
Figure 1 shows the ws-reliability protocol roles as five UML object classes:
• Sender – an application which may have a sendsThru contract with a Sending

RMP. The sender invokes send operations on the sendingRMP, with a message
payload, and must be prepared to accept failureNotification operations invoked by
its sendingRMP. Upon failure, the sender is returned the payload of the failed
message.

• SendingRMP – a Sending RMP instance acts on behalf of a single Sender
instance, and uses a (potentially shared) transport service to send messages and
receive responses.

• Transport – this object models the underlying transport. SendingRMPs use it to
send messages and receive acks and faults, and ReceivingRMPs use it to receive
messges and send acks and faults.

• ReceivingRMP – a Receiving RMP instance acts on behalf of a single receiver
instance, and uses a (potentially shared) transport service to receive messages and
send responses.

• Receiver – an application which may have a receivesThru contract with a
Receiving RMP. The receiver accepts an abstract deliver operation, which
conveys the payload of the reliable message, in correct order.

For simplicity, it is assumed that there is only one group at a time (i.e., there are no
groupID parameters shown in these examples, just for simplification purposes).

Sender

failureNotification(string payload)

SendingRMP

send(time expiryTime, string payload)
ack(int refToMessageID)
expiryFault(int refToMessageID)

0..1

sends thru

Transport

sendTransport(int messageID, time expiryTime, string payload)
returnAckTransport(int refToMessageID)
returnFaultTransport(int refToMessageID, string Reason)

0..*

uses transport as sender

Receiver

deliver(string payload)

RecevingRMP

receive(int messageID, time expiryTime, string payload)

0..*

uses transport as receiver

0..1

receives thru

0..1

0..*

0..*

0..1

Figure 1: Protocol Roles as Object model (abstract operations and associations shown)

Figure 2 shows an example sequence diagram, which shows an example of ordered
delivery, where a lost second message is retransmitted in time to complete the sequence
before termination. Note that all three messages are delivered in the proper order,
because the retransmitted message 2 was received before the held third message expired.

 : Sender : SendingRMP : Transport : RecevingRMP : Receiver

message 2 lost
in transport

New Group,
maxExpire =
4pm

maxExpire =
4pm, hold 3
waiting for 2

message 2 arrives at
 3pm, maxExpire =
8pm,

timeout at 8pm,
destroy group
state

1: send(4pm, "msg1")

7: send(8pm, "msg2")

9: send(4pm, "msg3")

2: sendTransport(1,4pm , "msg1")

8: sendTransport(2, 8pm, "msg2")

10: sendTransport (3,4pm , "msg3")

12: sendTransport(2, 8pm , "msg2")

3: receive(1, 4pm, "msg1")

5: returnAckTransport(1)

6: ack(1)

11: receive(3, 4pm, "msg3")

13: receive(2, 8pm , "msg2")

4: deliver("msg1")

14: deliver("msg2")
15: returnAckTransport(2)

16: ack(2)

17: deliver("msg3")

18: returnAckTransport(3)

19: ack(3)

resend message
2

Figure 2: Sequence Diagram Example (how ordered delivery is supposed to work)

Figure 3 shows a more troublesome example, where a delayed message 2 is received after
the third message times out. In this case the sender gets a failure Notification for both
messages 2 and 3.

 : Sender : SendingRMP : Transport : RecevingRMP : Receiver

1: send(4pm, "msg1")

2: sendTransport(1,4pm , "msg1")

3: receive(1, 4pm, "msg1")

4: deliver("msg1")

5: returnAckTransport(1)

6: ack(1)

7: send(8pm, "msg2")

8: sendTransport(2, 8pm, "msg2")

message 2
delayed in
transport

9: send(4pm, "msg3")
10: sendTransport (3,4pm , "msg3")

11: receive(3, 4pm, "msg3")

New Group,
maxExpire =
4pm

maxExpire =
4pm, hold 3
waiting for 2

12: returnFaultTransport(3, "expiredWaiting)
timeout at 4pm,
destroy group
state13: expiryFault(3)

14: failureNotification("msg3")

15: receive(2, 8pm , "msg2") message 2 arrives
at 6pm, new
group formed,
maxExpire =
8pm, hold 2
waiting for 1

16: returnFaultTransport(2, "expiredWaiting")

timeout at 8pm,
destroy group
state

17: expiryFault(2)
18: failureNotification("msg2")

Figure 3: Sequence Diagram Example (Extensively Delayed receipt of message 2)

Figure 4 is another troublesome example, where the message 2 is retransmitted by the
sending rmp after the third held message expires. However, the sender is made aware of
the failure to deliver, since it receives failure notifications for both failed messages 2 and
3.

 : Sender : SendingRMP : Transport : RecevingRMP : Receiver

message 2 lost
in transport

New Group,
maxExpire =
4pm

maxExpire =
4pm, hold 3
waiting for 2

timeout at 4pm,
destroy group
state

message 2 arrives
at 6pm, new
group formed,
maxExpire =
8pm, hold 2
waiting for 1

timeout at 8pm,
destroy group
state

1: send(4pm, "msg1")

7: send(8pm, "msg2")

9: send(4pm, "msg3")

14: failureNotification("msg3")

2: sendTransport(1,4pm , "msg1")

8: sendTransport(2, 8pm, "msg2")

10: sendTransport (3,4pm , "msg3")

3: receive(1, 4pm, "msg1")

5: returnAckTransport(1)

6: ack(1)

11: receive(3, 4pm, "msg3")

12: returnFaultTransport(3, "expiredWaiting)
13: expiryFault(3)

16: receive(2, 8pm , "msg2")

17: returnFaultTransport(2, "expiredWaiting")
18: expiryFault(2)

19: failureNotification("msg2")

4: deliver("msg1")

15: sendTransport(2, 8pm , "msg2")

Figure 4: (Extensively Delayed Retransmission of message 2)

