1 WSDM Event Format

1.1 WSDM Event Format

The WSDM Event Format defines an XML format to carry management event information. The format defines a set of basic, consistent data elements that allow different types of management event information to be carried in a consistent manner. This enables programmatic processing, correlation, and interpretation of events from different products, platforms, and management technologies.

The WSDM Event Format divides management event data into 4 basic categories, reporter, source, situation, and event specific extensibility. Each category contains a few common properties found in most management events and allows extensibility for event specific data.

The WSDM Event Format has a flexible and extensible format permitting virtually free-form expression of events, while at the same time, provides a means to classify the event into a limited set of classifications and subclassifications so that automated analysis is possible.

Figure 1, WSDM Event UML, shows the UML for the WSDM Event Format.

[image: image1.png]+sourceComponentid

'WSDMEventFormat
eventd- UUID reporterCompon
reportTime - dateTime? entid 0.1 1
prioity - short?
severity - short? ‘Componentldentification
‘muwsResourcelD - anyURI?
muws:Caption - string?
o - muws:Version - sting?
T, RI?
=)] resoueeTpeang
1
+situation |, 4
StuationType - sting .
SituationQualfier - sring?
successDispostion - string? ComponentAddress

situationTime - dateTime?
msg - string?

‘msgLocale - lang?
msgld - string?
msgldType - QName?

fromponentAddressType - string

Figure 1, WSDM Event Format UML
The WSDM Event Format has three basic properties that must be included with every event instance. Those are
:

sourceComponentId – provides identification of the resource experiencing the event.

reporterComponentId
 – provides identification of the resource that is reporting the event. This is only required if the reporterComponentId is different than the sourceComponentId.

situationType – the type of event that is being reported.

Any additional context required to provide meaning for immediate or subsequent analysis
.

The base element of the WSDM Event Format is WSDMEventFormat.
1.1.1 Properties
The WSDMEventFormat has the following properties.

<sourceComponentId>muws-ws:ComponentIdentification

 </sourceComponentId>

<reporterComponentId>muws-ws:ComponentIdentification

 </reporterComponentId>?
<situation>muws-ws:Situation</situation>

<eventId>xs:anyURI</eventId>

<reportTime>xs:dateTime</reportTime>?
<priority>xs:short</priority>?
<severity>xs:short</severity>?
· sourceComponentId – This is a complex type defined as muws-ws:ComponentIdentification. This element provides the identification for the resource experiencing the event. This element is required although all elements of the complex type are not required.
· reporterComponentId – This is a complex type defined as muws-ws:ComponentIdentification. This is the identification of the component that is the “reporter” of the event or the situation. This is a REQUIRED property only if the reporting component is different than the source component. Otherwise, this element is OPTIONAL

· eventId – This is type xs:anyURI. Developers SHOULD use the uuid URI scheme for the value of eventId. This is the primary identifier for the event. This property MUST be globally unique and MAY be used as the primary key for the event. This property is provided for management functions that require events to have an identifier. This is a REQUIRED property. The RECOMMENDED value is either a 32- or 64-hexadecimal character Globally Unique Id and MUST start with an alphabetic character (that is, a - z and A - Z). The length for this property MUST not exceed 64 characters.

· reportTime - The date-time when the event was reported. The value MUST be as defined by the XML schema dateTime data type and MUST include a time zone in Coordinated Universal Time (UTC).
 If the value does not include a time zone designation (or use ‘Z’ for UCT), the value MUST be interpreted as having a time zone of UCT. The value of the reportTime MUST provide granularity as precisely as the generating platform allows. This is an OPTIONAL property.

· priority - This property defines the importance of the event. This field is provided for management functions that require an event to have a priority. The predefined priorities are:

· 10 Low

· 50 Medium

· 70 High

·
The values are 0 to 100. The reserved value for Low is 10, for Medium is 50, and for High is 70. Other priorities MAY be added but MUST NOT exceed 100.

This is an OPTIONAL property.

· severity - The perceived severity of the status the event is describing with respect to the application that reports the event. This field is provided for management functions that require an event to have a severity. The predefined severity levels, in order of increasing severity, are as follows:

· 0 Unknown

· 10 Information MUST be used for cases when the event contains only general information and is not reporting an error.
· 20 Harmless MUST be used for cases in which the error event has no effect on the normal operation of the resource.

· 30 Warning MUST be used when it is appropriate to let the user decide if an action is needed in response to the event.
· 40 Minor MUST be used to indicate that action is needed, but the situation is not serious at this time.
· 50 Critical MUST be used to indicate that an immediate action is needed and the scope is broad (perhaps an imminent outage to a critical resource will result).
· 60 Fatal MUST be used to indicate that an error occurred, but it is too late to take remedial action.

The associated values are 0 to 70. The reserved values start at 0 for Unknown and increase by increments of 10 to 60 for Fatal. Other severities MAY be added but MUST NOT exceed 70.

This is an OPTIONAL property.

· To provide additional data associated with the event there is a provision for xs:any to be included in the WSDMEventFormat. This can be used to include expanded explanation or data associated with the event.

1.1.2 Data Types
1.1.2.1 ComponentIdentification
ComponentIdentification provides the means to identify resource or resources that are responsible for generating and reporting the event. There are a number of properties with this data type with the most important being the componentAddress which is a complex data type whose format is a function of the nature of the address. This specification provides examples of a few address types in [TWS:see ref on address types].

<componentIdentification>

 <componentAddress>muws-ws:ComponentAddress</componentAddress>

 <muws:ResourceID>xs:anyURI</muws:ResourceId> ?
 <muws:Caption>xs:string</muws:Caption> ?
 <muws:Version>xs:string</muws:Version> ?
 <resourceType>xs:anyURI</resourceType> ?
</componentIdentification>

· componentAddress – This property contains the specific required fields used to identify the component’s address. The type of the address is indicated in its componentAddressType attribute. This is a REQUIRED property if the component is addressable
.

· muws:ResourceID - This specifies an identifier for the instance of the component property. This is an OPTIONAL property. This property is intended as an identifier for use with correlation, for example, so that management components can ensure the information contained in the WSDMEventFormat pertains to the same instance of a component.
· muws:Caption - Caption is a string containing a descriptive name for the resource being managed. This is an OPTIONAL property. The string length for the component name MUST NOT exceed 256 characters
.
· muws:Version - a string representing the version of the resource. This is an OPTIONAL property. The string length MUST NOT exceed 512 characters

· resourceType - Specifies the type of the resource as defined in [TBD
]. It is a OPTIONAL property.
ComponentIdentification is extensible so that resource type specific identification data may be included.

1.1.2.2 ComponentAddress
ComponentAddress is a complex data type that provides the address form necessary to access the corresponding resource.
The address’s form is specified in the single mandatory attribute of the ComponentAddress. The pseudo schema for ComponentAddress is:

<componentAddress

componentAddressType={IPAddress|WSAddress|..}
>

<ipaddr>ipaddr<ipaddr>

</componentAddress>

· componentAddressType - The componentAddressType indicates what to expect for the value of componentAddress. componentAddressType is an enumeration that specifies how to interpret the remainder of the element. The values defined in this specification are:

· IPAddress

· WSAddress
This attribute is REQUIRED. The maximum string length MUST NOT exceed 512 characters.

ComponentAddress is extensible so that address specific properties can be defined
. Examples for IPAddress and WSAddress are included in the Examples section
.
1.1.2.3 Situation
The WSDM Event Format has a flexible and extensible format permitting virtually free-form expression of events, while at the same time, provides a means to classify the event into a limited set of classifications and subclassifications so that automated analysis is possible. The classifications are based on a thorough analysis of event types produced by a wide range of IT equipment and grouped according to the general nature of the events. For example, virtually all manageable resources have a means of being started but almost all managed resources express this event in unique and imaginative ways. The basic knowledge that the resource has been started is all that is necessary for even fairly sophisticated automated management.

The Situation type provides the specifics about the classification of the event and optionally contains human readable form of the event details.
<situation>

 <situationType>xs:string</situationType>
 <situationQualifier>xs:string</situationQualifier> ?

 <successDisposition>xs:string</successDisposition> ?
 <situationTime>xs:dateTime</situationTime> ?
 <msg>xs:string</msg> ?
 <msgId msgIdType=”xs:string”?>xs:string</msgId> ?
</situation>

· situationType - This property categorizes the type of the situation that caused the event to be reported. The current values are:
· StartSituation

· StopSituation

· ConnectSituation

· RequestSituation

· ConfigureSituation

· FeatureSituation

· CreateSituation

· DestroySituation

· ReportSituation

· AvailabilitySituation

· DependencySituation

· OtherSituation

This is a REQUIRED property.
· situationQualifier - This property specifies the situation qualifiers that help to more fully describe the situation. The situationQualifier is of type string with a specific set of values depending on the situationType. For a StartSituation the following qualifiers are defined:

· START INITIATED

· RESTART INITIATED

· START COMPLETED

See Table [TWS:to be sent separately] for situatlionQualifier values for all situationTypes. This is an OPTIONAL property. The string length for this property MUST NOT exceed 64 characters.

· successDisposition - This property specifies the success disposition of an operation of a situation that caused the situation to be reported. The successDisposition is of type string with the following set of values:

· SUCCESSFUL

· UNSUCESSFUL

This is an OPTIONAL property.
· situationTime – The date and time that the event was observed. If the value does not include a time zone designation (or use ‘Z’ for UCT), the value MUST be interpreted as having a time zone of UCT. The value of the situationTime MUST provide granularity as precisely as the generating platform allows. This is a REQUIRED property and MUST be provided by the component that is the originator of the event
.

· msg - The text
accompanying the event. This is typically the resolved message string in human-readable format rendered for a specific locale. This is an OPTIONAL property. The string length for msg is unbounded. However, it is RECOMMENED that it does not exceed 1024 characters.
· msgId - Specifies the message identifier
of the event. This identifier SHOULD be a unique value string of alphanumeric or numeric characters. It can be as simple as a string of numeric characters that identify a message in a message catalog or a multipart string of alphanumeric characters (for example, DBT1234E). This is an OPTIONAL property. The maximum string length for msgId MUST NOT exceed 256 characters
.
· msgIdType - Specifies the meaning and format of the msgId. If the msgId conforms to or represents a standard or a well-known convention, it is named by this property. Examples are: IBM3.4, IBM4.4, IBM3.1.4, IBM3.4.1, IBM4.4.1, and IBM3.1.4.1.

The nonexclusive reserved keywords include:

· IBM* (* is as described above)

· JMX

· DottedName

· Unknown

This is an OPTIONAL property. The maximum string length for msgIdType MUST NOT exceed 32 characters
.
Appendix ? WSDMEventFormat xsd

 <xs:complexType name="WSDMEventFormat">

 <xs:sequence>

 <xs:element name="sourceComponentId"
 type="wef:ComponentIdentificationType"

 maxOccurs="1" minOccurs="1"/>

 <xs:element name="reporterComponentId"
 type="wef:ComponentIdentificationType"

 maxOccurs="1" minOccurs="0" />

 <xs:element name="situation" type="wef:SitutationType"

 maxOccurs="1" minOccurs="1" />

 <xs:element name="eventId" type="xs:anyURI"
 maxOccurs="1" minOccurs="1"/>

 <xs:element name="reportTime" type="xs:dateTime"
 maxOccurs="1" minOccurs="0"/>

 <xs:element name="priority" type="xs:short"
 maxOccurs="1" minOccurs="0"/>

 <xs:element name="severity" type="xs:short"
 maxOccurs="1" minOccurs="0"/>

 <xs:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>

 </xs:sequence>
 </xs:complexType>

 <xs:element name="WSDMEventFormat
" type="muws-xs:WSDMEventFormat"/>

 <xs:complexType name="ComponentIdentificationType">

 <xs:sequence>

 <xs:element name="componentAddress" type="wef:ComponentAddressType"

 maxOccurs="1" minOccurs="1"/>

 <xs:element ref="muws:ResourceID"
 maxOccurs="1" minOccurs="0"/>

 <xs:element ref="muws:Caption"
 maxOccurs="1" minOccurs="0"/>

 <xs:element ref="muws:Version"
 maxOccurs="1" minOccurs="0"/>

 <xs:element name="resourceType" type="xs:string"
 maxOccurs="1" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="ComponentIdentification"
 type="wef:ComponentIdentificationType"/>

 <xs:simpleType name=’string64’>
 <xs:restriction base=’xs:string’ maxLength=’64’/>
 </xs:simpleType>

 <xs:complexType name="SitutationType">

 <xs:sequence>

 <xs:element name="situationType">

 <xs:simpleType>

 <xs:restriction base="wef:string64">

 <xs:enumeration value="StartSituation" />

 <xs:enumeration value="StopSituation" />

 <xs:enumeration value="ConnectSituation" />

 <xs:enumeration value="ReportSituation" />

 <xs:enumeration value="FeatureSituation" />

 <xs:enumeration value="DependencySituation" />

 <xs:enumeration value="ConfigureSituation" />

 <xs:enumeration value="CreateSituation" />

 <xs:enumeration value="DestroySituation" />

 <xs:enumeration value="RequestSituation" />

 <xs:enumeration value="AvailabilitySituation" />

 <xs:enumeration value="OtherSituation" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element
 name="situationQualifier" type=”wef:string64”
 minOccurs=”0”/>

 <xs:element name="successDisposition" minOccurs=”0”>

 <xs:simpleType>

 <xs:restriction base="wef:string64">

 <xs:enumeration value="SUCCESSFUL"></xs:enumeration>

 <xs:enumeration value="UNSUCESSFUL"></xs:enumeration>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="situationTime" type="xs:dateTime"
 maxOccurs="1" minOccurs="0"/>
 <xs:element name="msg" type="xs:string"
 maxOccurs="1" minOccurs="0"/>

 <xs:element name="msgId" type="muws:LangString"
 maxOccurs="1" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Situation" type="wef:SitutationType"/>

 <xs:simpleType name=’MuwsAddressTypes‘>
 <xs:restriction base=’xs:string’>

 <xs:enumeration value=”IPAddress”/>
 <xs:enumeration value=”WSAddress”/>
 </xs:restriction>
 <xs:simpleType>
 <xs:simpleType name=”ExtendedAddressType”>
 <xs:union>wef:MuwsAddressType xs:string</xs:union>

 </xs:simpleType>
 <xs:complexType name="ComponentAddressType">

 <xs:attribute name="componentAddressType" type="wef:ExtendedAddressType"
 use="required"/>

 <xs:any minOccurs="1" maxOccurs="1"

namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:element name="ComponentAddress" type="wef:ComponentAddressType"/>

 <xs:complexType name="IPAddress">

 <xs:complexContent>

 <xs:extension base="wef:ComponentAddressType">

 <xs:element name="ipAddress" type="xs:string"/>

 <xs:element name="ipType" type="xs:string"/>

 <xs:element name="ipPort" type="xs:string"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="IPAddress" type="wef:IPAddress"/>

 <xs:complexType name="WSAddress">

 <xs:complexContent>

 <xs:extension base="wef:ComponentAddressType">

 <xs:element name="endPointReference" type="wsa:EndPointReferenceType"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="WSAddress" type="wef:WSAddress"/>

 <xs:complexType name="OtherAddress">

 <xs:complexContent>

 <xs:extension base="wef:ComponentAddressType">

 <xs:sequence>

 <xs:element name="otherType" type="xs:string"/>

 <xs:any minOccurs="1" maxOccurs="1"

namespace="##other" processContents="lax"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

�Includes edits from Bryan

�The optionality of components here seems to be as I remember from the f2f. The type of eventId should be anyURI unless we define the type UUID in our schema.

�eventId is missing from required components.

�Since this component is optional I would not include it in a list of required components

�What does this mean?

�I would remove this unless we are going to define a type for UUID.

�We don’t need this sentence because we have defined the type of the value to be xs:dateTime. Also, it is OK for values to define a non-UCT time zone, because there is enough information to determine what the UCT time is. The only case we need to worry about is if no time zone is specified.

�Why don’t we just use an enum for this value if we are always going to map it to certain string values?

�Why don’t we just use an enum for this value if we are always going to map it to certain string values?

�If this component might sometimes not be present we need to list it as optional. What are cases where this field is not present?

�Since this value is defined in MUWS, we cannot limit the size here. Currently MUWS does not limit the size, should it?

�Since this value is defined in MUWS, we cannot limit the size here. Currently MUWS does not limit the size, should it?

�What are the plans for the type? I thought it was just going to be a URI.

�We might want the attribute type to be anyURI so it is easier to extend to new address types.

�I don’t think this type needs to be extensible because we already allow anything due to componentAddressType.

�There is no examples section

�At the f2f I thought we decided this was a URI and not this fixed list of stuff.

�Need to define a type to represent the limited sized string.

�This may not be possible on a resource constrained device.

�This value needs to be qualified by xml:lang – see the Description property in MUWS.

�Are there any uniqueness constraints? What is this value used for?

�Need to define a type to indicate limited length

�Should the type be URI so it is easier to extend and document?

�Need a type

�I would name the element WsdmEvent – this IS the notification, not the format of the notification.

�Not needed – the element will never be used

�Don’t need this - we will never use this element

�These types are not accomplishing what you want them to. I would write text to say that if componentAddressType attribute is set to 'WSAddress' the of a ComponentAddressType MUST be a wsa:EndpointReference. Similarly for IPAddress define a type and require the value to be that type.

�You don’t need this type because ComponentAddressType defines this already.

cd-muws-wef-0.5

Copyright © OASIS Open 2003-2004. All Rights Reserved.

Page 7 of 9

