNoDiscountInformation”… />

 </else>

</if>

4.4.3. Repetitive Activities

BPEL offers three activities that allow the repeated execution of a piece of business logic. One of these activities is the While activity. The while activity is a structured activity, i.e. it has a child nested within. The while activity allows you to repeatedly execute the child activities as long as a given condition evaluates to true. The condition is specified on the while activity and gets evaluated at the beginning of each iteration, which means consequently that the body of the while activity might not be executed at all (if the condition does not evaluate to true at all).

<while>

 <condition expression-language="XPath">

 bool-expr: if iterations > 3 $

 </condition>

 <invoke name=”increaseIterationCounter” … />

</while>

In contrast, the repeat until Activity has the difference that the body of the activity is performed at least once, since the condition is evaluated at the end of each iteration.

<repeatUntil>

 <invoke name=”increaseIterationCounter” … />

 <condition expression-language="XPath">

 bool-expr: if iterations > 3 $

 </condition>

</repeatUntil >

The third activity in the group of repetitive activities is the forEach Activity. In its default behaviour, the forEach activity iterates sequentially N times over a given set of activities. A use-case that can be imagined is that it iterates over an incoming order message where the order message consists of N order items. Technically, the <forEach> activity iterates its child scope activity exactly N+1 times where N equals the <finalCounterValue> minus the <startCounterValue>.
PROBLEM @DK: ForEach can only have a scope as direct child – scopes will only be introduced in section (ja, wo eigentlich) ? What to do ?

<forEach parallel="no" countername="N" … >

 <startCounterValue>1</startCounterValue>

 <finalCounterValue>5</finalCounterValue>

 <scope>

//check availability of each item ordered

<invoke name=”checkAvailability” … />
 </scope>

</forEach>
4.4.4. Parallel Processing

So far, you have been introduced to various concepts how business processes can be structured in a sequential fashion. However, often it is desirable or even necessary to execute things in parallel. Therefore, BPEL offers the <flow> activity. In the following example, a set of three activities (checkFlight, checkHotel and checkRentalCar) are executed in parallel, i.e. their corresponding web services would be invoked concurrently. All three activities are started concurrently when the <flow> activity starts.

<flow … >

 <links>

 </links>

 //check availability of a flight, hotel and rental car concurrently

 <invoke name=”checkFlight” … />
 <invoke name=”checkHotel” … />
 <invoke name=”checkRentalCar” … />
</flow >

Sometimes, even in a mainly parallel process, it is necessary to synchronize between some of these activities. Let’s assume a fourth activity, bookFlight, is added to the example given above. If you would just add this activity to the <flow> container, it would also be executed in parallel when the flow starts. However, booking a flight makes only sense after you checked that there is actually one available. Therefore, you can add a <link> between these two activities. Adding a <link> introduces a control dependency which means that the activity which is the target of the link will only be executed if the activity that is the source of the link has completed. The corresponding BPEL would look as follows:
<flow … >

 <links>

 <link name=”checkFlight-To-BookFlight” />

 </links>

 //check availability of a flight, hotel and rental car concurrently

 <invoke name=”checkFlight” … >
 <sources>

 <source linkName=”checkFlight-To-BookFlight”/>

 </sources>

 </invoke>
 <invoke name=”checkHotel” … />
 <invoke name=”checkRentalCar” … />
 <invoke name=”bookFlight” … >
 <targets>

 <target linkName=”checkFlight-To-BookFlight”/>

 </targets>

 </invoke>
</flow >
The semantics of <link> elements are richer then indicated in this little example. What is meant by that is that links can have so-called transition conditions associated with them. A transition condition influences the status of a link. If no <transitionCondition> is specified, the status of the link is true. If a <transitionCondition> is specified, it will set the status of the link. Take a look at the following example:
<flow … >

 <links>

 <link name=”request-to-approve” />

 <link name=”request-to-decline” />

 </links>

 <receive name="ReceiveCreditRequest"

 createInstance="yes"

 partnerLink="creditRequestPLT"

 portType="wsdl:ReceiveCreditInterface"

 operation="creditRequest"
 variable=”creditVariable”>

 <sources>

 <source linkName=”request-to-approve”>
 <transitionCondition expressionLanguage="XPath 1.0">

 $creditVariable/value < 5000
 </transitionCondition>

 </source>

 <source linkName=”request-to-decline”>

 <transitionCondition expressionLanguage="XPath 1.0">

 $creditVariable/value > 5000

 </transitionCondition>

 </source>

 </sources>

 </receive>

 <invoke name=”approveCredit” … >
 <targets>

 <target linkName=”request-to-approve”/>

 </targets>

 </invoke>
 <invoke name=”declineCredit” … >
 <targets>

 <target linkName=”request-to-decline”/>

 </targets>

 </invoke>
</flow >
The link request-to-approve has a <transitionCondition> that checks if the part value of variable creditVariable has a value that is less than 5000. If that is the case, the link status of the request-to-approve link will be set to true, otherwise to false. Since the transition condition of the request-to-decline link is the exact opposite (greater than 5000), this means that exactly one of the two successor activities approveCredit or declineCredit will be executed.
Transition conditions offer a mechanism to split the control flow based on certain conditions. Therefore, a mechanism to merge it again must be offered, too. BPEL does that with so-called join conditions. Join conditions are associated with activities, usually if the activities have any incoming links. A <joinCondition> specifies for a activity something like a “start condition”, e.g. all incoming links must have the status of “true” in order for the activity to execute, or only one incoming link must have the status true. The following example illustrates this:

<flow … >

 <links>

 <link name=”request-to-approve” />

 <link name=”request-to-decline” />
 <link name=”approve-to-notify” />
 <link name=”decline-to-notify” />

 </links>

 <receive name="ReceiveCreditRequest"

 createInstance="yes"

 partnerLink="creditRequestPLT"

 portType="wsdl:ReceiveCreditInterface"

 operation="creditRequest"

 variable=”creditVariable”>

 <sources>

 <source linkName=”request-to-approve”>

 <transitionCondition expressionLanguage="XPath 1.0">

 $creditVariable/value < 5000

 </transitionCondition>

 </source>

 <source linkName=”request-to-decline”>

 <transitionCondition expressionLanguage="XPath 1.0">

 $creditVariable/value > 5000

 </transitionCondition>

 </source>

 </sources>

 </receive>

 <invoke name=”approveCredit” … >
 <source linkName=”approve-to-notify”/>

 <targets>

 <target linkName=”request-to-approve”/>

 </targets>

 </invoke>
 <invoke name=”declineCredit” … >
 <source linkName=”approve-to-notify”/>
 <targets>

 <target linkName=”request-to-decline”/>

 </targets>

 </invoke>
 <reply name=”notifyApplicant” … >

 <targets>

 <joinCondition>

 $approve-to-notify and $decline-to-notify

 </joinCondition>
 <target linkName="approve-to-notify" />

 <target linkName="decline-to-notify" />

 </targets>

 </invoke>
</flow >
Let’s imagine that an error occurs in activity approveCredit, the outgoing link of this activitiy (which is link approve-to-notify) will be set to false by the execution environment. In other words, such a false link status will be propagated transitively along entire paths formed by successive links until a join condition is reached that evaluates to true. This approach is called Dead-Path Elimination (DPE).
TODO: Modify the example so that the joinCondition makes sense.
4.4.5. Data Manipulation

Explain assignment …

4.4.6. Exception Handling

Explain fault handler (on process level)
5. Advanced Concepts I
5.1. Refining the Process Structure

In BPEL, you may structure your business process into a hierarchy of nested scopes. Each scope can have its own definitions of variables, partner links, message exchanges, correlation sets, and handlers. This limits the visibility of these definitions to the enclosed activities and provides the context in which they are executed. The outermost context is the process definition itself.
[TODO: scope initialization]

[TODO: scope termination]
Two elements of the BPEL language require the use of scopes. The primary activity in the onEvent event handler and in the forEach activity must be a scope. These scopes own the definition of the event handler variable and the loop counter variable, respectively. In the event handler case, the enclosed scope may also own the definition of the partner link, message exchange, or correlation set definition used by the event handler.
If an invoke activity contains the definition of a fault handler or compensation handler then it is equivalent to an implicit scope immediately enclosing the invoke activity. This implicit scope activity assumes the name of the invoke activity it encloses, its suppressJoinFailure attribute and its sources and targets elements.
5.1.1. Scoped Fault Handling

BPEL fault handlers for processes have been introduced in section ‎4.4.6. They may also be associated with a scope in order to deal with exceptional situations more locally to the place where they occurred.
<scope>

 <faultHandlers>

 <catch faultName="xyz:anExpectedError">

 ...

 </catch>

 <catchAll> <!-- deal with other errors -->
 ...

 </catchAll>

 </faultHandlers>

 <sequence>

 <!-- do work -->

 </sequence>

</scope>

Example 1: Scoped fault handling.
When a fault happens within a scope then the scope completes unsuccessfully. Before the scope’s processing ends, a local fault handler can deal with the fault. Fault handlers may themselves throw faults or rethrow the fault they caught. This fault is propagated to the next enclosing scope, or the process if no more enclosed scope is present.
5.1.2. Terminating Running Work

Before a fault handler actually begins its processing, all other running work within its associated scope is terminated. Structured activities are terminated, and the termination is propagated into their contained activities. Some basic activities (assign, empty, throw, rethrow, exit) are allowed to complete while others are interrupted.
Scopes themselves may influence their termination behavior. Typical use cases include performing cleaup work or sending a message to a business partner. After terminating the scope’s primary activity and all running event handler instances, the scope’s (custom or default) terminationHandler is executed.
<scope>

 <terminationHandler>

 <!-- clean up resources in case of forced termination -->
 </terminationHandler>

 <sequence>

 <!-- do work -->

 </sequence>

</scope>

Example 2: Termination handling.
Custom termination handlers can contain any BPEL activities, including compensate and compensateScope. They cannot propagate faults to their enclosing business logic because the termination was either caused by another fault or by a completion condition of a forEach activity.
5.1.3. Undoing Completed Work

Business processes typically represent long-running work which cannot be completed within a single atomic transaction. Already committed ACID transactions create persistent effects before the process is completed. Application-specific compensation steps undo these effects when required. In a BPEL scope, the language construct for reversing previously completed process steps is the compensationHandler. It can be invoked after successful completion of its associated scope, using the compensate or compensateScope activity.
<scope name="S1">

 <faultHandlers>

 <catchAll>

 <compensateScope target="S2" />

 </catchAll>

 </faultHandlers>

 <sequence>

 <scope name="S2">

 <compensationHandler>

 <!-- undo work -->

 </compensationHandler>

 <!-- do some work -->

 </scope>

 <!-- do more work -->

 <!-- a fault is thrown here; results of S2 must be undone -->

 </sequence>

</scope>

Example 3: Compensation handling.
[TODO: runtime state visible from a compensation handler]
[TODO: compensation handler instance groups]

[TODO: failed compensation]
5.1.4. Event Handling

Each scope as well as the process itself may define event handlers. They are used to process Web service request messages arriving in parallel to the primary activity of the scope or process. As one of multiple advanced interaction scenarios, event handlers are described in section ‎5.2.3.
5.2.
Advanced Web Service Interactions

In the previous chapter, we explained how the receive activity is used to perform a blocking wait for a particular incoming message. There are also scenarios where the behavior of a business process is more complex. In some cases, one out of a set of different messages will arrive. In other cases, multiple incoming messages are expected before further steps in the business logic can be performed. Sometimes messages arrive in parallel to the main flow of the business process. All of these scenarios can be modeled using BPEL constructs. In the specification, these constructs are jointly referred to as inbound message activities (IMA). In the following section, we will discuss each construct in detail.
5.2.1. Selective Event Processing

In the first advanced scenario, there is a set of multiple suitable messages where each one of them can trigger subsequent steps in the business process. Optionally, one is able to specify the behavior for the exceptional case where none of these expected messages arrive within a certain amount of time. The pick activity contains one or more onMessage elements and zero or more onAlarm elements. Each onMessage element points to a Web service operation exposed by the business process and to a variable that holds the received message. Each onAlarm element has a specified point in time or a time interval. Both elements contain the business logic to be performed when the specified message or timeout event occurs.

<pick>

 <onMessage partnerLink="buyer"
 portType="orderEntry"

 operation="inputLineItem"

 variable="lineItem">

 <!-- activity to add line item to order -->

 </onMessage>

 <onMessage partnerLink="buyer"
 portType="orderEntry"

 operation="orderComplete"

 variable="completionDetail">

 <!-- activity to perform order completion -->

 </onMessage>

 <onAlarm>

 <for>'P3DT10H'</for>

 <!-- handle timeout for order completion -->

 </onAlarm>

</pick>

Example 4: The pick activity.
A pick activity with two onMessage branches and one onAlarm branch is shown in Example 4. Either the inputLineItem operation, the orderComplete operation, or the expiration of the timeout interval of 3 days and 10 hours will cause the associated activity to be processed and the pick activity to complete. The first event to occur triggers the associated logic. Only one event is processed, that is, the pick activity completes when the business logic associated with this event has been processed.
Similar to the receive activity; createInstance=”yes” can be specified for the pick activity in order to cause a new process instance to be created upon the receipt of message. Note that a new process instance can only be created by receiving a message and not with an onAlarm specification.
5.2.2. Multiple Event Processing

In the previous section, we showed how one message can be received when there are multiple possible choices. We now take a look at a scenario where more than one message is needed to trigger subsequent steps. Consider a broker’s business process that does its work after both a buyer and a seller have reached agreement on a particular trade. Both trading partners inform the broker who then initiates the settlement. The broker process waits for a message from both partners without knowing which one arrives first.

<flow>

 <links>

 <link name="buyToSettle" />

 <link name="sellToSettle" />

 </links>

 <receive name="receiveBuyerInformation" createInstance="yes" ...>

 <sources>

 <source linkName="buyToSettle" />

 </sources>

 </receive>

 <receive name="receiveSellerInformation" createInstance="yes" ...>

 <sources>

 <source linkName="sellToSettle" />

 </sources>

 </receive>

 <invoke name="settleTrade" ...>

 <targets>

 <joinCondition>$buyToSettle and $sellToSettle</joinCondition>

 <target linkName="buyToSettle" />

 <target linkName="sellToSettle" />

 </targets>

 </invoke>

 ...

</flow>

Example 5: Multiple start activities.
You noticed two receive activities with the createInstance=”yes” attribute shown in Example 5. Such activities are also called start activities. In our broker scenario, we certainly don’t want to create two different process instances. Both messages from buyer and seller must be processed by the same one business process instance. Exactly this is achieved by using two start activities. If both incoming messages fit to the respective receive activity and both are designated for the same business process instance then the second message will not create a new process instance. In a subsequent section, we explain how messages are correlated with particular process instance. Although there are two start activities, only the first message actually causes a process instance to be created and the second one will be received by the same instance. After both receive activities have been executed, processing of the broker’s business logic continues at the activity that joins the two parallel control flow branches into one.
5.2.3. Concurrent Event Processing

So far, we only talked about activities that perform a blocking wait until a certain message or timeout event occurs. However, it is not always possible or appropriate to interrupt the business logic. Consider a purchase order process that is initiated by a buyer’s purchase request message. The order may be completely processed without further interaction; ultimately the goods are shipped and the invoice is returned to the buyer. In some cases, however, the buyer wants to inquire the status of the purchase order, modify or even cancel the order while it is being processed. Such interactions can not be expected to happen only at particular points in the order processing. The business process must be enabled to accept requests to arrive in parallel to its “normal” flow of control. In BPEL, this kind of asynchronous execution is called event handling.
<process name="purchaseOrderProcess" ...>

 ...

 <eventHandlers>

 <onEvent partnerLink="purchasing"
 portType="lns:purchasingLT"

 operation="queryOrderStatus" ...>

 <scope>

 ...

 </scope>

 </onEvent>

 <onEvent partnerLink="purchasing"
 portType="lns:purchasingLT"

 operation="cancelOrder" ...>

 <scope>

 ...

 </scope>

 </onEvent>

 </eventHandlers>

 ...

</process>

Example 6: Event handlers.
Event handlers are associated with the whole process or a scope. They are enabled when their associated scope is initialized and disabled when their associated scope terminates. When enabled, any number of events may occur. They are processed in parallel to the scope’s primary activity and in parallel to each other. Message events also represent Web services operations exposed by a process and are modeled as onEvent elements. Timer events are modeled as onAlarm elements, similar to pick activities. In event handlers, timer events can be processed multiple times. Event handlers can never be used to create new process instances, so message events are always received by a process instance that is already active.
5.2.4. Message Correlation
In the previous sections, we have seen several scenarios in which a process receives more than one message or exposes (“implements”) more than one Web service operation. Some of the associated inbound message activities can be used to created new process instances; others are used to model situations where a running process instance receives additional requests.
If a Web service request message does not lead to the creation of a new process instance, how does it “find” the running process instance it is designated for? You may be aware of stateful Web service implementations where the target instance of the stateful service is identified reference parameters of WS-Addressing [WS-A] endpoint references. This mechanism may also be used to identify process instances but BPEL does not mandate this approach. BPEL provides a portable correlation mechanism called correlation sets.
The major observation behind this concept is the fact that most messages exchanged between business processes and the outside world already carry the key data required to uniquely identify a process instance. For example, consider again a purchase order process. The customer sending a purchase order is usually identified by a customer id. What if multiple orders submitted by this customer are in progress? In this case, one would also associate an order number with each order. Typically such correlation data is always part of the message payload. BPEL allows defining properties that represent pieces of correlation information. The BPEL implementation is made aware of these properties and their location in a message by using property alias definitions. Finally, each inbound message activity can be associated with a set of properties that together correlate an inbound request with a unique process instance.
<wsdl:definitions ...>

 ...

 <wsdl:message name="sendPOResponse">

 <wsdl:part name="confirmation"

 element="po:sendPurchaseOrderResponse"/>

 </wsdl:message>

 <wsdl:message name="queryPORequest">

 <wsdl:part name="query"

 element="po:queryPurchaseOrderStatus" />

 </wsdl:message>

 <wsdl:message name="cancelPORequest">

 <wsdl:part name="cancellation"

 element="po:cancelPurchaseOrder" />

 </wsdl:message>

 ...

 <vprop:property name="customerID" type="xsd:string" />

 <vprop:property name="orderNumber" type="xsd:int" />

 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:sendPOResponse" part="confirmation">

 <bpel:query>CID</bpel:query>

 </vprop:propertyAlias>

 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:sendPOResponse" part="confirmation">

 <bpel:query>Order</bpel:query>

 </vprop:propertyAlias>

 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:queryPORequest" part="query">

 <bpel:query>CID</bpel:query>

 </vprop:propertyAlias>

 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:queryPORequest" part="query">

 <bpel:query>Order</bpel:query>

 </vprop:propertyAlias>

 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:cancelPORequest" part="cancellation">

 <bpel:query>CID</bpel:query>

 </vprop:propertyAlias>

 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:cancelPORequest" part="cancellation">

 <bpel:query>Order</bpel:query>

 </vprop:propertyAlias>

 ...

</wsdl:definitions>

Example 7: Correlation property and property alias definitions.
The definition of the WSDL messages that carry correlation data is shown in Example 7. The two correlation properties are used to uniquely identify a process instance for a particular purchase order. For each WSDL message and each property, property alias definitions specifiy where the property can be located within the message.
<process name="purchaseOrderProcess" ...>

 <correlationSets>

 <correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber" />

 </correlationSets>

 ...

 <eventHandlers>

 <onEvent partnerLink="purchasing"
 portType="lns:purchasingLT"

 operation="queryPurchaseOrderStatus" ...>

 <correlations>

 <correlation set="PurchaseOrder" initiate="no" />

 </correlations>

 <scope>

 ...

 </scope>

 </onEvent>

 <onEvent partnerLink="purchasing"
 portType="lns:purchasingLT"

 operation="cancelPurchaseOrder" ...>

 <correlations>

 <correlation set="PurchaseOrder" initiate="no" />

 </correlations>

 <scope>

 ...

 </scope>

 </onEvent>

 </eventHandlers>

 ...

 <sequence>

 <receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder" ...

 createInstance="yes">

 </receive>

 ...

 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder" ...>

 <correlations>

 <correlation set="PurchaseOrder" initiate="yes" />

 </correlations>

 </reply>

 ...

 <!-- process the purchase order -->

 ...

 </sequence>

</process>

Example 8: Correlation sets.
In Example 8, the process instance is created by receiving a new purchase order. The receipt of the purchase order is confirmed by returning a reply. This reply message contains the correlation information that must be presented in subsequent requests that are targeted at this process instance. Each event handler therefore refers to the same correlation set. The correlation set is initiated when the purchase order confirmation reply is sent. It is immutable after that point in time and identifies this process instance. The event handlers for purchase order status inquiries and purchase order cancellation specify initiate=”no”. When these operations are invoked, the correlation set properties (customerId and orderNumber) must have exactly the same values as in the reply activity, otherwise, the request can not be correlated with the correct process instance.
5.2.5. Concurrent Message Exchanges
Each inbound message activity, that is, receive, onMessage, or onEvent, may have an associated reply activity in order to implement a WSDL request-response operation. If a process has multiple receive and reply activities that point to the same partner link and WSDL operation then the association between individual receive and reply activities is ambiguous. In this case, you use the messageExchange attribute to establish the one-to-one relationship.
<process ...>

 ...

 <messageExchanges>

 <messageExchange name="receiveBuyerInformation" />

 <messageExchange name="receiveSellerInformation" />

 </messageExchanges>

 ...

 <flow>

 ...

 <receive messageExchange="receiveBuyerInformation"
 partnerLink="tradingPartner"

 portType="lns:tradingPT"

 operation="tradingPartnerInfo" .../>

 <receive messageExchange="receiveSellerInformation"
 partnerLink="tradingPartner"

 portType="lns:tradingPT"

 operation="tradingPartnerInfo" .../>

 ...

 <reply messageExchange="receiveBuyerInformation"
 partnerLink="tradingPartner"

 portType="lns:tradingPT"

 operation="tradingPartnerInfo" .../>

 <reply messageExchange="receiveSellerInformation"
 partnerLink="tradingPartner"

 portType="lns:tradingPT"

 operation="tradingPartnerInfo" .../>

 ...

 </flow>

</process>

Example 9: Explicit message exchange declarations.
Two receive-reply pairs point to the same partner link and Web service operation, shown in Example 9. In order to disambiguate the relationship between these activities, message exchanges have been declared explicitly and referenced on the respective receive and reply activities.
5.3. More Parallel Processing
In section ‎4.4.3, we introduced different forms of repetitive processing – the while, repeatUntil, and forEach activities. In addition to these sequential loops, there is a variation of the forEach activity. Instead of performing each loop iteration in a sequence, all loop iterations are started at the same time and processed in parallel. Besides the flow activity and event handlers, this is the third form of parallel processing in BPEL.
Scenarios where the parallel forEach activity is useful include cases where sets of independent data are processed or where independent communication with different partners can be performed in parallel. The main difference compared to the flow activity is that the number of parallel branches is not known at modeling time. Finally, the forEach activity allows specifying a completion condition. You would use it if not all branches are required to complete, for example, when parallel requests are sent out and a sufficiently large subset of the recipients have responded.
[TODO: explain counter variable]
[TODO: explain completion condition]
In Example 9, we show how the forEach activity can be used. The example has the following structure:
1. Obtain a list of addresses (Endpoint References)
2. For each address (EPR), perform the following in parallel:

a. Assign the EPR to a partner link local to the forEach scope

b. Send out a request for a quote
c. Receive quote

d. Leave the parallel forEach when 50% of the resonses have arrived

3. Work with the received quotes
<invoke name="retrieveAddresses"
 partnerLink="localDirectory"

 portType="directoryPT"

 operation="query"

 inputVariable="filterCriteria"

 outputVariable="addressList"/>

<forEach parallel="yes" countername="n">

 <startCounterValue>1</startCounterValue>

 <finalCounterValue>count($addressList)</finalCounterValue>

 <completionCondition>

 <branches>0.5*count($addressList)</branches>

 </completionCondition>

 <scope>

 <partnerLinks>

 <partnerLink name="address"
 partnerLinkType="..."

 partnerRole=""

 myRole=""/>

 </partnerLinks>

 <sequence>

 <assign>

 <copy>

 <from>$addressList[$n]</from>

 <to partnerLink="address" />

 </copy>

 </assign>

 <invoke name="requestQuote"
 partnerLink="address"

 portType="partnerPT"

 operation="getQuote"

 inputVariable="" />

 <receive name="receiveQuote"
 partnerLink="address"

 portType="partnerCallbackPT"

 operation="returnQuote"

 variable="quote" />

 <assign>

 <copy>

 <from variable="quote" />

 <to>$quotes[$n]</to>

 </copy>

 </assign>

 <sequence>
 </scope>

</forEach>

... work with received quotes ...

Example 10: The forEach activity.
[TODO: more details needed in the example]
5.4. Delayed Execution
In some situations, the execution of the business logic cannot continue immediately. The process has to wait for a specified time period or until a certain point in time is reached. The wait activity indicates that processing will be suspended. Note that concurrent branches in the process are not affected.
<wait> <!-- wait for three days and ten hours to go by ... -->
 <for>'P3DT10H'</for>

</wait>

Example 11: The wait activity.
Duration-valued or deadline-valued XPath expressions can be specified in the wait activity. If a point in time is specified that has already passed, or if a zero or negative duration is specified, then the wait activity completes immediately.
5.5. Immediately Ending a Process

When a process encounters exceptional situations, it may deal with them using fault handling, termination handling, and compensation handling mechanisms introduced earlier. In case of unexpected severe failures, there may not always be a reasonable way of dealing with them. The exit activity can be used to immediately end all currently running activities, on all parallel branches, without involving any termination handling, fault handling, or compensation behavior.
<if>

 <condition>...</condition> <!-- the good case -->
 ...

 <elseif>

 <condition>...</condition> <!-- handle expected error -->
 ...

 </elseif>

 ...

 <else> <!-- unexpected error – unable to handle ... -->
 <exit/>

 </else>

</if>

Example 12: The exit activity.
When using the exit activity, you must be aware that any open conversations are also affected, that is, other partners interacting with the process may be waiting for a response that will never arrive.
5.6. Doing Nothing

The empty activity is used to specify that no action is to be taken, that is, this is the BPEL rendering of a no-op activity. This activity is used for fault handlers that consume a fault without acting on it. Other use cases for the empty activity include synchronization points in a flow, or placeholders for activities that are to be added later.
<empty>

 <targets>

 <target linkName="left-branch"/>

 <target linkName="right-branch"/>

 </targets>

</empty>

Example 13: The empty activity.
5.7. Data Validation
A business process receives data from partners via inbound message activities. The assign activity introduced earlier provides means for simple data manipulation. The result of such updates performed on BPEL variables cannot always be guaranteed to be valid according to the WSDL message or XML schema type/element the variable is declared with. In case of complex-typed variables, multiple assignment steps may be required to create a value, so it may not even be avoidable that intermediate results are not valid. In order to make sure that variable contents are valid according to the variable declaration, BPEL provides two explicit approaches – the validate activity and the validate attribute of the assign activity.
<scope>

 <faultHandlers>

 <catch faultName="bpel:invalidVariables" >

 <reply name="invalidPurchaseOrder" ... />

 </catch>

 </faultHandlers>

 <sequence>

 <receive name="receivePurchaseOrder" variable="purchaseOrder" ... />

 ...

 <validate name="validatePurchaseOrder" variables="purchaseOrder" />

 <reply name="acknowledgeReceipt" ... />

 ...
 <sequence>
<scope>
Example 14: The validate activity.
The validate activity validates a list of specified variables against their corresponding XML definition. If the validate attribute of the assign activity is set to "yes" then the assign activity validates all the variables being modified by the activity. In case of a WSDL message variable, each message part is validated. The standard fault bpel:invalidVariables is thrown if one of the variables is invalid against its corresponding XML definition.
Explicit variable validation at runtime implies additional resource consumption that is not always desirable. It may be necessary to validate certain variables during a test phase or in exceptional situations without modifying the business process each time. For this purpose, the BPEL implementation may provide means to turn on/off explicit validation.
5.8. Concurrent Data Manipulation

We have discussed several different ways for modeling concurrent behavior in earlier sections. The process model may contain a fixed number of parallel activities in a flow activity or a variable number of concurrent branches in a forEach activity or event handler instances. It is not new news that one should be careful when such parallel activities access the same global data.
The BPEL scope provides an approach for controlling global data access. Consider multiple scopes containing activities reading or updating the same variables. When the attribute isolated is set to “yes” on each of these scopes then they no longer step on each other’s feet. If activities in concurrent scopes access shared variables then these accesses are protected in the same way as if all such activities within one scope are completed before any in another scope.
<process ...>

 <variables>

 <variable name="global" element="..."/>

 </variables>

 <flow>

 <scope name="S1" isolated="yes">

 <sequence>

 ...

 <invoke ... outputVariable="global"/>

 ...

 </sequence>

 </scope>

 <scope name="S2" isolated="yes">

 <sequence>

 ...

 <assign>

 <copy>

 <from>...</from>

 <to variable="global"/>

 </copy>

 </assign>

 ...

 </sequence>

 </scope>

 </flow>

</process>

Example 15: Isolated scopes.
The same isolation semantics applies to variable accesses via properties and to endpoint reference assignments from and to partner links.
The isolation domain of a scope also includes the execution of event handlers, fault handlers, and termination handlers. A compensation handler of an isolated scope is also isolated.
Scopes contained in isolated scopes must have their isolated attribute set (or defaulted) to “no”, however, access to shared variables from within such enclosed scopes is controlled by the enclosing isolated scope as well.
5.9. Dynamic Business Partner Resolution
Before a BPEL partner link can be used to invoke a partner’s Web service operation, the partner link must be associated with a concrete Web service endpoint address. This can be done during the deployment of the process (which is out of scope of the BPEL specification), or dynamically at runtime.

A variant of the BPEL assign activity is used to assign an endpoint reference to a partner link. Endpoint references can be those defined in [WS-Addressing], enclosed by a neutral container element sref:service-ref.
<sref:service-ref reference-scheme="http://www.w3.org/2005/08/addressing">
 <wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 </wsa:EndpointReference>

</sref:service-ref>

Note that the optional reference-scheme attribute would only used when the child element of the sref:service-ref is ambiguous.
Let’s have a look at an example. Consider a process that receives an endpoint reference which is then used for a later invocation of a Web service.

<process name="purchaseOrderProcess" ... >
 <partnerLinks>

 <partnerLink name="myCustomer"
 partnerLinkType="lns:purchaseOrderLT"
 myRole="purchaseOrderService"/>

 partnerRole="customer"/>

 </partnerLinks>

 ...
 <receive partnerLink="myCustomer"
 operation="sendPurchaseOrder"

 variable="purchaseOrder"/>

 ...
 <assign>

 <copy>

 <from>$purchaseOrder/callback</from>
 <to partnerLink="myCustomer"/>

 </copy>

 </assign>

 ...

 <invoke partnerLink="myCustomer"
 operation="sendInvoice"

 variable="invoice"/>

 ...
</process>

Example 16: Endpoint reference assignment to a partner link.
In Example 16, a purchase order process exposes a one-way operation for submitting an order. The order contains an endpoint reference (wrapped in a sref:service-ref element) that points to another one-way operation provided by the caller. After assigning this endpoint reference to the partner role side of the partner link associated with the caller, the callback operation can be invoked in order to return an invoice.

Now what would it look like if the calling application is itself implemented as a BPEL process? This customer process has to submit a purchase order, containing a callback endpoint reference. In addition, it has to provide the callback operation itself in order to receive the invoice.
<process name="customerProcess" ... >

 <partnerLinks>

 <partnerLink name="myPurchaseOrderService"
 partnerLinkType="lns:purchaseOrderLT"
 partnerRole="purchaseOrderService"/>

 myRole="customer"/>

 </partnerLinks>

 ...
 <assign>

 <copy>

 <from partnerLink="myPurchaseOrderService"
 endpointReference="myRole"/>

 <to>$purchaseOrder/callback</to>

 </copy>

 </assign>

 ...

 <invoke partnerLink="myPurchaseOrderService"
 operation="sendPurchaseOrder"

 variable="purchaseOrder"/>

 ...
 <receive partnerLink="myPurchaseOrderService"
 operation="sendInvoice"

 variable="invoice"/>

 ...
</process>

Example 17: Endpoint reference assignment from a partner link.
The customer process is shown in Example 17. The endpoint reference pointing to the callback operation is assigned to an element contained in the purchase order request. It is then sent to the purchase order service, which eventually uses this endpoint reference to return the invoice.
Note that in this example, it is required that the callback operation is performed on the same customer’s process instance that submitted the purchase order in the first place. This may either be done by using BPEL correlation sets. Alternatively, the implementation may choose to use stateful endpoint references carrying instance identification information, for example, within a WS-Addressing ReferenceParameters element.
6. Advanced Concepts II
6.1.
Language Extensibility

[Explain ExtensionActivity, ExpressionLanguage/QueryLanguage, and general extension points …]
6.2. Abstract Processes

[Explain templating, externally observable behavior, business protocols …]
7. Using WS-BPEL

7.1.
Applying WS-BPEL to our scenario
This section proceeds step-by-step through the process of developing a WS-BPEL definition that describes the scenario outlined in Chapter 3 – where the PTC requires a WS-BPEL process to manage the submission of Timesheets for billable hours.
7.1.1. Getting Started: Defining the process element

Before writing the WS-BPEL process definition, a WS-BPEL target namespace URI for it needs to be decided upon. Then, the WS-BPEL process definition can be started with the following skeleton:

<process name="TimesheetSubmission"
 targetNamespace="http://www.xmltc.com/ptc/process/"

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable/"
 xmlns:bpl="http://www.xmltc.com/ptc/process/"
 xmlns:emp="http://www.xmltc.com/ptc/employee/"
 xmlns:inv="http://www.xmltc.com/ptc/invoice/"
 xmlns:tst="http://www.xmltc.com/ptc/timesheet/"
 xmlns:not="http://www.xmltc.com/ptc/notification/">

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<sequence>

...

</sequence>

...

</process>

Example 7-1: A skeleton process definition.

As illustrated here, the process element contains a series of common child elements, which are elaborated upon in following sections.
At this point, one can start defining the TimesheetSubmission process.
7.1.2. Defining <partnerLinks> and <partnerLink>s

The TimesheetSubmission process will interact with other parties during execution, so it is good to start with defining the services (partners) that will participate in the process. This is done in the <partnerLinks> section, which defines the parties that will interact with the process in the course of processing the timesheet submission through <partnerLink> definitions. Each <partnerLink> definition establishes the port type of the service (partner) participating in the business process, representing communication exchange between two partners – the process itself being one partner, and the external service being the other.

Based on the nature of the communication, the role of the process will vary. Partners can either invoke or be invoked by the process, as such acting either as a process client or process service. For example, a process that is invoked by an external service may act in the role of “TimesheetSubmission”; when the same process invokes another service to verify an invoice, it acts under a different role, such as “InvoiceClient.” The partnerLink element therefore contains the myRole and partnerRole attributes, which establish the service provider role of the process and the partner service, respectively.
The myRole attribute is used when the process is invoked by a partner service; here the process acts as the service provider. The partnerRole attribute identifies the partner service that the process will be invoking, since here the partner service acts as the service provider.

Both myRole and partnerRole attributes can be used by the same <partnerLink> when it is expected that the process will act as both service requestor and provider with the same partner. For example, during asynchronous communication between the process and partner services, the myRole setting indicates the process service’s role during the callback of the partner service.
The four partnerLink definitions shown below correspond to the consumer of the Timesheet Submission process (client), as well as the providers of invoicing (Invoice), timesheet data (Timesheet), employee data (Employee), and notification services (Notification).
<partnerLinks>

<partnerLink name="client"

partnerLinkType="tns:TimesheetSubmissionType"

myRole="TimesheetSubmissionServiceProvider"/>

<partnerLink name="Invoice"

partnerLinkType="inv:InvoiceServiceType"

partnerRole="InvoiceServiceProvider"/>

<partnerLink name="Timesheet"

partnerLinkType="tst:TimesheetServiceType"

partnerRole="TimesheetServiceProvider"/>

<partnerLink name="Employee"

partnerLinkType="emp:EmployeeServiceType"

partnerRole="EmployeeServiceProvider"/>

<partnerLink name="Notification"

partnerLinkType="not:NotificationServiceType"

partnerRole="NotificationServiceProvider"/>

</partnerLinks>

Example 7-2: The partnerLinks construct containing one <partnerLink> for an invoking external partner and four partnerLinks for partners invoked by the process service.

7.1.3. Defining <partnerLinkType>s
In Example 7-2, note that each <partnerLink> contains a partnerLinkType attribute, which references a <partnerLinkType> element. <partnerLinkType> identifies the functionality to be provided by the process and the partner for the relationship to succeed – that is, the WSDL port types elements referenced by the partnerLink within the process definition. Therefore, partnerLinkType elements are typically embedded directly within the WSDL descriptions for each partner, including the process itself.

This <partnerLinkType> element contains one role element for each role the service can play, as defined by the partnerLink myRole and partnerRole attributes. As such, a partnerLinkType will have either one or two child role elements.
In the below example WSDL, the partnerLinkType represents the interaction between the timesheet submission process and the employee data service:
<definitions name="Employee"

targetNamespace="http://www.xmltc.com/ptc/employee/wsdl/"

xmlns:emp="http://www.xmltc.com/ptc/employee/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype/"

...>

...

<plnk:partnerLinkType name="EmployeeServiceType">

<plnk:role name="EmployeeServiceProvider"

portType name="emp:EmployeeInterface"/>

</plnk:partnerLinkType>

 ...

</definitions>

Example 7-3: The employee data service WSDL definition containing partnerLinkType definitions.
The below example WSDL, the partnerLinkType represents the interaction between the timesheet submission process and the notification service:
<definitions name="Notification"

targetNamespace="http://www.xmltc.com/ptc/notification/wsdl/"

xmlns:not="http://www.xmltc.com/ptc/notification/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype/"

...>

...

<plnk:partnerLinkType name="NotificationServiceType">

<plnk:role name="NotificationServiceProvider"

portType name="not:NotificationInterface"/>

</plnk:partnerLinkType>

 ...

</definitions>

Example 7-4: The notification service WSDL definition containing partnerLinkType definitions.

Note that multiple partnerLink elements can reference the same partnerLinkType. This is useful for when a process has the same relationship with multiple partners. All such partners can thus use the same process portType elements.

7.1.4. Defining <variables>
Although the partners that participate in the Timesheet Submission process have been specified, one still needs to decide how state is maintained between their message exchanges. The <variables> section is used to define the data variables globally used by the process to store this state information, along with any other state information to be maintained for the process logic itself. Entire messages and data sets defined by WSDL message types, XML Schema types or XML Schema elements can be stored as in a variable element and accessed later during the course of process execution.

The type of data assigned to a variable element needs to be pre-defined using one of the following three attributes: messageType (for WSDL message types), type (for simple or complex XML Schema types), or element (for XML Schema elements).
<variables>

 <variable name="ClientSubmission"

messageType="bpl:receiveSubmitMessage"/>

 <variable name="EmployeeHoursRequest"

messageType="emp:getWeeklyHoursRequestMessage"/>

 <variable name="EmployeeHoursResponse"

messageType="emp:getWeeklyHoursResponseMessage"/>

 <variable name="EmployeeHistoryRequest"

messageType="emp:updateHistoryRequestMessage"/>

 <variable name="EmployeeHistoryResponse"

messageType="emp:updateHistoryResponseMessage"/>

...

</variables>

Example 7-5: The variables section hosting a selection of the variable elements used by the Timesheet Submission process.

Typically, a variable with the messageType attribute is defined for each input and output message processed by the process definition. The value of this attribute is the message name from the partner process or service definition.

7.1.5. The getVariableProperty function
WS-BPEL provides the getVariableProperty function to allow information stored in or associated with variables to be processed during the execution of a business process. Using getVariableProperty, global property values can be retrieved from variable.
getVariableProperty(variable name, property name)

Example 7-6: getVariableProperty function.

The first argument names the source variable for the data and the second is the QName of the property to select from that variable. This function returns the requested value by applying the appropriate propertyAlias for the requested property to the current value of the submitted variable.
getVariableProperty("EmployeeHistoryResponse", "employee:grade")

Example 7-7: Using getVariableProperty to extract an employee’s grade from the EmployeeHistoryResponse value in a Timesheet Submission process.
7.1.6. Defining Process Logic

Now that partners and global variables have been specified, the Timesheet Submission process needs to do some meaningful work with them. WS-BPEL provides constructs to structure this process logic to express control patterns, handling of faults and external events, and coordination of message exchanges.

7.1.7. Defining a <sequence> activity
In the Timesheet Submission process, activities needs to be organized so that they are executed in a pre-defined, sequential order. The <sequence> activity in WS-BPEL provides this feature, allowing one to organize any number of activities in said fashion. allows you to organize a series of activities so that they are executed in a predefined, sequential order.

<sequence>

 <receive>

...

 </receive>

 <assign>

...

 </assign>

 <invoke>

...

 </invoke>

 <reply>

...

 </reply>

</sequence>

Example 7-7: A sequence activity containing some activity elements provided by WS-BPEL. WS-BPEL provides numerous activities that can be used to express process logic within a process definition.

Note that sequence activities can be nested, allowing one to define sequences within sequences.
7.1.8. Defining an <if> activity
In the Timesheet Submission process, conditional behavior is needed for certain activities to decide between two or more branches. The <if> activity construct in WS-BPEL provides this feature, allowing one to select exactly one branch of an activity from the given set of choices.

<if name="isEmployeeGradeGreatherThan10">

 <condition>

bpel:getVariableProperty(

"EmployeeHistoryResult","employee:grade") > 10
 </condition>

 <invoke name="calculateSurcharge" ... />

 <else>

<reply name="sendNoSurchargeInformation" ... />

...

 </else>

</if>

Example 7-8: An if activity containing conditions for evaluating a branch to process billing surcharges for employees above grade "10", using the getVariableProperty function.

The first branch for which the condition holds true is taken, and its contained activity performed. If no branch with a condition is taken, the <else> branch is taken if present. WS-BPEL functions or XPath expressions can be used to formulate the condition.

<if name="isAdministriativeHours">
 <condition>

bool-expr: if hourType = 6

 </condition>

 <invoke name="validateAdministrativeHours" ... />

 <else>

<reply name="processNoAdministrativeHours" ... />

...

 </else>

</if>
Example 7-9: An if activity containing conditions for evaluating a branch to process hour limits for administrative tasks.
7.1.9. Defining a <while> activity

In the Timesheet Submission process, certain bits of process logic will need to be repeatedly executed. The <while> activity construct in WS-BPEL provides this feature, allowing one to repeatedly execute an activity or activities defined within it, as long as the specified condition holds true.

<while>

 <condition>

bpel:getVariableProperty(

"InvoiceStatusResponse","invoice:status") < 9

 </condition>

 <invoke name="iterateInvoiceValidation" ... />

</if>

Example 7-10: A while activity containing a condition for evaluating the invoice status for a timesheet submission, and processing invoice validation until the status is updated to "9".

The condition is evaluated at the beginning of each iteration; as such, the body of the while may not be executed at all, if the condition never holds.

7.1.10. Defining a <repeatUntil> activity

If the body of the activity must be performed at least once, the repeatUntil activity should be used in place of while. The <repeatUntil> activity construct in WS-BPEL provides the same repeating execution facility as while, except that the condition is evaluated at the end of each iteration.

<repeatUntil>

 <invoke name="iterateTimesheetValidation" ... />

 <condition>

bpel:getVariableProperty(

"TimesheetStatusResponse","timesheet:completionStatus") < 5
 </condition>

</repeatUntil>

Example 7-11: A repeatUntil activity processing timesheet completion validation, containing a condition for evaluating the timesheet completion status for a timesheet submission until the status is updated to "5" .

7.1.11. Defining a <forEach> activity

In the Timesheet Submission process, each timesheet record entry is required to validate employee grade and expense type for the client receiving the service (which may restrict certain types for certain employee grades). The <forEach> activity can be used to express this as it executes its scoped activity for a specified number of iterations.

For this example, the Timesheet Submission process obtains the list of timesheet expense entries, and for each entry, perform the following in parallel:

1. Assign the EPR to a partner link local to the forEach scope

2. Send out a request for validation

3. Receive a boolean response

4. Leave the parallel forEach when all responses have arrived

<invoke name="retrieveExpenseList"
 partnerLink="TimesheetService"

 portType="tst:TimesheetServiceInterface"

 operation="query"

 inputVariable="filterCriteria"

 outputVariable="expenseList"/>

<forEach parallel="yes" countername="n">

 <startCounterValue>1</startCounterValue>

 <finalCounterValue>count($expenseList)</finalCounterValue>

 <scope>

 <partnerLinks>

 <partnerLink name="ExpenseValidation"
 partnerLinkType="exp:ExpenseValidationType"

 partnerRole="ExpenseValidationProvider"

 myRole="consumer"/>

 </partnerLinks>

 <sequence>

 <assign>

 <copy>

 <from>$entryList[$n]</from>

 <to partnerLink="ExpenseValidation" />

 </copy>

 </assign>

 <invoke name="requestValidation"
 partnerLink="ExpenseValidation"

 portType="tsv:TimesheetValidationInterface"

 operation="validateExpense"

 inputVariable="expenseIdentifier" />

 <receive name="receiveValidation"
 partnerLink="ExpenseValidation"

 portType="tsv:TimesheetValidationCallbackInterface"

 operation="returnValidation"

 variable="validated" />

 <assign>

 <copy>

 <from variable="validated" />

 <to>$validations[$n]</to>

 </copy>

 </assign>

 <sequence>
 </scope>
</forEach>

... work with received validations ...

Example 7-12: A forEach performing validation on a list of timesheet expense entries, where all validations must be completed before proceeding.

In this example, the <forEach> activity iterates the child scope for the number of expense entries returned by the retrieveExpenseList service (<forEach> iterates its child scope (<finalCounterValue> - <startCounterValue>) + 1 times, thus the <startCounterValue> is set to 1 and the <finalCounterValue> is set to the count() of expense entries). No <completionCondition> is set since it is desired that all branches of the parallel complete before proceeding.

7.1.12. Defining <assign> activities
In the Timesheet Submission process, data returned from interactions with partners will need to be copied to variables so that the process can manipulate them. The assign activity in WS-BPEL provides the capability to copy values between process variables, allowing one to pass around data throughout a process as information is received and modified during the process execution.

<assign>

<copy>

<from variable="TimesheetSubmissionFailedMessage"/>

<to variable="EmployeeNotificationMessage"/>

</copy>

<copy>

<from variable="TimesheetSubmissionFailedMessage"/>

<to variable="ManagerNotificationMessage"/>

</copy>

</assign>

Example 7-13: Within the assign construct, the contents of the TimesheetSubmissionFailedMessage variable are copied to two different message variables.

Note that <copy> can process a variety of data transfer functions (for example, only a part of a message can be extracted and copied into a variable). Also, <from and to elements can contain optional part and query attributes, allowing for specific parts or values of the variable to be referenced.
New data can also be constructed and inserted using expressions in assign – these expressions can operate on variables, properties and constants to produce a new value.

[TODO: elaborate on this example with different information types]

7.1.13. Interacting with Partners
Through the previous sections, one has dealt with how to structure their business logic in a WS-BPEL process. However, it is expected that a process interacts with partners to perform services external to the process logic. WS-BPEL provides basic activities for interacting with partners, by consuming and providing Web Service endpoints.

7.1.14. Defining an <invoke> activity
A basic form of interaction with a partner is to invoke a service operation that it provides. The <invoke> activity is provided by WS-BPEL to identify a partner service operation that the process intends to invoke during the course of its execution. The invoke activity provides a set of attributes to further specify invocation details:

· partnerLink: This attribute specifies the partner service through its partnerLink

· portType: This attribute specifies the portType element of the partner service

· operation: This attribute specifies the partner service operation to which the process will route its request

· inputVariable: This attribute specifies the input message to be used in communicating with the partner service operation; this references a WS-BPEL variable with a messageType attribute. One-way invocation requires only the inputVariable since a response is not expected as part of the operation.

· outputVariable: This attribute specifies the output message to be used in communicating with the partner service operation, when using request-response invocation; the return value is stored in a separate variable element.

<invoke name="ValidateWeeklyHours"

partnerLink="Employee"

portType="emp:EmployeeInterface"

operation="GetWeeklyHoursLimit"

inputVariable="EmployeeHoursRequest"

outputVariable="EmployeeHoursResponse"/>
Example 7-14: The invoke activity, identifying the target partner service details, for accessing the limit on weekly hours for an employee from the employee data service.

7.1.15. Defining a <receive> activity
Business processes begin execution through the receiving of requests from an external partner – i.e. a consumer of a business process. Above, the Timesheet Submission process defined a relationship with an consumer service, through the "client" partnerLink, and as such expects to receive requests from that consumer to begin processing. Hows does one specify the actual handling of these requests?

The <receive> activity is provided by WS-BPEL to establish the information a process expects upon receiving a request from an external partner. Here, the process is viewed as a service provider waiting to be invoked. The receive activity provides a set of attributes to specify the details of the expected incoming communication:
· partnerLink: This attribute specifies the invoking partner service through its partnerLink

· portType: This attribute specifies the portType element of the partner service involved in the request

· operation: This attribute specifies the partner service operation which will issue the request to the process

· variable: This attribute specifies the variable to which the value of the incoming request message is to be stored

· createInstance: This attribute specifies whether the receipt of the request may create a new instance of the process
<receive name="receiveInput"

partnerLink="client"

portType="tns:TimesheetSubmissionInterface"

operation="Submit"

variable="ClientSubmission"

createInstance="yes"/>
Example 7-15: The receive activity used in the Timesheet Submission Process definition to indicate the client partner service responsible for launching the process with the submission of a timesheet document.
The receive activity can also be used to receive callback messages during an asynchronous message exchange.

7.1.16. Defining a <reply> activity
Since a process is itself a service, it needs to support message exchange patterns for at least receiving a request and processing it (one-way), and doing likewise while returning a response to the consumer (request-response). In the Timesheet Submission process, data that is processed and manipulated will be returned to the consumer, necessitating a way to specify this response.

For such a synchronous exchange, WS-BPEL provides a <reply> activity establishing the details of returning the response message to the consumer. The <reply> is then mapped to the initiating receive, through the association with the same partnerLink as the receive.

In such a synchronous exchange, Where there’s a receive element, there’s a reply element when a synchronous exchange is being mapped out. The reply element is responsible for establishing the details of returning a response message to the requesting client partner service. Because this element is associated with the same partnerLink element as its corresponding receive element, it repeats a number of the same attributes (see table below):

The reply activity thus provides a set of attributes similar to that of receive to specify the details of the expected outgoing communication

· partnerLink: This attribute specifies the invoking partner service through its partnerLink

· portType: This attribute specifies the portType element of the partner service involved in the request

· operation: This attribute specifies the partner service operation which will issue the request to the process

· variable: This attribute specifies the variable to which the value of the incoming request message is to be stored

· messageExchange: This attribute specifies whether the reply can be explicity associated with an activity capable of receiving a message (e.g. receive)
<reply partnerLink="client"

portType="TimeSubmissionProcessInterface"

 operation="SubmitTimesheet"

 variable="TimesheetSubmissionResponse"/>
Example 7-16: A companion reply to the receive in Example 7-15 above.
A reply can be associated with other inbound message activities such as onMessage, and onEvent.

7.1.17. Elaborating and Refining Process Logic
Through the previous sections, one has covered basic structuring of their business logic and interacting with partners to perform services external to that logic. Yet, the behavior of a business process may require addressing cases where messages are processed selectively, multiple messages are processed in parallel (say, by the same process instance), external services are performed in parallel (either by branching or through a loop condition), process execution is delayed, process execution is immediately ended, and/or exception conditions are handled. WS-BPEL provides a number of constructs for addressing such elaborate process logic, which are covered in detail below.
7.1.18. Defining a <pick> activity
The Timesheet Submission process is required to loop through the input of individual timesheet entries, used to produce a complete timesheet record, whose completion is controlled by a timeout event. The <pick> activity is used to define this – <pick> waits for one of several possible events to arrive, such as a timeout event. When one of these events is received, the associated child activity is performed. The <pick> activity completes when the associated child activity completes.
The example below illustrates the use of <pick> by the Timesheet Submission process to a) loop through the input of entries for the timesheet record, along with a timeout for timesheet completion as enabled by the <onAlarm> event.

<pick>

 <onMessage partnerLink="Timesheet"

 portType="tst:TimesheetServiceInterface"

 operation="inputTimesheetEntry"
 variable="timesheetEntry">

 </onMessage>
 <onMessage partnerLink="Timesheet"
 portType="tst:TimesheetServiceInterface"
 operation="timesheetComplete"
 variable="completionDetail">
 </onMessage>
 <onAlarm>
 <for>'P0DT12H'</for>
 </onAlarm>

</pick>
Example 7-17: A loop and timeout pick activity for the Timesheet Submission process.The loop completion is set to timeout in 12 hours in the date time expression specified in the onAlarm.

7.1.19. Defining a <flow> activity

In the Timesheet Submission process scenario, certain activities will need to be processed in parallel, with concurrency control and synchronization provided to ensure that shared resources and interacted with in a thread-safe manner. In the Timesheet Submission process, an invoice can only be submitted once both the timesheet entries and the timesheet expenses have been approved, each in parallel by different signature authorities. When the Timesheet Submission process has completed pre-processing timesheet entries, it submits these for approval to its appropriate authority (e.g. a Project Manager), and when it has completed pre-processing expenses, it submits these for approval to its appropriate authority (e.g. a direct-reports Manager). These approval submissions are asynchronous. Once these submissions are processed, both authorities essentially inform the Timesheet Submission process that they have approved their respective line items, and the process then initiates the invoice submission.

As such the Timesheet Submission process needs to start two <invoke> activities concurrently when the <flow> starts – the TimesheetEntriesSignatory and the TimesheetExpensesSignatory – both of which are one-way operations. The completion of the <flow> occurs after both the TimesheetEntriesSignatory and the TimesheetExpensesSignator have been invoked.

<flow>
 // process the timesheet entries and expenses sign-offs concurrently
 <invoke partnerLink="TimesheetEntriesSignatory" ... />
 <invoke partnerLink="TimesheetExpensesSignatory" ... />
</flow>
Example 7-18: A flow processing the timesheet entries and expenses sign-offs.
Now the Timesheet Submission process needs to wait for a message from both partners without knowing which one arrives first. As such another flow is defined for the process to handle the asynchronous replies/notifications, represented as receives.

The synchronization dependencies between these concurrent receives are expressed by <link>s which connect them. Note that <link>s are used only within <flow>s.
<flow>

 <links>

 <link name="timesheetEntriesApproval" />

 <link name="timesheetExpensesApproval" />

 </links>

 <receive name="receiveEntriesApproval" createInstance="yes" ...>

 <sources>

 <source linkName="timesheetEntriesApproval" />

 </sources>

 </receive>

 <receive name="receiveExpensesApproval" createInstance="yes" ...>

 <sources>

 <source linkName="timesheetExpensesApproval" />

 </sources>

 </receive>

 <invoke name="submitInvoice" ...>

 <targets>

 <joinCondition>$timesheetEntriesApproval and $timesheetExpensesApproval</joinCondition>

 <target linkName="timesheetEntriesApproval" />

 <target linkName="timesheetExpensesApproval" />

 </targets>

 </invoke>

 ...

</flow>

Example 7-19: A flow using multiple receives to process timesheet entries and expenses approval, and to then perform invoice submission.

Managing the waiting for a message from both partners is achieved by using two receive activities with the createInstance=”yes” attribute, so as to not create two different process instances – both messages from the timesheet entries signatory and the timesheet expenses signatory are processed by the same business process instance.
[TODO: elaborate on this example using correlations]
7.1.20. Defining a <wait> activity
The Timesheet Submission process, in some situations, needs to suspend processing until certain point in time. The <wait> activity specifies an intentional delay for a certain period of time (duration) or until a certain deadline is reached. Once the <wait> criteria are reached, the activity immediately completes. This can be used to invoke an operation at such a time.

In the Timesheet Submission process, a sub-process is invoked (one-way) which handles reconciling submitted invoices and expense reports in the accounting records. This sub-process has a branch which posts all of these entries at the end of the month:

<invoke name="retrieveMonthlyAccountingPostDateTime"
 partnerLink="AccountingService"

 portType="act:AccountingServiceInterface"

 operation="getMonthlyPostDate"

 inputVariable="monthAndYear"

 outputVariable="monthlyPostDateTime"/>

<sequence>
 <wait>
 // The monthlyPostDateTime is a deadline expression,
 // e.g. '2006-11-30T22:00+01:00'
 <until>$monthlyPostDateTime</until>
 </wait>
 <invoke partnerLink="AccountingService"
 portType="act:AccountingServiceInterface"
 operation="postAccountingEntries"
 inputVariable="accountingEntries" />
</sequence>
Example 7-20: A wait (using the response from the above invoke to populate its deadline criterion in until) defined for a sub-process of the Timesheet Submission process for posting accounting data at the end of a particular month.
Note that a <wait> must specify an expiration criterion.
7.1.21. Defining an <exit> activity
The Timesheet Submission process needs to address at least one situation where the process instance must be immediately ended. The <exit> activity is used to achieve this, ending all currently running activities immediately without involving any termination handling, fault handling, or compensation behavior.

In the Timesheet Submission process, if a submitter decides to halt their timesheet before it is processed for validation and approval, the process instance is ended and all instance data is dropped (as nothing is committed before that point). The submitter’s input to halt the timesheet would trigger a messsage (cancelTimesheetSubmission) to be sent, and <exit> would be used as in the following example to trigger the immediate ending of the process instance:

...
<eventHandlers>
 <onEvent partnerLink="client"
 portType="tns:TimeSheetSubmissionInterface"
 operation="cancelTimesheetSubmission"
 messageType="ns:cancelTimesheetSubmissionMsgType"
 variable="haltDetails">
 <scope>
 <exit />
 </scope>
 </onEvent>
 ...
</eventHandlers>
...
Example 7-21: An exit defined for halting the Timesheet Submission process upon receiving a cancelTimesheetSubmission message from the client.
Note that <exit>, once started, can not be terminated.

7.1.22. Defining <faultHandlers>, <catch>, and <catchall>

The Timesheet Submission process will need to address error conditions at the process level. When an error is encountered in the process, what needs to be performed to properly handle that condition? The faultHandlers section provides the functionality to mode switch from the normal flow of processing and take desired actions before exiting the process. Note that exiting a process through faultHandlers completes unsuccessfully.

The faultHandlers section can contain multiple catch elements, each of which provides activities that perform exception handling for a specific type of error condition. Faults can be generated by the receipt of a WSDL-defined fault message (such as that returned in response to an invoke), or they can be explicitly triggered through the use of the throw activity. The faultHandlers section can consist of (or end with) a catchAll element to house default error handling activities.

<faultHandlers>

<catch faultName="SomethingBadHappened"

faultVariable="TimesheetFault">

...

</catch>

<catchAll>

...

</catchAll>

</faultHandlers>

Example 7-22: The faultHandlers section, hosting catch and catchAll child constructs, specified for timesheet service faults.

7.2. Considerations

8. Summary

8.1. Benefits of WS-BPEL

8.2. Next Steps

Appendices

A. WS-BPEL FAQ

What is the difference between orchestration and choreography?

WS-BPEL is an orchestration language, not a choreography language. The primary difference between orchestration and choreography is scope. A choreography model provides a larger scope, encompassing all parties and their associated interactions (e.g. a peer to peer model). An orchestration model is between two participants (specifically focusing on the view of one participant).

Why isn’t there a standard notation for WS-BPEL?

This was considered out of scope. See the original design goals in section 3.1 of this document.

Who is implementing WS-BPEL?

At the time this primer was prepared the following organizations had committed to supporting WS-BPEL (this is by no means an exhaustive list):

Active Endpoints ActiveWebflow Server

ActiveBPEL Engine (open source).

BEA WebLogic Workshop
bexee BPEL Execution Engine (open source)

Cape Clear Orchestrator

FiveSight PXE

IBM WebSphere Business Integration – Server Foundation V5.1
IBM WebSphere Process Server V6.0

Microsoft BizTalk Server
Microsoft Windows Workflow Foundation
OpenLink Virtuoso Universal Server

OpenStorm ChoreoServer

Oracle BPEL Process Manager

Parasoft BPEL Maestro

SeeBeyond eInsight BPM
Sun Java Studio Enterprise
Twister (open source)
What are the differences between BPEL4WS 1.1 and OASIS WS-BPEL 2.0?

Any volunteers on this one?

What is WS-BPEL’s relationship to WS-CAF, BPSS, BPMN, WSCDL and BPEL-J?

WS-CAF: WS-CAF is a Choreography initiative, unlike WS-BPEL which is an Orchestration language. Simply put, WS-CAF defines a “global” process model which includes all participants in the process and each of their responsibilities. WS-BPEL defines a single participant’s view into a process.

BPSS: BPSS is a Choreography language, unlike WS-BPEL which is an Orchestration language. BPSS defines a “global” process model which includes all participants in the process and each of their responsibilities. WS-BPEL defines a single participant’s view into a process.

BPMN: Business Process Modeling Notation (BPMN) is OMG’s graphical notation that for documenting a business process. A paper is available that illustrates how BPMN can be mapped to BPEL. Note that this paper may not be aligned with the latest version of the WS-BPEL 2.0 specification.

BPEL-J:

BPXL: BPXL is an initiative launched by BPMI (now part of OMG). The goal of BPXL is to define a standardized way for extending the base WS-BPEL specification.

B. References

Normative References

[BPEL4WS 1.1]
BEA, IBM, Microsoft, SAP and Siebel, “Business Process Execution Language for Web Services Version 1.1”, S. Thatte, et al., May 2003. ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[Infoset]
W3C Recommendation, “XML Information Set (Second Edition)”, J. Cowan, R. Tobin, February 4, 2004. http://www.w3.org/TR/2004/REC-xml-infoset-20040204
[RFC 2119]
IETF, “Key words for use in RFCs to Indicate Requirement Levels”, RFC 2119, S. Bradner, March 1997. http://www.ietf.org/rfc/rfc2119.txt

[RFC 2396]
IETF, “Uniform Resource Identifiers (URI): Generic Syntax”, RFC 2396, T. Berners-Lee, R. Fielding, L. Masinter, August 1998. http://www.ietf.org/rfc/rfc2396.txt

[WSDL 1.1]
W3C Note, “Web Services Definition Language (WSDL) 1.1”, E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, March 15, 2001. http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WS-I Basic Profile 1.1 Errata] Web Services Interoperability Organization, “Basic Profile Version 1.1 Errata”, Revision 1.8, A. Karmarkar , October 25, 2005. http://www.ws-i.org/Profiles/BasicProfile-1.1-errata-2005-10-25.html
[WS-I Basic Profile]
Web Services Interoperability Organization, “Basic Profile Version 1.1", K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, April 16, 2004.
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[XML Namespace]
W3C Recommendation , “Namespaces in XML”, T. Bray, D. Hollander, A. Layman, January 14, 1999. http://www.w3.org/TR/1999/REC-xml-names-19990114

[XML Schema Part 1]
W3C Recommendation, “XML Schema Part 1: Structures Second Edition”, H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, October 28, 2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[XML Schema Part 2]
W3C Recommendation, “XML Schema Part 2: Datatypes Second Edition”, P. V. Biron, A. Malhotra, October 28, 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XMLSpec]
W3C Recommendation, “Extensible Markup Language (XML) 1.0 (Third Edition)", T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, February 4, 2004. http://www.w3.org/TR/2004/REC-xml-20040204

[XPATH 1.0]
W3C Recommendation, “XML Path Language (XPath) Version 1.0”, J. Clark, S. DeRose, November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116

[XSLT 1.0]
W3C Recommendation, “XSL Transformations (XSLT) Version 1.0”, J. Clark, November 16, 1999. http://www.w3.org/TR/1999/REC-xslt-19991116

Non-Normative References

[Sagas]
Garcia-Molina H. and Kenneth Salem, "SAGAS", Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 249--259, May 1987.

[SOAP 1.1]
W3C Note, “Simple Object Access Protocol (SOAP) 1.1”, D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, D. Winer, May 8, 2000. http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[Trends]
Traiger I. L., "Trends in System Aspects of Database Management", Proceeding of the 2nd International Conference on Database (ICOD-2), pages 1-21, Wiley & Sons, 1983.

[UDDI]
OASIS, “UDDI Version 3.0.2”, L. Clement, A. Hately, C. V. Riegen, T. Rogers, October 19, 2004. http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[WS-Addressing]
W3C, “Web Services Addressing 1.0 - Core”, Martin Gudgin, Marc Hadley, Tony Rogers, May 9, 2006. http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
 [WSFL]
IBM, “Web Service Flow Language (WSFL 1.0)”, F. Leymann, May 2001. http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[XLANG]
Microsoft, “XLANG Web Services for Business Process Design”, S. Thatte, 2001. http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
C. Acknowledgements

The authors of this Primer would like to extend their thanks and appreciation to Thomas Erl for contributing sections of his book "Service-Oriented Architecture: Concepts, Technology, and Design" to this effort.
Note to the Primer editors: Thomas Erl’s book chapter can be found at the OASIS website:

http://www.oasis-open.org/apps/org/workgroup/wsbpel-primer/download.php/15937/ERL%20-%20SOA%20Concepts%2C%20Technology%2C%20and%20Design%20%28Chapter%2016%29.doc

�Insert link to spec

�Chapter 4-6 is work in progress by Simon Moser and Dieter König

�Chapter 4-6 is work in progress by Simon Moser and Dieter König

�Chapter 4-6 is work in progress by Simon Moser and Dieter König

�This chapter will be provided by Charlton Barreto – possibly reusing material from Thomas Erl.

wsbpel-primer-draft

10 October 2006

Copyright © OASIS Open 2006. All Rights Reserved.

Page 1 of 62
wsbpel-primer-draft

10 November 2006

Copyright © OASIS Open 2006. All Rights Reserved.

Page 57 of 62

_1145260408.bin

