Key Derivation

The password associated with a username may be used to derive a shared secret key for the purposes of integrity or confidentiality protecting message contents. This section defines schema extensions and a procedure for deriving such keys. This procedure MUST be employed when keys are to be derived from passwords in order in insure interoperability.

It must be noted that passwords are subject to several kinds of attack, which in turn will lead to the exposure of any derived keys. This key derivation procedure is intended to minimize the risk of attacks on the keys, to the extent possible, but it is ultimately limited by the insecurity of a password that it is possible for a human being to remember and type on a standard keyboard. This is discussed in more detail in the security considerations section of this document.

Two additional elements are required to enable to derivation of a key from a password. They are <wsse:Salt> and <wsse:Iteration>. These values are not secret and MUST be conveyed in the Username token when key derivation is used. When key derivation is used the password MUST NOT be included in the Username token. The receiver will use its knowledge of the password to derive the same key as the sender.

The following illustrates the syntax of the <wsse:Salt> and <wsse:Iteration> elements.

<wsse:UsernameToken wsse:Id=”…”>

 <wsse:Username>…</wsse:Username>

 <wsse:Salt>…</wsse:Salt>

 <wsse:Iteration>…</wsse:Iteration>

</wsse:UsernameToken>

The following describes these elements.

/wsse:UsernameToken/wsse:Salt

This element is combined with the password as described below. Its value is a 128 bit number expressed in hexadecimal. It MUST be present when key derivation is used.

/wsse:UsernameToken/wsse:Iteration

This element indicates the number of times the hashing operation is repeated when deriving the key. It is expressed as a decimal value. If it is not present, a value is 1000 is used for the iteration count.

A key derived from a password may be used either in the calculation of a Message Authentication Code (MAC) or as a symmetric key for encryption. When used in a MAC, the key length will always be 160 bits. When used for encryption, an encryption algorithm MUST NOT be used which requires a key of length greater than 160 bits. A sufficient number of the high order bits of the key will be used for encryption. Unneeded low order bits will be discarded. For example, if the AES-128 algorithm is used, the high order 128 bits will be used and the low order 32 bits will be discarded from the derived 160 bit value.

The <wsse:Salt> element is constructed as follows. The high order 8 bits of the Salt will have the value of 01 if the key is to be used in a MAC and 02 if the key is to be used for encryption. The remaining 120 low order bits of the Salt should be a random value.

The key is derived as follows. The password and Salt are concatenated in that order. Only the actual octets of the password are used, it is not padded or zero terminated. This value is hashed using the SHA1 algorithm. The result of this operation is also hashed using SHA1. This process is repeated until the total number of hash operations equals the Iteration count.

In other words: K1 = SHA1(password + Salt)

K2 = SHA1(K1)

…

Kn = SHA1 (Kn-1)

Where + means concatenation and n is the iteration count.

The resulting 160 bit value is used in a MAC function or truncated to the appropriate length for encryption.

[To be added to the security considerations section.]

The security of keys derived from passwords is limited by the attacks available against passwords themselves, such as guessing and brute force. Because of the limited size of password that human beings can remember and limited number of octet values represented by keys that can easily be typed, a typical password represents the equivalent of an entropy source of a maximum of only about 50 bits. For this reason a maximum key size of only 160 bits is supported. Longer keys would simply increase processing without adding to security.

The key derivation algorithm specified here is based on one described in RFC 2898. It is referred to in that document as PBKDF1. It is used instead of PBKDF2, because it is simpler and keys longer than 160 bits are not required as discussed previously.

The purpose of the salt is to prevent the bulk pre-computation of key values to be tested against distinct passwords. The Salt value is defined so that MAC and encryption keys are guaranteed to have distinct values even when derived from the same password. This prevents certain cryptanalytic attacks.

The iteration count is intended to increase the work factor of a guessing or brute force attack, at a minor cost to normal key derivation. An iteration count of at least 1000 (the default) SHOULD always be used.

