

WSMF/OGSI
Re-factoring

technical paper

(draft, open for
comments)

Document prepared by:

Shivakumar Jayaraman
Bryan Murray

M. Homayoun Pourheidari
Akhil Sahai

Latha Srinivasan
Jem Treadwell

Aad van Moorsel
(Hewlett-Packard)

Revision: 1.0
Date: September 10, 2003

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 2 of 29

Hewlett Packard Company Confidential - Copyright, Hewlett-Packard Company, 2003

Version: 1.0 edit 2
Last saved: September 10, 2003 at 5:29 PM

History

Version Date Changes
1.0 8/23/2003 Initial version, draft

The information contained in this document is provided as a basis for
discussion and for informational purposes only, and does not constitute any
commitment or obligation on the part of HP with respect to any future
products, services, or undertakings. No rights or licenses to any concepts or
ideas contained in such information are granted to the recipient of this
document. HP may in its sole discretion pursue, not pursue or modify any of its
intentions or activities described in this document.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 3 of 29

Hewlett Packard Company Confidential - Copyright, Hewlett-Packard Company, 2003

Table of Contents

1 Executive Summary ..5
2 Introduction...5
3 Background...5
4 Refactoring Topics ...7

4.1 GWSDL vs. WSDL1.1 ...8
4.2 Terminology and Naming of Operations ...9
4.3 WSMF Foundation..9

4.3.1 GridService vs. ManagedObject and ManagedObjectIdentity ...9
4.3.2 ServiceData vs. Attributes ..11
4.3.3 ServiceGroupRegistration vs. Collection...11
4.3.4 Fault (exception) Handling ...13

4.4 WS Events ...13
4.5 Web Services Management (WSM)..19
4.6 End-to-End..19

5 Glossary ...20
6 References ..21
7 Refactored WSMF Foundation (GWSDL) ..21

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 5 of 29

Copyright, Hewlett-Packard Company, 2003

1 Executive Summary
The Open Grid Services Infrastructure (OGSI) defines a set of interfaces, behaviors and conventions on the use of Web
Services. These behaviors can be leveraged by proposed management standards such as WSMF as a foundation for using
Web Services.

This document, therefore, discusses re-factoring1 of WSMF using OGSI 1.0. We discuss the technology issues, our preferred 5
resolution, and the remaining open problems. It is expected that both WSMF and OGSI will work together to better support
manageability requirements.

The first result of this re-factoring is an OGSI-compliant specification for ‘re-factored WSMF’ expressed in terms of GWSDL.
The second result is a WSDL1.1 equivalent derived from this re-factored WSMF.2

The main results are summarized in the table of Figure 1. The GWSDL description of re-factored WSMF Foundation is 10
provided in Section 7.

This is a draft version; we invite comments and discussion.

2 Introduction
We believe that Grid technologies, as they are defined through OGSA and OGSI, are fundamental for service-oriented
representations of resources that are part of distributed applications and IT environments. Proposed management standards, 15
such as WSMF, should therefore interoperate with Grid and leverage its technologies.

WSMF is conceptually very close to OGSI as both introduce as core of their architecture a web service representation for
resources. In WSMF this is the managed object, in OGSI the grid service. Standardization of WSMF thus inevitably results
in resolving issues in ways that are similar to OGSI, and it is therefore to everyone’s benefit to modify the originally
proposed WSMF specification so it leverages Grid developments. 20

By definition, re-factoring WSMF using OGSI is adapting the originally proposed WSMF specification to leverage OGSI
without changing WSMF’s functionality. This re-factoring exercise is based on:

• WSMF version 2.0, as released July 16, 2003 [1], and updated July 28, 2003, and as obtainable from
http://devresource.hp.com/wsmf.

• A technical note on dynamic attributes and meta information, available upon request [2]. 25

• OGSI Version 1.0, Final, June 27, 2003, as available from https://forge.gridforum.org/projects/ogsi-
wg/document/Final_OGSI_Specification_V1.0/en/1/Final_OGSI_Specification_V1.0.pdf [4].

There are various issues that we need to take into account to provide the best standardization plan for the web services
management industry. Although strictly speaking re-factoring WSMF using OGSI implies a GWSDL specification with
WSMF functionality, the industry requires more than that. In particular, we need a WSDL1.1 version of re-factored WSMF, a 30
topic we discuss in detail in Section 4.1. Furthermore, re-factored WSMF must have the right abstraction to fit with the
management standardization plans within WSDM, and the Global Grid Forum.

This document takes the first step towards aligning web services management and grid developments by providing a
GWSDL and WSDL1.1 version of WSMF utilizing OGSI.

3 Background 35

The Web Services Management Framework (WSMF) [1] is a logical architecture for the management of resources,
including Web services themselves, through Web services3. WSMF 2.0 is specified using WSDL1.1, and thus does not

1 In the software engineering community, re-factoring is “improving the design of code without introducing new behavior”
(http://industriallogic.com/xp/refactoring/). Here, we improve the WSMF specification using OGSI constructs, so we speak of ‘re-
factoring WSMF using OGSI,’ and the result of re-factoring is ‘re-factored WSMF.’
2 The third result of re-factoring should be a re-factored WSMF that has the right abstraction so it can be a useful component in the future
OGSA standardization plans—this is not the primary focus of this document, but we expect this can and will be done as a next step.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 6 of 29

Copyright, Hewlett-Packard Company, 2003

contain GWSDL extensions. WSMF is based on the notion of managed objects and their relationships. A managed object
essentially represents a resource and exposes a set of management interfaces through which the underlying resource could
be managed (see the overview document in [1]). Similarly, relationships among managed objects represent relationships 40
among underlying resources. The management functions addressed by WSMF include: discovery of the management WSDL
definitions; discovery of the topology of the managed objects; registrations and retrieval of notifications; monitoring,
auditing, and controlling various aspects of managed objects by using the supported management operations.

WSMF has three parts:

• WSMF Foundation: the core pieces of WSMF 45
• WS-Events: an event subsystem with an advanced push model

• Web Service Management (WSM): the data model for managing the web services domain

The first two deal with management using web service, the latter deals with management of web services. Throughout this
document we alternately use WSMF and WSMF2.0 to refer to the original proposal for management using web services
published in [1], and use ‘re-factored WSMF’ to denote either the GSWDL or WSDL1.1 version of WSMF redesigned using 50
OGSI.

The Open Grid Services Architecture (OGSA) [3] addresses the challenges in integrating services across distributed,
heterogeneous, dynamic “virtual organizations” formed from the disparate resources within a single enterprise and/or from
external resource sharing and service provider relationships. Building on concepts and technologies from the Grid and Web
services communities, this architecture defines a uniform exposed service semantics (the Grid service); defines standard 55
mechanisms for creating, naming, and discovering potentially transient Grid service instances; provides location
transparency and multiple protocol bindings for service instances; and supports integration with underlying native platform
facilities.

The OGSA platform encompasses the Open Grid Services Infrastructure (OGSI). From the completed OGSI draft [4]:
“[…] the Open Grid Services Infrastructure (OGSI) defines mechanisms for creating, managing, and exchanging information 60
among entities called Grid services. Succinctly, a Grid service is a Web service that conforms to a set of conventions
(interfaces and behaviors) that define how a client interacts with a Grid service. These conventions, and other OGSI
mechanisms associated with Grid service creation and discovery, provide for the controlled, fault-resilient, and secure
management of the distributed and often long-lived state that is commonly required in advanced distributed applications.“

The Common Management Model (CMM) is a working group within Global Grid Forum (GGF). From its charter [5]: 65
“The purpose of this WG will be to define the Common Management Model in which [...] entities will be represented as
manageable resources and services. Manageable resources and services can include any type of entity, ranging from
hardware (such as a disk drive), to software components (such as a database or message queue), to complete solutions
(such as a billing system or provisioning), and also to transient things such as print jobs. The Common Management Model
will provide a set of port types that build on and supplement the GGF’s OGSI Specification [4] that are of broad and 70
general use for management in the Grid.”

 75

 80

3 The term Web services is used to describe the approach to loosely-coupled distributed computing in which interactions are carried out
through the exchange of XML messages, exchanged in accordance to the Simple Object Access Protocol (SOAP) specification and
described through the Web Services Description Language (WSDL).

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 7 of 29

Copyright, Hewlett-Packard Company, 2003

4 Re-factoring Topics

Subject OGSI WSMF Issue Resolution Remaining Open
Issues

WSDL version GWSDL based,
WSDL1.1 compatible
through GWSDL to
WSDL1.1
transformation;
anticipates migration
to WSDL 2.0 (needs
inheritance and
information elements)

WSDL 1.1 based;
anticipates migration
to WSDL2.0 when it
becomes available

- What description
language to use for
re-factored WSMF?
- How to translate
SDEs from GWSDL
to WSDL1.1?

- Re-factored WSMF
results in both a
GWSDL and a
WSDL1.1 spec.
Translation tools
used only if
normative. Unification
is expected to take
place through
WSDL2.0 (early
2004?)
- Translate SDEs
through
corresponding
complexType in
WSDL1.1.

- When will normative
GWSDL2WSDL1.1
be available?
- When tool support?
- When WSDL2.0?

Terminology and
naming of
operations

 How to choose
between different
names for similar
operations, and what
to do with names that
are unfamiliar in
management
domain?

General rule: do not
use more than one
operation name in
spec, leave to tooling
to generate added
WSDL/APIs.
Otherwise, decide
case by case.

resource
representation

GridService
represents a
resource. Every
OGSI service
extends GridService.

ManagedObject
represents a
resources. Every
ManagedObject
exposes
ManagedObjectIdenti
ty.

- should re-factored
WSMF use ‘extends’
ManagedObjectIdenti
ty in various WSMF
portTypes.
- can we expect tools
to prevent
implementation
overhead when using
extends in every
portType?

Re-factored WSMF
adopts GridService,
and extends
ManagedObjectIdenti
ty in all WSMF
portTypes.

- do tools deal
efficiently with a base
port type that is
extended more than
once?

service data ServiceData is used
to represent state
information.

Traditional use of
attributes and
Get/Set operations.
The WSMF technical
note provides a
generalized Get/Set,
allowing dynamic
addition of attributes,
and ways of
obtaining subsets of
attributes.

- shall we maintain
Get/Set for individual
attributes or replace
attributes with SDEs?
- how can we
maintain strong
typing?
- can we add
attributes at run-time
(dynamic attributes)?
- can we add meta
information?

- GWSDL version will
incorporate SDEs; for
the WSDL1.1 version
we suggest to add
complexType for
SDEs.
- Introduce specific
Get/Set in
implementation as
needed for strong
typing by tooling
support.
 - dynamic attributes
supported in SDEs
- meta information
supported in SDEs,
but insufficient

- how do tools
generate the strongly
typed operations—
can they be
configured?
- WSDL1.1
translation of
ServiceDataNames
to deal with dynamic
attributes is not well
understood
- how to progress
with general solution
for meta information?

group / collection ServiceGroup collections - WSMF’s Invoke is
not present in
Service Group
- WSMF does not
have all member
operations

WSMF collection
extends
ServiceGroupRegistr
ation, and we add
“Invoke” operation

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 8 of 29

Copyright, Hewlett-Packard Company, 2003

Subject OGSI WSMF Issue Resolution Remaining Open
Issues

fault handling Exceptions/Faults
specified in interface
definition, provides
locator of the fault

Defined faults are
listed in the WSMF
technical doc

What fault model to
adopt?

Re-factored WSMF
adopts OGSI’s fault
handling, mapping
WSMF error codes
into appropriate
OGSI faults and add
new ones where
appropriate.

Figure 1. WSMF re-factoring topics

4.1 GWSDL vs. WSDL1.1

WSDL1.1 [6] is the default description language for web service interfaces, and web services tool support typically assumes 85
WSDL1.1 specifications. GWSDL [7] is an extension of WSDL1.1 which provides features like portType inheritance and
open content. It is used by OGSI as an interim description language until WSDL2.0 is released. WSDL2.0 (previously
termed WSDL1.2) [8] is under development and is expected to subsume WSDL1.1. Similar to GWSDL, WSDL2.0 uses
inheritance; WSDL2.0 also introduces ‘information elements,’ which can be seen as the counterpart of GWSDL’s support for
open content in portTypes used to support the service data construct. The hope and expectation therefore is that WSDL2.0 90
will replace and unify WSDL1.1 and GWSDL specifications, providing a single, common, description language for any grid
or web service [10][11].

Until WSDL2.0 appears we provide GWSDL and WSDL 1.1 mappings for the WSMF interfaces.

Re-factored WSMF results in a normative GWSDL spec.

1. Re-factored WSMF provides a WSDL1.1 spec, generated from the GWSDL spec as follows: 95

a. Once normative GWSDL2WSDL1.14 [9] is accepted or “good enough,” we will use that approach to
generate the WSDL1.1 version.

b. Until normative GWSDL2WSDL1.1 is accepted or “good enough,” we will create the WSDL1.1 spec ’by
hand.’

c. We will not use GWSDL2WSDL1.1 translation tools (such as those currently available) that are not based 100
on a normative GWSDL2WSDL1.1 spec, since they produce unsatisfactory results.

2. Once WSDL2.0 is accepted, we expect to retire both the GWSDL and WSLD1.1 version of re-factored WSMF,
and instead create a normative WSDL2.0 version of re-factored WSMF.

We also have the following topics and suggestions for discussion in translating GWSDL to WSDL1.1:

• Service data: the most elegant solution for service data elements in WSDL 1.1 seems to be to declare 105
servicedata elements in the types section of the WSDL 1.1 document. The WSDL 1.1 portType element can then
refer to the QNames of these elements. This is possible because the WSDL schema available at the URL
http://schemas.xmlsoap.org/wsdl supports attribute extensibility for portTypes. It should be however noted that
the WSDL schema specified in the WSDL 1.1 specification at http://www.w3.org/TR/wsdl does not support
attribute extensibility in portTypes. We would like to suggest this solution to the group working on normative 110
GWSDL2WSDL1.1 [9].

• Dynamic attributes: as we mention under the dynamic attributes discussion in Section 4.3.2, the implications of
translation of ServiceDataNames is uncertain to us at this moment.

• Factory references in GridService: OGSI includes a factory concept used for creating and destroying Grid
services, and includes a handle in GridService to interact with the factory that created this service (factoryLocator 115
SDE). A service that was not created by a factory will expose this SDE with a value of xsi:nil. A translation from
GWSDL to WSDL1.1 of SDEs will contain this attribute with a value of nil. However, we do not see this as a
serious flaw, and propose therefore to leave the factoryLocator in the WSDL1.1 version, setting nillable to true in

4 The most elegant solution for SDEs in normative WSDL1.1 seems to be to add SDEs as complexType, and let the portType call out QName of the
SDE. We would like to suggest this to the group working on normative GWSDL2WSDL1.1 [9].

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 9 of 29

Copyright, Hewlett-Packard Company, 2003

the SDE. Nonetheless, we believe that future versions of OGSI can be componentized in a way that will not include
any factory information in deployments that do not require a factory or are not Grid based. 120

4.2 Terminology and Naming of Operations

Each standard as well as each application domain has its preferred terminology usage, and when re-factoring WSMF, one
often comes across terminology differences between OGSI, WSMF and the management software community, e.g.,
source/sink versus producer/consumer, EventType versus NotificationTopic, Grid service versus managed object, etc.

We have to make decisions as needed, following the rule: 125

• We will not use multiple operation names for the same functionality (e.g., use OGSI and WSMF names side by
side), since we want to keep the standard as lean as possible. Instead, we rely on tooling to provide client or
server with desired WSDL/API extensions.

4.3 WSMF Foundation

Re-factoring WSMF Foundation is in large part adopting OGSI GridService as the base abstraction of managed objects, 130
and utilizing its service data feature to represent attributes. Most of this section is therefore devoted to GridService and
ServiceData.

To utilize OGSI, we include the OGSI namespaces:

 <definitions name="WSMF-OGSI"
targetNamespace=”http://devresource.hp.com/drc/ 135

 specifications/wsmf/2003/07/wsmf-ogsi-foundation”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”
 xmlns:gwsdl=”http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions”
 xmlns:ogsi=”http://www.gridforum.org/namespaces/2003/03/OGSI”
 xmlns:s="http://www.w3.org/2001/XMLSchema" 140
 xmlns:sd=”http://www.gridforum.org/namespaces/2003/03/serviceData”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:wsmf="http://devresource.hp.com/drc/specifications/wsmf/2003/07/
 wsmf-ogsi foundation"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"> 145
 <import location="../../ogsi/ogsi.gwsdl"
 namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>
 …
 </definitions>

Figure 2. name spaces in re-factored WSMF, GWSDL specification 150

4.3.1 GridService vs. ManagedObject and ManagedObjectIdentity

WSMF Foundation defines a managed object for each managed resource, and each managed object must implement the
WSMF ManagedObjectIdentity interface. Conceptually similar is OGSI’s GridService, which any OGSA service must
extend. Re-factoring implies taking GridService as the base, and modifying ManagedObjectIdentity and ManagedObject so
they benefit from GridService constructs. 155

The following piece of refactored WSMF shows how ManagedObjectIdentity extends GridService, using GWSDL.

 <gwsdl:portType name="ManagedObjectIdentity" extends="ogsi:GridService">
 <sd:serviceData name="ID"
 type="wsmf:EntityReferenceType"
 minOccurs="1" 160
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false" />
 </gwsdl:portType> 165

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 10 of 29

Copyright, Hewlett-Packard Company, 2003

Figure 3. ManagedObjectIdentity extends GridService

The objective of ManagedObjectIdentity is to provide identification information about the managed object and the resource
it represents (hence, the name equals “ID”). Through the inheritance of GridService, we can now utilize service data
accessor and modifier operation (FindServiceData and SetServiceData), and have a mechanism to manage the life cycle of
the managed object (through Grid’s goodUntil, etc.). 170

In OGSI, use of GridService is enforced through the extend construct, which all port types use. In WSMF, the WSDL
specifies no such enforcement, although it is explicitly stated that managed objects MUST implement
ManagedObjectIdentity. For other port types in WSMF, such as Monitoring, Configuration, Control, etc., we have chosen to
take the same approach as OGSI, and use extends to enforce that ManagedObjectIdentity is leveraged. The extension of
the ManagedObjectIdentity portType by all WSMF portTypes will enforce implementation of the ManagedObjectIdentity 175
portType -- the one required portType that will provide the essential pieces of information for a managed object. However, if
improperly implemented it could also bring about extra overhead for the WSMF portTypes. It is recommended that
implementers pay special attention to this issue such that their products do not end up with a large footprint. As an example,
we give the Configuration portType, which is meant to give information about the managed object itself.

 <gwsdl:portType name="Configuration" extends="wsmf:ManagedObjectIdentity"> 180
 <sd:serviceData name="Name"
 type="s:string"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable" 185
 modifiable="true"
 nillable="false" />
 <sd:serviceData name="Type"
 type="wsmf:ManagedObjectType"
 minOccurs="1" 190
 maxOccurs="1"
 mutability="mutable"
 modifiable="true”
 nillable="false" />
 <sd:serviceData name="Description" 195
 … />
 <sd:serviceData name="Owner"
 … />
 <sd:serviceData name="Vendor"
 … /> 200
 <sd:serviceData name="Version"
 … />
 <sd:serviceData name="ManagedObjectVersion"
 … />
 <sd:serviceData name="CreatedOn" 205
 … />
 <sd:serviceData name="HostName"
 … />
 <sd:serviceData name="ManagedObjectHostName"
 … /> 210
 </gwsdl:portType>

Figure 4. Other WSMF port types extend ManagedObjectIdentity, and use ServiceData

As one can see from the above example, re-factoring WSMF Foundation is relatively straightforward. The only portType
requiring special consideration is the collection interface, which we discuss in Section 4.3.3.

Handle resolution: WSMF provides managed object interfaces through which their unique identity and references can 215
be exposed. This aligns well with the OGSI notion of grid service handles and grid service references, so re-factored WSMF
can rely on the corresponding OGSI constructs. In doing so, the resulting set of interfaces in re-factored WSMF supports
various implementations to obtain unique managed object identities.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 11 of 29

Copyright, Hewlett-Packard Company, 2003

4.3.2 ServiceData vs. Attributes

A critical construct in OGSI is ServiceData, which is used to access state information. ServiceData is a set of named values 220
of type pre-specified in XSD, and can be queried and modified. One can also subscribe to receive events about changes in
ServiceData.

Currently WSMF provides strongly typed get/set operation pairs for each attribute. But this is not a very scalable model and
additionally does not support runtime attribute additions (dynamic attributes, see below). Hence WSMF is moving towards a
generic get/set operation that will provide attribute values for all attributes, whether they are defined at design time or run-225
time, see the technical note [2]. This is similar to OGSI's current behavior and its SDE retrieval operation—findServiceData,
and we therefore utilize OGSI’s service data concept to the fullest in re-factored WSMF.

Figure 4 illustrates the use of ServiceData in refactored WSMF. We have chosen to introduce a service data element for
every element in each portType. For all these SDEs, we then determine the values of minOccurs, maxOccurs, etc.

Although re-factoring WSMF using SDEs is relatively straightforward, there are several issues related to accessing and 230
specifying ‘information’ that require further investigation:

Strong typing. The traditional Get/Set approach has the advantage that it offers strong typing. This is sometimes
important, since it helps compile time verifications. If that is the case, we introduce operations that support interactions with
some pieces of the management data even though the same data can be retrieved through the generic operations. An
example could be the state information and support for a getState operation. 235

Dynamic attributes. To support modifications of attribute values in addition to creation of new attributes at runtime,
WSMF introduces dynamic attributes in its technical note [2]. OGSI supports such a notion as well. Updates to SDE
attributes are handled through notifications that are defined on SDEs. New SDEs can be discovered by subscribing to
notifications on the serviceDataName SDE where all the SDE names are captured. Once this notification is detected, a
client can deduce the new SDE names and then query their values through the findServiceData operation. Re-factored 240
WSMF thus can leverage this approach. GWSDL to WSDL1.1 translation of service data. See Section 4.1.

Meta information. Meta information is additional information on managed objects and their elements, beyond the name
and value information. As an example, the Name attribute in the Configuration portType of Figure 4 can have a GUI
display version of the name, or names in different languages, or access rights. The technical note [2] describes a possible
solution for meta information in detail. 245

OGSI does not provide special support for meta information for a grid service and its components. However, there are ways
to capture some of the meta information by introducing additional SDEs in each portType to capture meta information
related to attributes and operations. The attribute meta information SDE would have one entry for each of the serviceData
elements that has meta information. It could contain elements such as dataType, name, description, updateFrequency, and
have an “any” construct to allow extension. It is not clear whether updates and access to this information at runtime is 250
supported.

Since we consider meta information very important for manageability models and management applications, we prefer a
generic solution for meta information, possibly through additional standardization efforts. This may imply augmentation of
SDEs to include meta information, a topic that should be further discussed.

4.3.3 ServiceGroupRegistration vs. Collection 255

There are cases where an application wants to take the same action on several managed objects (see Section 4.6 of WSMF
Foundation [1]). The ManagedObjectCollection management interface allows one managed object to act as a proxy for
several other managed objects. A collection is a set of managed objects that may be accessed through a
ManagedObjectCollection management interface implemented by one managed object.

OGSI uses the notion of ServiceGroup, a portType that extends GridService and maintains information about a group of 260
other grid services (see Section 13 in [4]). One intended use of ServiceGroup is that it forms the basis to implement a
traditional registry.

In re-factored WSMF, the Collection portType inherits from the serviceGroupRegistration portType. This allows the WSMF
Collection portType to provide operations to support addition/modification of collection members and introspection of the
collection list. 265

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 12 of 29

Copyright, Hewlett-Packard Company, 2003

The part from ManagedObjectCollection that is missing from ServiceGroup is the Invoke operation. The Invoke operation
allows a manager to invoke the same operation on all or a subset of members within the collection, for instance to query or
set serviceData values, or to perform some control operation. The Select argument to Invoke specifies an XPath expression to
identify the collection members to take part in the operation, the Interface and Name arguments specify which operation,
and the ArgumentList holds the parameters to be sent to the operation. The response to the Invoke operation is a list of 270
elements, one for each member matching the Select expression in the request, that contain a reference to a member, and the
response or fault returned from the member when sent the requested operation. Since the types, messages, and portType do
not exist in OGSI, they need to be included in a portType which extends ServiceGroupRegistration. The result is the
following piece of refactored WSMF in GWSDL:

 <types> 275
 <s:schema targetNamespace=http://devresource.hp.com/drc/specifications/wsmf/
 2003/07/wsmf-ogsi-foundation
 attributeFormDefault="qualified"
 elementFormDefault="qualified">
 <s:complexType name="SelectExpressionType"> 280
 <s:restriction base="s:string" />
 </s:complexType>
 <s:element name="Select" type="wsmf:SelectExpressionType" />
 <s:complexType name="ManagedObjectResponseInformationType">
 <s:sequence> 285
 <s:element name="ManagedObjectReference" type="ogsi:HandleType" />
 <s:sequence>
 <s:choice>
 <!-- Either the response from the Invoke operation or a fault. The
 response from the Invoke operation would be the children of the 290
 response SOAP Body. A fault will be the WSMF defined Fault element
 which will contain the SOAP Fault element or other transport or
 message protocol fault information.
 -->
 <s:any namespace="##any" minOccurs="0" maxOccurs="unbounded" 295
 processContents="lax" />
 <s:element name="Fault">
 <s:complexType>
 <s:sequence>
 <s:any namespace="##other" minOccurs="0" 300
 maxOccurs="unbounded"
 processContents="lax" />
 </s:sequence>
 </s:complexType>
 </s:element> 305
 </s:choice>
 </s:sequence>
 <s:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </s:sequence> 310
 <s:anyAttribute namespace="##other" processContents="skip" />
 </s:complexType>
 <s:element name="ManagedObjectResponseInformation"
 type="wsmf:ManagedObjectResponseInformationType" />
 <s:complexType name="ManagedObjectResponseInformationListType"> 315
 <s:sequence>
 <s:element ref="wsmf:ManagedObjectResponseInformation" minOccurs="0"
 maxOccurs="unbounded" />
 </s:sequence>
 </s:complexType> 320
 <s:element name="ManagedObjectResponseInformationList"
 type="wsmf:ManagedObjectResponseInformationListType" />
 <s:element name="Invoke">
 <s:complexType>
 <s:sequence> 325
 <s:element ref="wsmf:Select" minOccurs="0" />
 <s:element name="Interface" type="s:QName" />
 <s:element name="Name" type="s:NMTOKEN" />
 <s:element name="ArgumentList" minOccurs="0">

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 13 of 29

Copyright, Hewlett-Packard Company, 2003

 <s:complexType> 330
 <s:sequence>
 <s:any minOccurs="1" maxOccurs="unbounded"
 processContents="lax" />
 </s:sequence>
 </s:complexType> 335
 </s:element>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="InvokeResponse"> 340
 <s:complexType>
 <s:sequence>
 <s:element ref="wsmf:ManagedObjectResponseInformationList" />
 </s:sequence>
 </s:complexType> 345
 </s:element>
 </s:schema>
 </types>
 <message name="InvokeInput">
 <part name="document" element="wsmf:Invoke" /> 350
 </message>
 <message name="InvokeOutput">
 <part name="document" element="wsmf:InvokeResponse" />
 </message>
 355
 <gwsdl:portType name="Collection" extends="ogsi:ServiceGroupRegistration" >
 <operation name="Invoke">
 <input message="wsmf:InvokeInput" />
 <output message="wsmf:InvokeOutput" />
 </operation> 360
 </gwsdl:portType>

4.3.4 Fault (exception) Handling

OGSI defines a base XSD type, FaultType, for all fault messages, which must be returned by all Grid services. A fault
message may include a text description of the fault, a locator for the service instance that raised the fault, a timestamp, a
fault cause, a fault code and extension information. Multiple fault types can be nested or chained in a single message, so 365
that fault information can reflect the service invocation stack, allowing a recipient to drill down throught the causes to learn
more about the reasons for the fault. Services may extend FaultType to provide more detailed fault information.

The WSMF FaultDetail element contains one or more Error elements, each of which contains an ErrorCode element and an
optional text message. An extension element is provided to allow managed objects to add more detailed information about
the fault. 370

Since the fault handling of OGSI is more comprehensive than that of WSMF, we propose to use the OGSI model. We will
translate the WSMF error codes and/or add new fault types as appropriate.

4.4 WS Events

4.4.1 Introduction

WSMF WS-Events is an extensible XML schema and a set of publishing rules for advertising, subscribing, producing and 375
consuming Web Service events using push or pull modes. OGSI supports notifications through the NotificationSource,
Notification Sink and NotificationSubscription portTypes

WS-Events defines an ‘event’ as a ‘change in the state of a resource’. WS-Events also defines an XML schema to represent
event information. OGSI defines state in the form of service data elements (SDEs), and provides the support to
asynchronously notify interested parties (subscribers), when the value of these SDEs change. We propose merging these two 380
concepts by describing every ‘event’ as an SDE. The ‘type’ of these events will be similar to the event schema as defined by
WS-Events.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 14 of 29

Copyright, Hewlett-Packard Company, 2003

The OGSI model is primarily tailored towards the push mode of subscribing and consuming notifications. OGSI also does
not directly support event filtering. We propose the following extensions to the OGSI 1.0 Notification model in order to
support event filtering and pull notifications akin to WS-Events. 385

The namespace conventions used throughout this section are described below

<definitions name="WSEvents-OGSI" 390
targetNamespace=”http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-

events”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”
 xmlns:gwsdl=”http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions”
 xmlns:ogsi=”http://www.gridforum.org/namespaces/2003/03/OGSI” 395
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sd=”http://www.gridforum.org/namespaces/2003/03/serviceData”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:events="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-
events"> 400

 <import location="../../ogsi/ogsi.gwsdl"

 namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

4.4.2 Discovering the list of notifications 405

o WS-Events defines a ‘Discovery’ portType, which has a ‘GetAllEventTypes’ operation. This operation is used by
clients to discover the list of event types supported by an implementation. The operation returns a list of EventTypes
(which are essentially URIs) supported.

o OGSI defines a ‘NotificationSource’ portType which has an SDE called ‘notifiableServiceDataName’. The values of
this SDE list a set of SDE names (which are QNames), which can be subscribed to. Changes to the values of the 410
subscribed SDEs would trigger notifications.

o The discovery approaches used by WS-Events and OGSI are functionally identical.

The proposal is to reuse the OGSI mechanisms for notifications. We plan to extend the ogsi:NotificationSource
portType with a new port type (events:BufferedNotificationSource). ManagedObjects that support WSMF events need
to implement this portType or an extension of it. Every supported notification type would be declared as an SDE. The 415
‘notifiableServiceDataName’ SDE in the ogsi:NotificationSource portType would be used to discover supported
notifications.

Discovering the notifications supported by an implemention will now be accomplished by performing a findServiceData
operation on implementations of the above portType, using a ‘queryByServiceDataNames’ extensible operation and by
using ‘ogsi:notifiableServiceDataName’ as the name of the SDE to be queried. A list of the QNames of supported 420
notifications would be returned.

The gwsdl snippet describing the BufferedNotificationSource portType is shown in section 4.4.3

4.4.3 Discovering Meta Information about notifications

o WS-Events supports a ‘GetEventTypeDefinition’ operation in its ‘Discovery’ portType, which returns more 425
information about a specified list of EventTypes.

o OGSI does not directly define a mechanism to discover Meta information about SDEs that support
notifications, though this feature could be easily added using more SDEs.

o Since the OGSI model does not define direct support for meta information, we have to add support for this
feature to match the capabilities of WS-Events. 430

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 15 of 29

Copyright, Hewlett-Packard Company, 2003

The proposal is to define a new SDE called ‘notificationMetaInfo’ in the events:BufferedNotificationSource
portType. This SDE will have a schema type of NotificationMetaInfoType. Values for this SDE will include Meta
information corresponding to all the notifications supported. The following schema and gwsdl snippets demonstrate
this. The NotificationMetaInfoType is modeled exactly similar to the WS-Events schema type
‘EventTypeDefinitionType’. 435

<xsd:complexType name=”NotificationMetaInfoType”>
 <xsd:sequence>
 <xsd:element name=”Notification” type=”xsd:QName”/> 440
 <xsd:element name=”SchemaLocation” type=”xsd:anyURI”/>
 <xsd:element name=”Description” type=”string” minOccurs=”0”/>

 <xsd:element name="Causes" type="events:NotificationMetaInfoListType"
 minOccurs="0"/> 445

 <xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##other"
 processContents="lax"/>
 </xsd:sequence>
 <xsd:attributeGroup ref=”ogsi:LifeTimePropertiesGroup”/> 450
 <xsd:anyAttribute namespace="##other" processContents="skip"/>
</xsd:complexType>

<xsd:complexType name=”NotificationMetaInfoListType”>
 <xsd:sequence> 455
 <xsd:element name=”NotificationMetaInfo” type=”events:NotificationMetaInfoType”
 minOccurs=”0” maxOccurs=”unbounded”/>
 </xsd:sequence>
</xsd:complexType>
 460

<gwsdl:portType name=”BufferedNotificationSource” extends=”ogsi:NotificationSource”>
 465
 <sd:serviceData name=”notificationMetaInfo” type=”events:NotificationMetaInfoType”
 minOccurs=”0” maxOccurs=”unbounded”/ >
 … …
</gwsdl:portType>

 470

Below is an explanation of the various elements and attributes used in the previous snippet. (These elements are
very similar in nature to those defined in the WS-Events specification. Please refer to that specification for more
information).

1. Notification element in NotificationMetaInfoType refers to the QName of the SDE representing the
notification. 475

2. SchemaLocation refers to the URI to a XML schema that the subscriber could use to validate
notifications against.

3. Description is an human readable string describing the purpose and semantics of the notification.

4. Causes refers to a list of other notifications that the current notification was a result of. This could be
used for correlation purposes. 480

Queries on the ‘notificationMetaInfo’ SDE using findServiceData by name would return the meta -information
corresponding to all the notifications supported. To support meta-information queries on specific notifications, an
XPath based query expression could be used as the extensible operation input for findServiceData. We propose
declaring XPath based expressions for the ‘findServiceDataExtensibility’ SDE declared in ogsi:GridService For 485
example, an expression like ‘//events:notificationMetaInfo/[Notification=”app:FileCreatedNotification”], used on

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 16 of 29

Copyright, Hewlett-Packard Company, 2003

the notificationMetaInfo SDE would return the meta information corresponding to the FileCreatedNotification
notification.

4.4.4 Notifications about Notifications 490

o WS-Events supports two special kinds of notifications that all compliant ManagedObjects need to support.
These two notifications are to announce

1. The inclusion of a new dynamic notification type (NewEventTypeNotification)

2. The change to the meta information of an existing notification type (EventTypeUpdatedNotification)

o OGSI does not define special types of notifications to describe other notifications. 495

o Since OGSI does not support this, we have to add support for special notification types to match the
capabilities of WS-Events.

The proposal for including this feature in the new model is to add 2 SDEs to the BufferedNotificationSource
portType corresponding to these notification types. The schema types for these notifications would correspond to a
base NotificationType that we define that forms a template for all notifications. The gwsdl portType for 500
events:BufferedNotificationSource thus looks like below

<xsd:complexType name=”NotificationType”>
 <xsd:sequence>
 <xsd:element name=”Originator” type=”ogsi:LocatorType”/>
 <xsd:element name=”UUID” type=”xsd:anyURI”/> 505
 <xsd:element name=”extensibilityElement” type=”ogsi:ExtensibilityType”
 minOccurs=”0” maxOccurs=”unbounded”/>
 <xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##other"
 processContents="lax"/>
 </xsd:sequence> 510
 <xsd:attributeGroup ref=”ogsi:LifeTimePropertiesGroup”/>
</xsd:complexType>

<gwsdl:portType name=”BufferedNotificationSource” extends=”ogsi:NotificationSource>
 515
 ...

 <sd:serviceData name=”NewEventTypeNotification” type=”events:NotificationType”
 minOccurs=”0” maxOccurs=”1” / >
 <sd:serviceData name=”EventTypeUpdatedNotification” type=”events:NotificationType” 520
 minOccurs=”0” maxOccurs=”1” / >
</gwsdl:portType>

Notification would be a wrapper type for notifications. The ‘extensibilityElement’ element of type 525
ogsi:ExtensibilityType is a simple wrapper around any XML content which can be utilized by the event source to
wrap any application specific information. The any element in the schema could be used to support extended
types.

Note: We could use events:NotificationType for the special notifications mentioned above or even declare
extensions of these types if needed. Currently we don’t see a need to specialize types for specific events and 530
therefore use the basic type.

Clients who subscribe to these SDEs will be notified if new notification types are added to the system or if any
Meta information of existing Notifications changes.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 17 of 29

Copyright, Hewlett-Packard Company, 2003

4.4.5 Subscription 535

o WS-Events supports the ability to subscribe to a set of events. The subscribe operation defined in the
Subscription portType allows clients to specify the following inputs

1. A regex based subscription expression specifying the list of events to subscribe to

2. An expiration time that specifies the initial value for the lifetime of the subscription

3. An optional filter that could further select events that the client needs notifications on. 540

4. An optional callback address which specifies a destination where ‘push’ type notifications could be
asynchronously delivered

5. Absence of the callback address means a ‘pull’ type subscription. In this case the managed object
buffers the events for the client until the client asks for it through specific ‘pull’ operations. No
asynchronous notifications occur. 545

6. The response to a subscribe operation is a subscriptionId that uniquely identifies the subscription
which can be used to control the lifetime of the subscription using the ExtendSubscription and
CancelSubscription operations.

o OGSI NotificationSources support a ‘subscribe’ operation which allows the following inputs

1. An extensible subscription expression. NotificationSources have to support one variant which allows 550
subscribers to specify a list of SDEs and the intended periodicity of notifications.

2. A Locator to a NotificationSink specifying the destination for asynchronous notifications.

3. An expiry time indicating the initial lifetime of the subscription

4. The response to the subscribe operation is the Locator to a GridService instance implementing the
NotificationSubscription portType which can be used to control the lifetime of the subscription. 555

o OGSI does not support ‘pull’ type notifications. It also does not support the notion of event filters directly
(though this can be added as an extension). We therefore have to add support for these features to match the
capabilities of WS-Events.

Filters are selectors that the NotificationSource could use to determine at runtime whether a subscriber should be
notified about a specific notification instance. In general it should provide a way to define a piece of logic that can 560
be applied by the source of notifications to attributes available to it at runtime. This could mean that the logic
could provide a specific condition under which a subscriber would like to receive an event, to something more
complex like how to gather performance information and do measurements and when to let clients know that some
state or threshold has been reached. Filters could be as simple as a template that the notification instance could be
matched against or could be as complex as an expression based on runtime properties that would evaluate to a 565
Boolean value, which would help the source decide whether the notification should be discarded or dispatched.
An example of a complex filtering expression could be an expression that specifies something like, if events 1, 2
and 3 happen and then event 4 happens within one hour, then send a notification.

The OGSI specification defines the ‘subscription expression’ as an XML element that describes what messages
should be sent from the notification source to the notification sink. In keeping with this definition, we think that an 570
ideal place to specify filters would be the subscription expression itself. Since this expression is an extensible
operation whose allowable values can be queried by the client, filters that the source supports can be determined
by the client using findServiceData. Specific filters would be covered in a later document.

The proposal is to adopt the OGSI way of subscribing to notifications, with slight changes introduced to support
the ‘pull’ type of buffered notifications supported by WS-Events. The following points describe the subscribe 575
semantics of events:BufferedNotificationSource portType.

1. We propose more variants for the subscription expression, which let the client specify filters to further
select notifications. We need this to provide the ‘filtering’ functionality those WS-Events supports. We
could also use the subscription expression to indicate profiles so that the events which get sent could be
adapted for different kinds of devices (like PDAs etc). Also the notification semantics (push| pull) could be 580
specified in the expression itself.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 18 of 29

Copyright, Hewlett-Packard Company, 2003

2. The response to a subscription would be a Locator to a GridService implementing the
ogsi:BufferedNotificationSubscription portType.

3. We introduce the notion of a new portType called ‘events:BufferedNotificationSubscription’. This portType
would extend the ogsi:NotificationSubscription portType 585

4. Clients could now perform pulls from this buffer using ‘findServiceData’. We propose specifying more
variants for findServiceData (by adding more staticServiceDataValues for its extensible operation), that
support richer pulls the way WS-Events does. WS-Events allows clients to pull events that happened after
a given absolute time or that happened in a particular time range.

5. Explicit pull operations would also be supported on the BufferedNotificationSubscription to make the pull 590
intent more clear than what findServiceData accords.

6. The client can control the lifetime of their subscriptions by controlling the lifetime of the
BufferedNotificationSubscription that manages their subscription

7. The new portType’s bufferSize SDE is used to support the GetEventInstanceInfo operation that WS-Events
supports to allow queries on buffer sizes. 595

<gwsdl:portType name=”BufferedNotificationSubscription”
 extends=”ogsi:NotificationSubscription”> 600

 <sd:serviceData name=”notificationBuffer” type=”events:NotificationType”
 minOccurs=”0” maxOccurs=”unbounded”/ >
 <sd:serviceData name=”bufferSize” type=”xsd:int” / >
 605
</gwsdl:portType>

4.4.6 Faults

 OGSI fault mechanisms will be adopted to describe all faults resulting from this subsystem. 610

4.4.7 Example

The following example describes an implementation of a FileWatcher managed object that supports three kinds of
notifications

1. FileCreated

2. FileDeleted 615

3. FileUpdated

The implementation could declare a new portType that extends the BufferedNotificationSource portType and specify SDEs
for the notifications it supports

<gwsdl:portType name=”FileWatcher” 620
 extends=”events:BufferedNotificationSource”>

 <sd:serviceData name=”FileCreated” type=”events:NotificationType”
 minOccurs=”0” maxOccurs=”1”/ >
 <sd:serviceData name=”FileDeleted” type=”events:NotificationType” 625
 minOccurs=”0” maxOccurs=”1”/ >
 <sd:serviceData name=”FileUpdated” type=”events:NotificationType”
 minOccurs=”0” maxOccurs=”1”/ >

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 19 of 29

Copyright, Hewlett-Packard Company, 2003

 .. 630

</gwsdl:portType>

 635
The managed object would be a GridService implementing this portType. The notifiableServiceDataName SDE that the MO
would inherit by virtue of the portType extending ogsi:NotificationSource, will be set by the implementation to the list of
‘notifications’ that it supports. If the ManagedObject wants to support the two special notifications about notifications
(described in section 4.4.3), it could do that too. Meta information about these notifications will be set in the
notificationMetaInfo SDE which can then be queried by clients to obtain meta information about notifications. The client can 640
then subscribe to notifications using either the pull or push mode. In the case of push modes, the Locator sink specified
during the call to subscribe would be notified when the events occur. In response to a successful subscription clients receive
a Locator to a BufferedNotificationSubscription, which queues notifications for the client and publishes the buffer itself as a
SDE.

4.5 Web Services Management (WSM) 645

To be provided.

4.6 End-to-End

To be provided.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 20 of 29

Copyright, Hewlett-Packard Company, 2003

5 Glossary 650

conversation. A managed object that implements one or more of the Conversation management interfaces which represents one service’s
view of the state associated with a set of related messages.

Common Management Model (CMM). CMM is a working group in GGF to provide management interface definitions in Grid.

data model. See model, or information model.

event. An event is a change in the state of a resource or request for processing. 655

Grid. GGF standards, in particular OGSI and OGSA.

Grid service. Grid service is a service representation of a managed entity. It prescribes how to deal with state of managed entities
through Service Data, and provides interfaces to manipulate the lifetime of the Grid Service. A Grid service does not further specify
management, control or other port types, that is up to extensions like CMM.

hosting environment. The platform on which WSMF or Grid is running, e.g., J2EE, TIBCO, etc. For WSMF (as well as for CMM), an 660
implementation of OGSI can be considered the hosting environment. Also called run-time environment.

infrastructure services and infrastructure layer. The Grid service extensions that deal with the lifecycle management of Grid
services: creation, registration, discovery, deletion. In this document, infrastructure services include both OGSI lifecycle services and OGSA
platform services.

information model. See model, or data model. 665

interface collection. An interface collection is a group of management interfaces that expose the management capabilities of a type of
managed object.

lifecycle services. See services lifecycle layer.

managed entity. A managed entity is anything that is represented through a Grid service (in Grid) or Managed Object (in WSMF). A
managed entity can be a hardware component, a software executable, a logical device such as an SLA contract, or an abstract notion such 670
as ‘solution.’

management interface. A management interface exposes management capabilities of a resource. A management interface is
presented as a set of attributes, operations, and notifications to be accessed through a WSDL portType.

managed object. A managed object is a management representation of a resource. A managed object implements one or more
management interfaces to provide a means to monitor and/or control the underlying resource. 675

management interface. A management interface exposes management capabilities of a resource. A management interface is
presented as a set of attributes, operations, and notifications to be accessed through a WSDL portType.

meta model. A meta model specifies the available constructs in the model. A meta model does not specify instances of those constructs.
For instance, the meta model for CIM has relationships in it, but does not specify what relationships are possible (that’s left to the domain-
specific information models, which have introduced hundreds of different relationships over the years.) 680

model. A model is a set of objects, properties, and their relationships.

notification. A notification is a message that is sent to or retrieved by one or more subscribers to inform them that an event has occurred.

platform services and platform services layer. The Grid service extensions in OGSA that deal with life cycle management of Grid
services, in particular registry, authorization. See also infrastructure services.

resource. A resource is a component of a deployed environment. We preferably use managed entity instead of resource. 685

relation. A relation is a type of association between two managed objects.

relationship. A relationship specifies two managed objects and the relation to define how two specific objects are associated.

run-time environment. See hosting environment.

service. A managed object that implements the Service management interfaces which represents the management capabilities of a Web
service. This Web service may be acting as the provider and/or the consumer of Web service messages. 690

service lifecycle layer. The elements in the OGSI specification that deal with lifecycle management of Grid services, in particular handle
resolution, creation through factory. See also infrastructure services.

service representation. The service representation of a managed entity is the Grid service or WSMF managed object associated with
the managed entity.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 21 of 29

Copyright, Hewlett-Packard Company, 2003

Simple Object Access Protocol (SOAP). SOAP is a transport protocol used in WSDL specifications to bind web service 695
communication to a particular protocol (such as e-mail, http, remote procedure call)

subscriber. A subscriber is an entity that is interested in selected notifications from managed objects. These notifications contain
information about the state change in a managed object.

virtual organization. A virtual organization (VO) is a group of individuals and/or organizations sharing a defined set of resources,
under controlled conditions, for some collaborative purpose. VOs are often temporary, and their membership and the set of resources 700
assigned to them may vary over time.

web service. A web service is defined by its WSDL specification, and uses SOAP as its transport protocol.

Web Services Description Language (WSDL). WSDL is a standard that provides a model and an XML format for describing Web
services. WSDL enables one to separate the description of the abstract functionality offered by a service from concrete details of a service
description such as "how" and "where" that functionality is offered. The WSDL specification defines a language for describing the abstract 705
functionality of a service as well as a framework for describing the concrete details of a service description. [From draft WSDL 1.2 Core
Language Specification, June 2003]

Web Services Execution Environment (WSEE). A managed object that implements the WSEE management interfaces which
encapsulates the management capabilities of a Web service execution environment.

Web Service Management Framework (WSMF). Set of WSDL1.1 compliant interface, attribute and port type definitions, for the 710
purpose of managing any type of entity. WSMF also comes with a management information model for the web services domain.

6 References
1. Web Service Management Framework. N. Catania, P. Kumar, B. Murray, H. Pourheidari, W. Vambenepe, K. Wurster,

http://devresource.hp.com/wsmf

2. Dynamic Attributes and Meta Information. B. Murray, H. Pourheidari, W. Vambenepe, available upon request 715
3. The Physiology of the Grid—An Open Grid Services Architecture for Distributed Systems Integration. I. Foster, C.

Kesselman, J. M. Nick, S. Tuecke, http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf

4. Open Grid Services Infrastructure. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T.
Sandholm, D. Snelling, P. Vanderbilt, https://forge.gridforum.org/projects/ogsi-
wg/document/Final_OGSI_Specification_V1.0/en/1/Final_OGSI_Specification_V1.0.pdf 720

5. Open Grid Service Common Management Model Working Group. https://forge.gridforum.org/projects/cmm-
wg/document/Charter_21apr2003/en/1/Charter_21apr2003.pdf

6. Web Services Description Language 1.1, WSDL1.1, http://www.w3.org/TR/wsdl.
7. Grid WSDL, GWSDL, http://www.gridforum.org/ogsi-wg/.

8. Web Services Description Working Group, WSDL1.2 drafts, http://www.w3.org/2002/ws/desc/. 725
9. GWSDL to WSDL 1.1 Transformation (GWSDL2WSDL1.1), T. Maguire, T. Sandholm, M. Williams, J. Joseph, http://www-

unix.gridforum.org/mail_archive/ogsi-wg/2003/06/doc00000.doc.

10. A developer's overview of OGSI and OGSI-based Grid computing, J. Joseph,
http://www-106.ibm.com/developerworks/grid/library/gr-ogsi/.

11. GWSDL vs. WSDL1.2, a grid forum e-mail thread, http://www-unix.gridforum.org/mail_archive/ogsi-730
wg/2003/02/msg00063.html.

7 Refactored WSMF Foundation (GWSDL)
<?xml version="1.0" encoding="utf-8" ?>
<!--
Copyright (c) 2003 Hewlett-Packard Development Company, L.P. 735
PERMISSION TO COPY AND DISPLAY THIS WSMF PAPER, IN ANY MEDIUM WITHOUT FEE OR ROYALTY,
IS HEREBY GRANTED PROVIDED THAT YOU INCLUDE THE ABOVE COPYRIGHT NOTICE ON *ALL* COPIES
OF THIS WSMF SPECIFICATION, OR PORTIONS THEREOF, THAT YOU MAKE.

DISCLAIMER OF WARRANTEES. USER ACKNOWLEDGES THAT THE SPECIFICATION MAY HAVE 740
ERRORS OR DEFECTS AND IS PROVIDED "AS IS." HEWLETT-PACKARD MAKES NO EXPRESS
OR IMPLIED WARRANTIES OF ANY KIND WITH RESPECT TO THE SPECIFICATION, AND
SPECIFICALLY DISCLAIM THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO HEWLETT-PACKARD.

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 22 of 29

Copyright, Hewlett-Packard Company, 2003

NO LICENSE, EXPRESS OR IMPLIED, IS PROVIDED TO ANY PATENT OR TRADEMARK RIGHT. 745

LIMITATION OF LIABILITY. HEWLET-PACKARD SHALL NOT BE RESPONSIBLE FOR ANY LOSS
TO ANY THIRDS PARTIES CAUSED BY USING THE SPECIFICATION IN ANY MANNER
WHATSOEVER. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT 750
OR ANY OTHER LEGAL THEORY, ARISING OUT OF ANY USE OF THE SPECIFICATION OR ANY
PERFORMANCE OF HEWLETT-PACKARD RELATED TO THIS SPECIFICATION. USER FURTHER
ACKNOWLEDGES THAT THE SPECIFICATION IS PROVIDED FOR EVALUATION PURPOSES ONLY,
AND USER ASSUMES ALL RISKS ASSOCIATED WITH ITS USE.
--> 755
<!-- CVS $Revision: 1.10.2.3 $ $Date: 2003/07/18 21:30:34 $ -->
<definitions name="WSMF-OGSI"
 targetNamespace="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-
ogsi-foundation"
 xmlns:wsmf="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-760
foundation"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI" 765
 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
 xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData">
 <!--
 Todo: Add this extension to ServiceDataType later 770
 xmlns:ogsi-wsmf-sd="WSMF_OGSI_ServiceData.xsd"
 -->

 <import location="../../ogsi/ogsi.gwsdl"
 namespace="http://www.gridforum.org/namespaces/2003/03/OGSI" /> 775
 <documentation>
This document creates an OGSI compliant version of WSMF's Managed Object Interface v2.0.

The ManagedObject interface collection supports the following event types with the
respective URIs: 780

http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/relationship-
added/

http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/relationship-785
removed/
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/state-
changed/
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/attribute-
value-changed/ 790
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/collection-
member-added/
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/event/collection-
member-removed/
 795
The ManagedObject interface collection supports the following values for the State
attribute:
 State:
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/state/up/
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/state/down/ 800
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/managedobject/state/unknown/

The ManagedObject interface collection defines the following relations with the respective
URIs:
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/relations/manager-of-805
collection/
 http://devresource.hp.com/drc/specifications/wsmf/2003/07/relations/member-of-collection/
 </documentation>

 <types> 810

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 23 of 29

Copyright, Hewlett-Packard Company, 2003

 <s:schema
targetNamespace="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-
foundation"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"> 815

 <s:include schemaLocation="WSMF-Foundation.xsd" />

 <s:complexType name="SelectExpressionType">
 <s:restriction base="s:string" /> 820
 </s:complexType>
 <s:element name="Select" type="wsmf:SelectExpressionType" />

 <s:element name="Invoke">
 <s:complexType> 825
 <s:sequence>
 <!-- If the Select element is not present, all collection members are
selected. -->
 <s:element ref="wsmf:Select" minOccurs="0" />
 <s:element name="Interface" type="s:QName" /> 830
 <s:element name="Name" type="s:NMTOKEN" />
 <s:element name="ArgumentList" minOccurs="0">
 <s:complexType>
 <s:sequence>
 <!-- TODO: Can this be more specifically defined? It can be an argument 835
value
 which may be complex (e.g. <MyArg><A>somethingelse</MyArg>).
-->
 <s:any minOccurs="1" maxOccurs="unbounded" processContents="lax" />
 </s:sequence> 840
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 </s:element> 845
 <s:element name="InvokeResponse">
 <s:complexType>
 <s:sequence>
 <s:element ref="wsmf:ManagedObjectResponseInformationList" />
 </s:sequence> 850
 </s:complexType>
 </s:element>

 </s:schema>
 </types> 855

 <message name="InvokeInput">
 <part name="document" element="wsmf:Invoke" />
 </message>
 <message name="InvokeOutput"> 860
 <part name="document" element="wsmf:InvokeResponse" />
 </message>

 <!-- Note that right now, the Identity portType contains nothing more than
 what is already present in the base GridService portType. However, we are 865
 retaining this because we may introduce newer SDEs in the future -->

 <gwsdl:portType name="ManagedObjectIdentity" extends="ogsi:GridService">
 <sd:serviceData name="ID"
 type="wsmf:EntityReferenceType" 870
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false" /> 875

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 24 of 29

Copyright, Hewlett-Packard Company, 2003

 </gwsdl:portType>

 <gwsdl:portType name="Configuration" extends="wsmf:ManagedObjectIdentity">
 <sd:serviceData name="Name" 880
 type="s:string"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="true" 885
 nillable="false" />
 <!--
 Policy="<wsp:Policy>...</wsp:Policy>"
 -->
 <sd:serviceData name="Type" 890
 type="wsmf:ManagedObjectType"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="true" 895
 nillable="false" />
 <sd:serviceData name="Description"
 type="s:string"
 minOccurs="1"
 maxOccurs="1" 900
 mutability="mutable"
 modifiable="true"
 nillable="true" />
 <sd:serviceData name="Owner"
 type="s:string" 905
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="true"
 nillable="false" /> 910
 <sd:serviceData name="Vendor"
 type="s:string"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable" 915
 modifiable="true"
 nillable="true" />
 <sd:serviceData name="Version"
 type="s:string"
 minOccurs="1" 920
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false" />
 <sd:serviceData name="ManagedObjectVersion" 925
 type="s:string"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false" 930
 nillable="false" />
 <sd:serviceData name="CreatedOn"
 type="s:dateTime"
 minOccurs="1"
 maxOccurs="1" 935
 mutability="static"
 modifiable="false"
 nillable="false" />
 <sd:serviceData name="HostName"
 type="s:string" 940
 minOccurs="1"
 maxOccurs="1"

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 25 of 29

Copyright, Hewlett-Packard Company, 2003

 mutability="mutable"
 modifiable="true"
 nillable="true" /> 945
 <sd:serviceData name="ManagedObjectHostName"
 type="s:string"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable" 950
 modifiable="true"
 nillable="true" />

 </gwsdl:portType>
 955
 <gwsdl:portType name="Monitoring" extends="wsmf:ManagedObjectIdentity" >
 <sd:serviceData name="State"
 type="wsmf:StateType"
 minOccurs="1"
 maxOccurs="unbounded" 960
 mutability="mutable"
 modifiable="true"
 nillable="true" />
 <!--
 Policy="<wsp:Policy>...</wsp:Policy>" 965
 -->
 <sd:serviceData name="SupportedStates"
 type="wsmf:StateListType"
 minOccurs="1"
 maxOccurs="unbounded" 970
 mutability="mutable"
 modifiable="true"
 nillable="true" />

 </gwsdl:portType> 975

 <gwsdl:portType name="Discovery" extends="wsmf:ManagedObjectIdentity" >
 <sd:serviceData name="Relationship"
 type="wsmf:RelationList"
 minOccurs="0" 980
 maxOccurs="unbounded"
 mutability="mutable"
 modifiable="true"
 nillable="true" />
 <sd:serviceData name="SupportedRelations" 985
 type="wsmf:RelationshipListType"
 minOccurs="0"
 maxOccurs="unbounded"
 mutability="mutable"
 modifiable="true" 990
 nillable="true" />
 </gwsdl:portType>

 <gwsdl:portType name="Control" extends="wsmf:ManagedObjectIdentity" >
 <sd:serviceData name="State" 995
 type="wsmf:StateType"
 minOccurs="0"
 maxOccurs="unbounded"
 mutability="mutable"
 modifiable="true" 1000
 nillable="true" />
 </gwsdl:portType>

 <gwsdl:portType name="Collection" extends="ogsi:ServiceGroupRegistration" >
 <operation name="Invoke"> 1005
 <input message="wsmf:InvokeInput" />
 <output message="wsmf:InvokeOutput" />
 </operation>

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 26 of 29

Copyright, Hewlett-Packard Company, 2003

 </gwsdl:portType>
 1010
</definitions>

8 Refactored WS-Events (GWSDL)

<definitions
 name="WSEvents-OGSI" 1015
 targetNamespace="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-
events"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI" 1020
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:events="http://devresource.hp.com/drc/specifications/wsmf/2003/07/wsmf-ogsi-
events"> 1025

 <import
 location="../../ogsi/ogsi.gwsdl"
 namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>
 1030
 <types>
 <xsd:schema>
 <!-- The base notification schema -->
 <xsd:complexType name="NotificationType">
 <xsd:sequence> 1035
 <xsd:element name="Originator" type="ogsi:LocatorType"/>
 <xsd:element name="UUID" type="xsd:anyURI"/>
 <xsd:element name="extensibilityElement"
 type="ogsi:ExtensibilityType"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded" 1040
 namespace="##other"
 processContents="lax"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="ogsi:LifeTimePropertiesGroup"/>
 </xsd:complexType> 1045

 <!-- The schema for representing meta info about notifications -->
 <xsd:complexType name="NotificationMetaInfoType">
 <xsd:sequence>
 <xsd:element name="Notification" type="xsd:QName"/> 1050
 <xsd:element name="SchemaLocation" type="xsd:anyURI"/>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>

 <xsd:element name="Causes"
 type="events:NotificationMetaInfoListType" 1055
 minOccurs="0"/>

 <xsd:any minOccurs="0" maxOccurs="unbounded"
 namespace="##other"
 processContents="lax"/> 1060
 </xsd:sequence>
 <xsd:attributeGroup ref="ogsi:LifeTimePropertiesGroup"/>
 <xsd:anyAttribute namespace="##other" processContents="skip"/>
 </xsd:complexType>
 1065
 <!-- A list of meta information -->
 <xsd:complexType name="NotificationMetaInfoListType">
 <xsd:sequence>
 <xsd:element
 name="NotificationMetaInfo" 1070

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 27 of 29

Copyright, Hewlett-Packard Company, 2003

 type="events:NotificationMetaInfoType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 1075
 <!-- Some types used for extensibility elements -->
 <xsd:complexType name="FilterType">
 <xsd:choice>
 <xsd:element name="Filter" type="xsd:QName"/>
 <xsd:any processContents="lax"/> 1080
 </xsd:choice>
 </xsd:complexType>

 <xsd:simpleType name=”SubscriptionModeType”>
 <xsd:restriction base=”xsd:token”> 1085
 <xsd:enumeration value=”push”/>
 <xsd:enumeration value=”pull”/>
 <xsd:enumeration value=”pushAndPull”/>
 </xsd:restriction>
 </xsd:simpleType> 1090

 <!-- Extensibility element for supporting meta info queries on
 notifications -->
 <!-- Only supported on the notificationMetaInfo SDE of
 BufferedNotificationSource--> 1095
 <xsd:element name="GetNotificationMetaInfo">
 <xsd:complexType name="GetNotificationMetaInfoType">
 <xsd:sequence>
 <xsd:element name="Xpath" type="xsd:string"/>
 </xsd:sequence> 1100
 </xsd:complexType>
 </xsd:element>

 <!-- Extensibility element for supporting richer subscribe variants -->
 <xsd:element name="NotificationSubscriptionExpression"> 1105
 <xsd:complexType name="NotificationSubscriptionExpressionType">
 <xsd:complexContent>
 <xsd:extension base="ogsi:SubscribeByNameType">
 <xsd:sequence>
 <xsd:element name="Filter" type="events:FilterType"/> 1110
 <xsd:element name=”SubscriptionMode”
 type=”events:SubscriptionModeType”/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent> 1115
 </xsd:complexType>
 </xsd:element>

 <!-- Extensibility elements for pull variants -->
 <xsd:element name="GetNotificationsSinceDate"> 1120
 <xsd:complexType name="GetNotificationSinceDateType">
 <xsd:sequence>
 <xsd:element name="Date" type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:complexType> 1125
 </xsd:element>

 <xsd:element name="GetNotificationsSinceUUID">
 <xsd:complexType name="GetNotificationsSinceUUIDType">
 <xsd:sequence> 1130
 <xsd:element name="UUID" type="xsd:anyURI"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 1135
 <xsd:element name="GetNotificationsRangeByDate">

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 28 of 29

Copyright, Hewlett-Packard Company, 2003

 <xsd:complexType name="GetNotificationsRangeByDateType">
 <xsd:sequence>
 <xsd:element name="BeginDate" type="xsd:dateTime"/>
 <xsd:element name="EndDate" type="xsd:dateTime"/> 1140
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”NotificationList”>
 <xsd:complexType> 1145
 <xsd:sequence>
 <xsd:element name=”Notification” type=”events:NotificationType”
 minOccurs=”0” maxOccurs=”unbounded”/>
 </xsd:sequence>
 </xsd:complexType> 1150
 </xsd:element>
 </xsd:schema>
 </types>

 <message name="PullByDateInput"> 1155
 <part name="document" element="events:GetNotificationsSinceDate" />
 </message>
 <message name="PullByUUIDInput">
 <part name="document" element="events:GetNotificationsSinceUUID" />
 </message> 1160

<message name="PullByDateRangeInput">
 <part name="document" element="events:GetNotificationsRangeByDate" />
 </message>
 <message name=”PullOutput”>
 <part name=”document” element=”events:NotificationList”/> 1165
 </message>

 <gwsdl:portType name="BufferedNotificationSource" 1170
 extends="ogsi:NotificationSource">
 <sd:serviceData name="notificationMetaInfo"
 type="events:NotificationMetaInfoType"
 minOccurs="0" maxOccurs="unbounded"/>
 <sd:serviceData name="NewEventTypeNotification" type="events:NotificationType" 1175
 minOccurs="0" maxOccurs="1" />
 <sd:serviceData name="EventTypeUpdatedNotification"
 type="events:NotificationType"
 minOccurs="0" maxOccurs="1" />
 1180
 <sd:staticServiceDataValues>
 <!-- extensibility element for supporting meta info queries on
 notifications -->
 <ogsi:findServiceDataExtensibility
 inputElement="events:GetNotificationMetaInfo"/> 1185

 <!-- extensibility element for supporting richer subscribe variants -->
 <ogsi:subscribeExtensibility
 inputElement="events:NotificationSubscriptionExpression"/>
 </sd:staticServiceDataValues> 1190
 </gwsdl:portType>

 <gwsdl:portType name="BufferedNotificationSubscription"
 extends="ogsi:NotificationSubscription">
 <operation name=”PullByDate”> 1195
 <input message=”events:PullByDateInput”/>
 <output message=”events:PullOutput”/>
 </operation>
 <operation name=”PullByUUID”>
 <input message=”events:PullByUUIDInput”/> 1200
 <output message=”events:PullOutput”/>
 </operation>

WSMF/OGSI Re-factoring - 9/10/2003 6:02 PM Page 29 of 29

Copyright, Hewlett-Packard Company, 2003

 <operation name=”PullByDateRange”>
 <input message=”events:PullByDateRangeInput”/>
 <output message=”events:PullOutput”/> 1205
 </operation>
 <sd:serviceData name="notificationBuffer" type="events:NotificationType"
 minOccurs="0" maxOccurs="unbounded"/>
 <sd:serviceData name="bufferSize" type="xsd:int" />
 1210
 <!-- extensibility elements for supporting the different WS-Events pull
 variants -->
 <sd:staticServiceDataValues>
 <ogsi:findServiceDataExtensibility
 inputElement="events:GetNotificationsSinceDate"/> 1215
 <ogsi:findServiceDataExtensibility
 inputElement="events:GetNotificationsSinceUUID"/>
 <ogsi:findServiceDataExtensibility
 inputElement="events:GetNotificationsRangeByDate"/>
 </sd:staticServiceDataValues> 1220
 </gwsdl:portType>

</definitions>

