
Web Services Security Addendum
Version 1.0

August 18, 2002

Authors

Giovanni Della-Libera, Microsoft
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM
Chris Kaler (Editor), Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft
Kent Tamura, IBM
Hervey Wilson, Microsoft

Copyright Notice
 2001-2002 International Business Machines Corporation, Microsoft Corporation,
VeriSign, Inc. All rights reserved.

The presentation, distribution or other dissemination of the information contained in
this specification is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by IBM or Microsoft or VeriSign and/or any other third
party. IBM, Microsoft, VeriSign and\or any other third party may have patents,
patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. The furnishing of this document does not
give you any license to IBM's or Microsoft’s or VeriSign's or any other third party’s
patents, trademarks, copyrights, or other intellectual property. The example
companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, email address, logo, person, places,
or events is intended or should be inferred.

This specification and the information contained herein is provided on an "AS IS"
basis and to the maximum extent permitted by applicable law, IBM and Microsoft
and VeriSign provides the document AS IS AND WITH ALL FAULTS, and hereby
disclaims all other warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties, duties or conditions of
merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses, and of lack of
negligence, all with regard to the document. ALSO, THERE IS NO WARRANTY OR
CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE
TO DESCRIPTION OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHTS WITH REGARD TO THE DOCUMENT.

IN NO EVENT WILL IBM OR MICROSOFT OR VERISIGN BE LIABLE TO ANY OTHER
PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,

DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Abstract
This document describes clarifications, enhancements, best practices, and errata of
the WS-Security specification.

Status
WS-Security and related specifications are provided as-is and for review and
evaluation only. IBM and Microsoft and VeriSign hope to solicit your contributions
and suggestions in the near future. IBM and Microsoft and VeriS ign make no
warrantees or representations regarding the specifications in any manner
whatsoever.

Table of Contents
1. Introduction

1.1. Notational Conventions
1.2. Namespaces

2. Errata
3. ID References

3.1. Id Attribute
3.2. Id Schema

4. Placement of X.509 Certificates
5. Message Timestamps

5.1. Model
5.2. Timestamp Elements

5.2.1. Expiration
5.2.2. Creation
5.2.3. Intermediaries

5.3. Timestamp Header
6. Passing Passwords
7. Key Identifiers
8. Key Names
9. Token Reference Lookup Processing Order
10. Encrypted Keys
11. Decryption Transformation
12. Certificate Collections
13. Security Considerations
14. Acknowledgements
15. References

1. Introduction
Since the publication of the WS-Security specification, additional reviews and
implementation experiences suggest some additions, clarifications, and corrections to
the original specification.

1.1. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119.

Namespace URIs (of the general form "some-URI") represent some application-
dependent or context-dependent URI as defined in RFC2396.

WS-Security is designed to work with the general SOAP message structure and
message processing model, and WS-Security should be applicable to any version of
SOAP. The current SOAP 1.2 namespace URI is used herein to provide detailed
examples, but there is no intention to limit the applicability of this specification to a
single version of SOAP.

Readers are presumed to be familiar with the terms in the Internet Security
Glossary.

1.2. Namespaces
The XML namespace URIs that MUST be used by implementations of this addendum
are as follows (note that different elements are from different namespaces):

 http://schemas.xmlsoap.org/ws/2002/07/secext

 http://schemas.xmlsoap.org/ws/2002/07/utility

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2001/12/soap-envelope

ds http://www.w3.org/2000/09/xmldsig#

xenc http://www.w3.org/2001/04/xmlenc#

m http://schemas.xmlsoap.org/rp/

wsse http://schemas.xmlsoap.org/ws/2002/07/secext

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

xsd http://www.w3.org/2001/XMLSchema

2. Errata
In section 4.6.2 of the original specification, the <xenc:EncryptedData> element
should not have a <ds:KeyInfo> element as the key information. Rather, the key
name should be specified in the <xenc:ReferenceList> element within the
<wsse:Security> header.

3. ID References
In section 4.5 of the original specification, we discuss the use of the <ds:Signature>
element. When specifying elements to sign, ID references MAY be used. However,
because arbitrary ID attributes require the schemas to be available and processed,
we restrict the ID attributes which can be referenced in a signature to the following
list:

• ID attributes from XML Signature

• ID attributes from XML Encryption

• wsu:Id global attribute described below

In addition, when signing a part of an envelope such as the body, it is
RECOMMENDED that an ID reference is used instead of a more general
transformation, especially XPath. This is to simplify processing.

It should be noted that with this specification, the "Id" attributes are dropped from
the wsse namespace in order to adopt the global namespace qualifier attribute in the
wsu namespace. Consequently, the examples in the original WS-Security
specification will not work with the new wsse schema unless the "Id" attributes are
changed to "wsu:Id" and the wsu namespace is defined.

3.1. Id Attribute
There are many situations where elements within SOAP messages need to be
referenced. For example, when signing a SOAP message, selected elements are
included in the signature. XML Schema Part 2 provides several built-in data types
that may be used for identifying and referencing elements, but their use requires
that consumers of the SOAP message either to have or be able to obtain the
schemas where the identity or reference mechanisms are defined. In some
circumstances, for example, intermediaries, this can be problematic.

Consequently, we need a mechanism for identifying and referencing elements, based
on the SOAP foundations, that does not rely upon complete schema knowledge of the
context in which an element is used. This functionality can be integrated into SOAP
processors so that elements can be identified and referred to without dynamic
schema discovery and processing.

In this section we specify a namespace-qualified global attribute for identifying an
element which can be applied to any element that either allows arbitrary attributes
or specifically allows this attribute.

3.2. Id Schema
To simplify the processing for intermediaries and receivers, we define a common
attribute for identifying an element. This attribute utilizes the XML Schema ID type
and specifies a common attribute for indicating this information for elements.

The syntax for this attribute is as follows:

<anyElement wsu:Id="...">...</anyElement>

The following describes the attribute illustrated above:

.../@wsu:Id
This attribute, defined as type xsd:ID, provides a well-known attribute for
specifying the local ID of an element.

Two wsu:Id attributes within an XML document MUST NOT have the same value.
Implementations MAY rely on XML Schema validation to provide rudimentary
enforcement for intra-document uniqueness. However, applications SHOULD NOT
rely on schema validation alone to enforce uniqueness.

We do not specify how this will be used and expect that other specifications MAY add
additional semantics (or restrictions) for their usage of this attribute.

The following example illustrates use of this attribute to identify an element:

<x:myElement wsu:Id="ID1" xmlns:x="..."
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"/>

Conformant processors that do support XML Schema MUST treat this attribute as if it
was defined using a global attribute declaration.

Conformant processors that do not support XML Schema or DTDs are strongly
encouraged to treat this attribute information item as if its PSVI has a [type
definition] whose {target namespace} is "http://www.w3.org/2001/XMLSchema" and
whose {name} is "Id." Specifically, implementations MAY support the value of the
wsu:Id as the valid identifier for use as an XPointer shorthand pointer.

4. Placement of X.509 Certificates
The WS-Security specification indicates that X.509 certificates MAY be described
inside of a <ds:KeyInfo> element, however, it is RECOMMENDED that they be
specified using a <wsse:BinarySecurityToken>. If, however, an implementation
needs to use <ds:KeyInfo>, it SHOULD place the <ds:KeyInfo> element as a child
of the <wsse:Security> header rather than embedded within the signature. This
allows receivers to have a single processing model.

5. Message Timestamps
When requestors and services are exchanging messages, it is often important to be
able to understand the freshness of a message. In some cases, a message may be
so stale that the receiver may decide to ignore it.

We do not provide a mechanism for synchronizing time. We assume either that the
receiver is using a mechanism to synchronize time (e.g. NTP) or, more likely for
federated applications, that they are making assessments about time based on three
factors: creation time of the message, transmission checkpoints, and transmission
delays.

To assist a receiver in making an assessment of staleness, a requestor may wish to
indicate a suggested expiration time, beyond which the requestor recommends
ignoring the message. We provide XML elements by which the requestor may
express the expiration time of a message, the requestor’s clock time at the moment
the message was created, checkpoint timestamps (when an actor received the

message) along the communication path, and the delays introduced by transmission
and other factors subsequent to creation. The quality of the delays is a function of
how well they reflect the actual delays (e.g., how well they reflect transmission
delays).

It should be noted that this is not a protocol for making assertions or determining
when, or how fast, a service produced or processed a message.

In this specification we define and illustrate time references in terms of the dateTime
type defined in XML Schema. It is RECOMMENDED that all time references use this
type. It is further RECOMMENDED that all references be in UTC time. If, however,
other time types are used, then the ValueType attribute (described below) MUST be
specified to indicate the data type of the time format.

5.1. Model
This specification provides several tools for receivers to use to assess the expiration
time presented by the requestor. The first is the creation time. Receivers can use
this value to assess possible clock synchronization issues. However, to make some
assessments, the time required to go from the requestor to the receiver may also be
useful in making this assessment. Two mechanisms are provided for this. The first
is that intermediaries may add timestamp elements indicating when they received
the message. This knowledge can be useful to get a holistic view of clocks along the
message path. The second is that intermediaries can specify any delays they
imposed on message delivery. It should be noted that not all delays can be
accounted for, such as wire time and parties that don't report. Receivers need to
take this into account when evaluating clock trust.

5.2. Timestamp Elements
This specification defines the following message timestamp elements. We define
these for use with the <Timestamp> header for SOAP messages, but they can be
used anywhere that creation, expiration, and intermediary markers are needed.

5.2.1. Expiration

The <Expires> element specifies the expiration timestamp. The exact meaning and
processing rules for expiration depend on the context in which the element is used.
The syntax for this element is as follows:

 <wsu:Expires ValueType="..." wsu:Id="...">...</wsu:Expires>

The following describes the attributes and elements listed in the schema above:

/Expires
This element's value represents an expiration time. The time specified SHOULD
be a UTC format as specified by the ValueType attribute (default is XML Schema
type dateTime).

/Expires/@ValueType
This optional attribute specifies the type of the time data. This is specified as the
XML Schema type. If this attribute isn't specified, the default value is
xsd:dateTime.

/Expires/@wsu:Id

This optional attribute specifies an XML Schema ID that can be used to reference
this element.

The expiration is relative to the requestor's clock. In order to evaluate the expiration
time, receivers need to recognize that the requestor's clock may not be synchronized
to the receiver’s clock. The receiver, therefore, will need to make a assessment of
the level of trust to be placed in the requestor's clock, since the receiver is called
upon to evaluate whether the expiration time is in the past relative to the
requestor's, not the receiver’s, clock. The receiver may make a judgment of the
requestor’s likely current clock time by means not described in this specification, for
example an out-of-band clock synchronization protocol. The receiver may also use
the creation time and the delays introduced by intermediate actors to estimate the
degree of clock synchronization.

One suggested formula for estimating synchronization is

 skew = receiver’s arrival time - creation time - transmission time

Transmission time may be estimated by summing the values of delay elements, if
present. It should be noted that wire-time is only part of this if delays include it in
estimates. Otherwise the transmission time will not reflect the on-wire time. If no
delays are present, no special assumptions about processing time.

5.2.2. Creation

The created element specifies a creation timestamp. The exact meaning and
semantics are dependent on the context in which the element is used. The syntax
for this element is as follows:

 <wsu:Created ValueType="..." wsu:Id="...">...</wsu:Created>

The following describes the attributes and elements listed in the schema above:

/Created
This element's value is a creation timestamp. The time specified SHOULD be a
UTC format as specified by the ValueType attribute (default is XML Schema type
dateTime).

/Created/@ValueType
This optional attribute specifies the type of the time data. This is specified as the
XML Schema type. If this attribute isn't specified, the default value is
xsd:dateTime.

/Created/@wsu:Id
This optional attribute specifies an XML Schema ID that can be used to reference
this element.

5.2.3. Intermediaries

The Received element specifies a receipt timestamp with an optional processing
delay. The exact meaning and semantics are dependent on the context in which the
element is used. The syntax for this element is as follows:

 <wsu:Received Actor="..." Delay="..." ValueType="..."
 wsu:Id="...">...</wsu:Received>

The following describes the attributes and elements listed in the schema above:

/Received
This element’s value is a receipt timestamp. The time specified SHOULD be a UTC
format as specified by the ValueType attribute (default is XML Schema type
dateTime).

/Received/@Actor
A required attribute, Actor, indicates which actor is indicating receipt. Actors
SHOULD include this attribute, with a value matching the actor value indicated by
the corresponding WS-Routing via element, whenever a WS-Routing header
appears in the message.

/Received/@Delay
The value of this attribute is the delay associated with the actor expressed in
milliseconds.

/Received/@ValueType
This optional attribute specifies the type of the time data (the element value).
This is specified as the XML Schema type. If this attribute isn't specified, the
default value is xsd:dateTime.

/Received/@wsu:Id
This optional attribute specifies an XML Schema ID that can be used to reference
this element.

The delay attribute indicates the time delay attributable to an actor (intermediate
processor). In some cases this isn't known; for others it can be computed as actor's
send time – actor's receipt time.

Each delay amount is indicated in units of milliseconds, without fractions. If a delay
amount would exceed the maximum value expressible in the datatype, the value
should be set to the maximum value of the datatype.

5.3. Timestamp Header
A <Timestamp> header provides a mechanism for expressing the creation and
expiration times of a message and, optionally, the delays introduced throughout the
message path. Specifically, is uses the previously defined elements in the context of
message creation, receipt, and processing.

All times SHOULD be in UTC format as specified by the XML Schema type
(dateTime). It should be noted that times support time precision as defined in the
XML Schema specification.

Multiple <Timestamp> headers can be specified if they are targeted at different
actors. The ordering within the header is as illustrated below.

The ordering of elements in this header is fixed and MUST be preserved by
intermediaries.

To preserve overall integrity of each Timestamp header, it is strongly RECOMMENDED
that each actor create or update the appropriate Timestamp header destined to the
particular actor. It is also strongly RECOMMENDED that each actor sign its elements
by referencing their ID, NOT by signing the Timestamp header as the header is
mutable.

The schema outline for the <Timestamp> header is as follows:

 <wsu:Timestamp wsu:Id="...">

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 <wsu:Received>...</wsu:Received>

 ...

 </wsu:Timestamp>

The following describes the attributes and elements listed in the schema above:

/Timestamp
This is the header for indicating message timestamps.

/Timestamp/Created
This represents the creation time of the message. This element is optional, but
can only be specified once in a Timestamp header. Within the SOAP processing
model, creation is the instant that the infoset is serialized for transmission. The
creation time of the message SHOULD NOT differ materially from its transmission
time.

/Timestamp/Expires
This represents the expiration of the message. This is optional, but can appear
at most once in a Timestamp header. Upon expiration, the requestor asserts that
the message is no longer valid. It is strongly RECOMMENDED that receivers
(anyone who processes this message) discard (ignore) any message that has
passed its expiration. A Fault code (wsu:MessageExpired) is provided if the
receiver wants to inform the requestor that its message was expired. A service
MAY issue a Fault indicating the message has expired.

/Timestamp/Received
This represents the point in time at which the message was received by a specific
actor. This is optional, but SHOULD appear at most once per actor in a
Timestamp header (multiple entries MAY exist if looping is present, but the value
MUST be different).

/Timestamp/{any}
This is an extensibility mechanism to allow additional elements to be added to the
header.

/Timestamp/@wsu:Id
This optional attribute specifies an XML Schema ID that can be used to reference
this element.

/Timestamp/@{any}
This is an extensibility mechanism to allow additional attributes to be added to
the header.

The following example illustrates the use of the <Timestamp> element and its
content.

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

 <S:Header>

 <wsu:Timestamp>

 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created>

 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires>

 </wsu:Timestamp>

 ...

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

The following example illustrates the use of the <Timestamp> header and its content
with a received element indicating a processing delay of one minute subsequent to
the receipt which was two minutes after creation.

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

 <S:Header>

 <wsu:Timestamp>

 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created>

 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires>

 <wsu:Received Actor="http://x.com/" Delay="60000">
 2001-09-13T08:44:00Z</wsu:Received>

 </wsu:Timestamp>

 ...

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

6. Passing Passwords
In section 4.1 of the original specification we describe the <wsse:UsernameToken>
element. Within this element, a <wsse:Password> element can be specified. The
password has an associated type – either wsse:PasswordText or
wsse:PasswordDigest. The specification describes wsse:PasswordText as the "The
actual password for the username." However the PasswordText is not limited to
only the actual password. Any password equivalent such as a derived password or
S/KEY (one time password) can be used.

The specification also describes wsse:PasswordDigest as "The digest of the
password for the username. The value is a base64-encoded SHA1 hash value of the
UTF8-encoded password." However, unless this digested password is sent on a

secured channel, the digest offers no real additional security than
wsse:PasswordText.

To address this, we introduce two new optional elements in the
<wsse:UsernameToken>: <wsse:Nonce> and <wsu:Created>. If either of these is
present, they are included in the digest value as follows:

Password_digest = SHA1 (nonce + created + password)

That is, concatenate the nonce, creation timestamp, and the password (or shared
secret or password equivalent) and pass the digest of the combination. This helps
obscure the password and offers a basis for preventing replay attacks. It is
RECOMMENDED that timestamps and nonces be cached for a minimum of five
minutes to detect replays, and that timestamps older than five minutes be rejected.

Note that the nonce is hashed using the octet sequence of its decoded value while
the timestamp is hashed using the octet sequence of its UTF8 encoding as specified
in the contents of the element.

The following illustrates the syntax of these elements:

<wsse:UsernameToken>

 <wsse:Username>...</wsse:Username>

 ...

 <wsse:Nonce EncodingType="...">...</wsse:Nonce>

 <wsu:Created>...</wsu:Created>

</wsse:UsernameToken>

The following describes the attributes and elements listed in the example above:

/wsse:Nonce
This optional element specifies a cryptographically random nonce.

/wsse:Nonce/@EncodingType
This optional attribute specifies the encoding type of the nonce (see WS-
Security's definition of BinarySecurityToken for valid values). If this attribute
isn't specified then the default of Base64 encoding is used.

/wsu:Created
This optional element which specifies a timestamp.

These extensions SHOULD NOT be used unless the plain text password, secret, or
password-equivalent is available to both the requestor and the receiver.

The following example illustrates a hashed password using both a nonce and a
timestamp:

The following illustrates the syntax of these elements:

<wsse:UsernameToken
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

 <wsse:Username>NNK</wsse:Username>

 <wsse:Password Type="wsse:PasswordDigest ">FEdR...</wsse:Password>

 <wsse:Nonce>FKJh...</wsse:Nonce>

 <wsu:Created>2001-10-13T09:00:00Z </wsu:Created>

</wsse:UsernameToken>

7. Key Identifiers
It is RECOMMENDED to use a key identifier to specify/reference a security token
instead of a key name. The <wsse:KeyIdentifier> element is placed in the
<wsse:SecurityTokenReference> element to reference a token using an identifier.
This element SHOULD be used for all key identifiers.

The processing model assumes that the key identifier for a security token is
constant. Consequently, processing a key identifier is simply looking for a security
token whose key identifier matches the specified value.

The following is an overview of the syntax:

<wsse:SecurityTokenReference>

 <wsse:KeyIdentifier wsu:Id="..."

 ValueType="..."
 EncodingType="...">

 ...

 </wsse:KeyIdentifier>

</wsse:SecurityTokenReference>

The following describes the attributes and elements listed in the example above:

 /KeyIdentifier
This element is used to include a binary-encoded key identifier.

/KeyIdentifier/@wsu:Id
An optional string label for this identifier.

/KeyIdentifier/@ValueType
The ValueType attribute is used to optionally indicate the type of token with the
specified identifier. If specified, this is a hint to the receiver. Any value specified
for binary security tokens, or any XML token element QName can be specified
here (e.g. wsse:X509v3). If this attribute isn't specified, then the identifier
applies to any type of token.

/KeyIdentifier/@EncodingType
The optional EncodingType attribute is used to indicate, using a QName, the
encoding format of the binary data (e.g., wsse:Base64Binary). We use the base
values defined in WS-Security:

QName Description

wsse:Base64Binary XML Schema base 64 encoding (default)

wsse:HexBinary XML Schema hex encoding

/KeyIdentifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added.

8. Key Names
As previously stated, it is strongly RECOMMEND to use key identifiers, however, if
key names are used, then it is strongly RECOMMENDED that <ds:KeyName> elements
conform to the attribute names in section 2.3 of RFC 2253 (this is recommended by
XML Signature for <X509SubjectName>) for interoperability.

Additionally, we define the following convention for e-mail addresses, which SHOULD
conform to RFC 822:

 EmailAddress=ckaler@microsoft.com

9. Token Reference Lookup Processing Order
There are a number of mechanisms described in XML Signature, WS-Security, and
this specification for referencing security tokens. To resolve ambiguities, the
following processing order SHOULD be used:

1. Resolve any <wsse:Reference> elements (specified within
<wsse:SecurityTokenReference>).

2. Resolve any <wsse:KeyIdentifier> elements (specified within
<wsse:SecurityTokenReference>).

3. Resolve any <ds:KeyName> elements.

4. Resolve any other <ds:KeyInfo> elements.

10. Encrypted Keys
While XML Encryption specifies that <xenc:EncryptedKey> elements MAY be
specified in <xenc:EncryptedData> elements, we strongly RECOMMEND that
<xenc:EncryptedKey> elements be placed in the <wsse:Security> header.

11. Decryption Transformation
The ordering semantics of the <wsse:Security> header are sufficient to determine if
signatures are over encrypted or unencrypted data. However, when a signature is
included in one <wsse:Security> header and the encryption takes place in another
<wsse:Security> header, the order may not be explicitly understood.

If the sender wishes to sign a message that is subsequently encrypted by an
intermediary along the transmission path, the sender MAY use the Decryption
Transform for XML Signature to explicitly specify the order of decryption.

12. Certificate Collections
When one service wishes to pass a certificate collection, such as its certificate
authority hierarchy, the collection SHOULD be passed using
<wsse:BinarySecurityToken>. We define the following new token types for passing
standard collection formats:

QName Description

wsse:PKCS7 A PKCS#7 SignedData object, with the only significant field
being certificates. In particular, the signature and the contents
are ignored. If no certificates are present, a zero-length
CertPath is assumed. Warning: PKCS#7 does not maintain the
order of certificates in a certification path. This means that if a
CertPath is converted to PKCS#7 encoded bytes and then
converted back, the order of the certificates may change,
potentially rendering the CertPath invalid. Users should be
aware of this behavior.
See http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
7/index.htmlfor more information.

wsse:PKIPath An ASN.1 DER encoded sequence of certificates, defined as
follows:

 PkiPath ::= SEQUENCE OF Certificate

Within the sequence, the order of certificates is such that the
subject of the first certificate is the issuer of the second
certificate, etc. Each certificate in PkiPath shall be unique. No
certificate may appear more than once in a value of Certificate
in PkiPath. The PkiPath format is defined in defect report 279
against X.509 (2000) and is incorporated into Draft Technical
Corrigenda 2 for the fourth edition (2000) of X.509 at
ftp://ftp.bull.com/pub/OSIdirectory/DefectResolution/Technica
lCorrigenda/ApprovedTechnicalCorrigendaToX.509/8%7CX.509
-TC1(4th).pdf.

13. Security Considerations
In order to trust Ids and timestamps, they SHOULD be signed using the mechanisms
outlined in WS-Security. This allows readers of the IDs and timestamps information
to be certain that the IDs and timestamps haven’t been forged or altered in any
way. It is strongly RECOMMENDED that IDs and timestamp elements be signed.
Note that since the Timestamp header is mutable, signatures need to be associated
with individual elements.

Timestamps can also be used to mitigate replay attacks. Signed timestamps MAY be
used to keep track of messages (possibly by caching the most recent timestamp
from a specific service) and detect replays of previous messages. It is
RECOMMENDED that timestamps and nonces be cached for a minimum of five
minutes to detect replays, and that timestamps older than five minutes be rejected
in interactive scenarios.

14. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Keith Ballinger, Microsoft
Joel Farrell, IBM
Mark Hayes, VeriSign
Dan Simon, Microsoft

Wayne Vicknair, IBM

15. References
[KEYWORDS]

S. Bradner, "Key Words for Use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997.

[RFC822]
"Standard for the Format of ARPA Internet Messages", RFC 822, University of
Delaware, August 1982.

[RFC2253]
"Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names", Wahl, Kille, Howes, December 1997.

[RFC2459]
"Internet X.509 Public Key Infrastructure Certificate and CRL Profile ", Housley,
Ford, Polk, Solo, January 1999.

[SHA-1]
FIPS PUB 180-1. Secure Hash Standard. U.S. Department of Commerce /
National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[XML-Encrypt]
W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 2002.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[XML Signature]
W3C Recommendation, "XML Signature Syntax and Processing," 12 February
2002.

[XPointer]
"XML Pointer Language (XPointer) Version 1.0, Candidate Recommendation",
DeRose, Maler, Daniel, 11 September 2001.

[WS-Routing]
"Web Services Routing Protocol", Microsoft, October 2001.

[WS-Security]

"Web Services Security Language", IBM, Microsoft, VeriSign, April 2002.

[X509]
S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified Certificates
Profile".
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T -REC-
X.509-200003-I

[XPath]
W3C Recommendation, "XML Path Language", 16 November 1999.

