oo ~NO O b~ w

10

XACML language proposal

Bill Parducci
Carlisle Adams
Ernesto Damiani
Hal Lockhart
Ken Yagen

Michiharu Kudo

Bill Parducci
Entrust

University of Milan
Entegrity
Crosslogix

IBM, Japan

Pierangela Samarati University of Milan
Simon Godik CrossLogix

Tim Moses Entrust

V0.7

27 Nov 2001

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55

56

Table of contents
T €110 1SS o USSR 3
I o €= = =0 =1 1SRRI 3
1.2, REGIEA TEIMS. ... oottt ettt e e b ek bt b e e me e e e e e sbeebeseeebeeneeneeneensebeseens 4
2 | 011 (o (8 o1 o o USRS 4
T |V e o [SRRSO 4
3L DA IOW MOUEL ..ottt 5
3.2, L@NQUAEGE MOUEooiieiiiieiisiee ettt bbbt s bttt st enes 6
321, Elementsof the access CONLIrOl POIICY.......oieiiiriiiiireieeie e 6
3.2.2. LRSS S V(=0 M (= 01) 1 PSSRSO 7
323, PriNCIPal EXPIrESSIONoeiiiieieieiiee ettt sttt b et b ettt ne b 7
324, RESOUICE EXPIESSIONeeuitieeneetesteeetestee et seeeete st et be st et be st et abesee st e besee st ebe st eneebeseenesbeseenesbeene 8
G T o o) [SR S SPT 9
3.2.6. ENVIFONMENt EXPIESSIONeviiiieiieieiesie sttt et eee ettt saesbe e se e e e ssesbeseeebesaeareeneeneeneeseenbees 9
327, TRINGSTO ISCUSScuuititiitietieieeiee ettt sttt ettt e e bbbt b et e e e e e e e b saeebe st ene e e e e eeeseenbes 11
3.2.8. PrinCipal/rol@/attriDULE...........ooieieieee e e e 13
3.2.9. Resource/classification/attriDULE.oiiriiiiiiee e e 13
3.2.10. ENVIroNmMENt/aIITDULE.ccveiieieeeee ettt s 14
3.2.11. Policy/action/resource/ClassifiCatioNcoeorireririrese e 14
3.2.12. Rule/pre-condition/PrediCate...........cviiieiririeees e 15
10 2200 G TR =0 oo 10 [o o 1SS 16
10 200 S AN 1 1 o101 (=R o (=0 o= (o) o SRS 16
G T AN |0 1 TS 1= A= 010 (=SS 16
N o L0y S Y L= USSP 18
T N o] o [T o= o] L= o o] I ox Y AN U VRO 19
LS o [xSRI 19
R U RSP STSR 19
ST (<o) o (] (o] o F UV S PP 20
30 LY oo F SRS 20
<32 © RSOSSN 20
ST T [| SRRSO 20
G < o [=R 20
o TR - o | S 21
S = U OSSPSR U RSP PRSPRTN 21
8.7, GIEELEN OF EOUAL ..ottt sttt bttt ettt btk s b et et s b et e bt sb e e et e sb e e ebesb et ebeneenea 21
oS TR == Yo = (1 SR 22
8.9, SUD-SEL OF ..ttt bttt b ettt et et be st et te st e e erenreneas 22
8.10. SUPEN-SEL OF ..ottt sttt e et e e st e et e e s te e te e teeaeesaeesaeeaaeenreenreeneeereeareens 22
8.11. NON-NUIT SEE TNEEISECHION. ...ttt et bt b et ne b e 22
8.12. EXEEINEl TUNCLION ...ttt sa e bt sa b e 23
8.13. POSE-CONAITION. ...ttt bbbt bttt e e b et bt et e st e ae e e e e et e 23
8.14. S == 1o =0 [= - SRR 23
8.15. ALTTDULE FEFEIENCE. ...ttt ettt re s e e e eneeneeneeens 23
8.16. S S ole] 010 [0 01 =0 o [T RSU PSP 24
8.17. HArd-COOBA VAIUE ...ttt ettt te e e eneeeeneeee e 24
LS = 1= =00 24
V0.7
27 Nov 2001

56

57

58

59

60

61

62
63

64
65

66
67

68

69

70

71
72

73
74

75

76
77

78

79

80
81

82

83

Chapter One

1. Glossary
1.1. Preferred terms
Access - Performing an action on aresource
Access control - Controlling access in accordance with applicable policy
Action - Operation that may be performed on resource

Applicable policy - The complete set of rules that governs access for a specific
resource

Attribute - Characteristic of aprincipal, resource or environment that may be
referenced by a pre-condition

Authorization decision - Theresult of evaluation of applicable policy. A function with
BOOLEAN range and, optionally, a set of post-conditions

Classification - A set of attributes relevant to aresource
Context - The intended use of information revealed as a result of access.
Decision request - The request by a PEP to a PDP to render an authorization decision

Environment - The set of attributes that may be referenced by pre-conditions and that
are independent of a particular principal and resource

Information request - The request by the PDP to the PIP for one or more environment
attributes

Policy - (see Applicable policy)

Policy conflict - The state that exists when two or more pre-conditions, forming part of
applicable policy, individually yield conflicting results

Policy decision point (PDP) - The system entity that evaluates applicable policy
Policy enforcement point (PEP) - The system entity that performs access control

Policy information point (PIP) - The system entity that acts as the source of
environment attributes

Policy administration point (PAP) - The system entity that creates applicable policy

Policy mediation point (PMP) - The system entity that resolves policy conflict

V0.7
27 Nov 2001

84
85

86
87
88
89

90

91
92
93

94

95

96

97
98
99

100
101

102
103

104
105

106

107

108

109

110

111

112

113

Poalicy retrieval point (PRP) - The system entity that ensures applicable policy is
complete

Post-condition - A process specified in arule that must be completed in conjunction
with access. There are two types of post-condition: an internal post-condition must be
executed by the PDP prior to the issuance of a"permit" response, and an external post-
condition must be executed by the PEP prior to permitting access

Predicate - A statement about attributes whose truth can be evaluated

Pre-condition - A predicate or logically-combined set of predicates
Principal - A system entity that can be referenced by a pre-condition
Resour ce - Data, service, or system component

Role- A set of attributes relevant to aprincipal

Rule - The combination of apre- and one or more post-conditions

1.2. Related terms

In the field of access control and authorization there are severa closely related termsin
common use. For purposes of precision and clarity, certain of these terms are not used in
this specification.

For instance, the term attribute is used in place of the terms: privilege, permission, right,
authorization and entitlement.

The terms "subject” and "user" are also in common use. But, we use the term principal
in this specification.

The terms "object” and "target” are also in common use, but we use the term resource in
this specification.

While the term "group” is commonly used with a meaning that is distinct from that of
role, the distinction has no significance in the domain of XACML, therefore, the term
group is not used here.

2. Introduction

XACML specifies a mark-up language for access control policies. It is intended to be
used in conjunction with SAML assertions and messages.

3. Models

Theinformation in this section is non-normative.

V0.7
27 Nov 2001

114
115
116

117

118

119

120

121
122
123
124
125
126

127

The context and schema of XACML are described in three models that elaborate different
aspects of its operation. These models are: the data-flow model, the language model and
the administrative model. They are described in the following sub-sections.

3.1. Data-flow model

The mgjor actorsin the XACML domain are shown in the data-flow diagram of Figure 1.

8. saml authorization .
————— "
PEP response + external post-condition Web service

L.saml authorization 7 internal post-condition
query PDP
3. applicable 6. saml attribute
_—— P M —

policy assertion

PRP 2. classification4- saml attribute attribute
action query > authority
A

5a. attribute

5b. attribute

5c. attribute

role environment classification

Figure 1 - Data-flow diagram

Some of the data-flows shown in the diagram may be facilitated by a repository. For
instance, the communications between the PDP and the attribute authority may be
facilitated by a repository, or the communications between the PDP and the PRP may be
facilitated by arepository. The XACML specification is not intended to place restrictions
on the location of any such repository, or indeed to prescribe a particular communication
protocol for any of the data-flows.

The model operates according to the following steps.

V0.7
27 Nov 2001

128
129
130

131
132
133
134
135
136

137

138
139
140
141

142
143

144
145

146
147

148
149
150
151

152

153

154
155
156
157

158
159
160
161

162

1. The PEP sends a decision request to the PDP, in the form of a SAML [SAML]
authorization query. The decision request contains some or al of the attributes
required by the PDP to render adecision, in accordance with policy.

2. The PDP locates and retrieves the policy instance applicable to the decision request
from the PRP. It uses the resource classification and the requested action to identify
the correct policy. The means by which the PDP determines the classification of the
resource is out of scope for this specification. However, in the case where the
resource is an XML document, its classification may be an attribute of the top-level
element of the resource.

3. The PRP returnsthe policy to the PDP in the form of an XACML instance.

4. The PDP examines the decision request and the policy to ascertain whether it has all
the attribute values required to render an authorization decision. If it does not, then it
requests attributes from suitable attribute authorities in the form of SAML attribute
queries[SAML].

5. The attribute authorities may locate and retrieve the requested attributes from other
systems by ameans, and in aform, that is out of scope for this specification.

6. The attribute authorities return the requested attributes to the PDP in the form of
SAML attribute responses containing SAML attribute assertions.

7. The PDP evauates the policy instance. In the case where the policy instance contains
interna post-conditions, the PDP executes those post-conditions.

8. If the policy were to evaluate to TRUE, and the internal post-conditions were to
execute successfully, then the PDP returns an authorization decision, in the form of a
SAML authorization response, to the PEP containing the "permit" result code and any
external post-conditions.

3.2. Language model

3.2.1. Elements of the access control policy

An access control policy states regulations governing access to resources, and therefore
how the system should respond to requests that principals can submit. The access control
policy comprises of access rules stating which accesses should (or should not) be alowed
and, possibly, under which conditions such permissions or denials for the access apply.

We therefore start by identifying the various elements of the access rules. At this stage
we characterize the different access components with respect to their format and
semantics. Later we will define the precise syntax (a preliminary sketch of the syntax
appearsin " XACML Language").

An access rule can be seen as comprised of the following elements:

V0.7
27 Nov 2001

163

164

165

166
167

168
169

170

171

172
173
174
175
176
177
178

179

180

181

182

183
184
185

186
187
188
189
190
191

192
193

194

- principal expression: identifies the (dynamic set of) principals to whom the rule applies.
- resource expression: identifies the (dynamic set of) resources to which the rule applies.
- action expression: identifies the (dynamic set of) actions to which the rule applies.

- environment expression: identifies system-dependent and request-dependent conditions
to be satisfied for the rule to apply.

- post-conditions: defines a set of actions that the access control system (PEP) must
execute whenever aruleis applied with respect to a given access request.

- if/only if conditional statements.....

3.2.2. Reserved identifiers

The expressiveness of the language will alow us to specify rules whose applicability will
depend on conditions that the principal requesting access, or the resource on which access
IS requested, satisfy. Access rules are therefore not referred to a specific principa or a
specific resource but to a set of them that satisfy given conditions. To provide
expressiveness needed to make it possible the specification of such generic rules without
the need of introducing variables in the language we introduce the following reserved
identifiers:

- principal: isthe principal presenting the request
- resource: is the resource on which access is requested

- action: isthe action requested

3.2.3. Principal expression

The principal expression defines the principal, or set of principals, to which the access
rule applies. It is a Boolean expression evaluating SAML assertions (i.e., properties)
associated with the principal requesting access.

SAML assertions can refer to any property of the principals, including groups to which
the user making the request belongs or roles (privileged positions) that the user may have
activated and present. Groups and role management is outside the scope of the
authorization language, we assume information about active roles to be provided through
SAML assertions; we assume information about group memberships to be either
provided as SAML assertions or to be available at the PIP.

Each given assertion term (i.e, elementary component of a principal expression)
evaluates the value of a property associated with the requestor asis of the form

<SAML-assertion> <comparison operator>

V0.7
27 Nov 2001

195

196

197

198

199
200
201

202

203

204

205

206

207

208

209

210

211
212
213
214
215
216
217
218

219

220

221

222

223

<SAML-assertion>
or
<SAM L -assertion> <comparison operator>
<constant-value>
where the comparison operator is a suitable operator (including <,=<,>=,=,...) depending
on the property type and the XPath language is used to refer to SAML assertions within
the specification of the assertion terms.
Some examples of principal expressions are as follows:
- principal/login_name="bob'
user "bob’
- principal/organization="OA SIS AND principal/residence="North-Pol€e'
principals associated with OASIS and living at the North Pole
- principal/organi zation=principal/login_name
principals working for an organization owned by themselves.

Use of variables as macros (to be completed checking with Ernesto and Simon)

3.2.4. Resource expression

The resource expression is a Boolean expression of conditional terms that evaluate
properties of the resource. Properties appearing in these conditional terms can refer to the
resource content or to meta properties associated with the resource. The reserved
identifier “resource’ can be used in the specification of generic expression applicable to a
(dynamic) set of resources. Resource expressions can be also make use of the keyword
“principa’ for specifying conditions putting in relationships properties of the resources
with that of the principals. Each conditional term in aresource expression is therefore of
the form

<resource-assertion> <comparison operator><SAM L-assertion>
or

<resource-assertion> <comparison operator> <constant-value>
Reference to the meta-property of the resource or to its content

depends on and can make use of functions.

V0.7
27 Nov 2001

224

225

226

227

228

229

230
231

232

233
234
235

236

237

238

239

240
241
242

243

244
245
246
247
248
249
250
251
252
253
254
255
256

Some examples of resource expressions are as follows:
- resource/creation_date =< "01/01/01'
all resources created before January 1, 2001.
- resource/owner=principal/login_name
all resources owned by the principa making the requests
- resource/label="Top Secret'

all resources classified as Top-Secret (note: we are not implying support for a multilevel
policy here)

3.2.5. Action

The action component of the access control rule defines the action, or set of actions, to
which the rule refers. An action is identified by a name and may have associated a set of
parameters. The parameters can refer to any input/output of the process.

Some examples of action expressions are as follows:
- action/withdrawa _amount =< 500,000

- action/data_recipient IN Doctors

3.2.6. Environment expression

It's a Boolean expressions of environmental conditions that can evaluate the system state
(e.g., date and time) and request parameters (e.g., location from where the principa is
connected).

IF/ONLY IF CONDITIONS

A policy is composed of a set of access control rules. The usual interpretation for a set of
rules specifying permissions is to grant al the accesses from which at least a rule is
satisfied. The consideration of permissions only permissions, with this interpretation may
result limiting in several cases. Negative access control rules (specifying denials) could
be used for specifying accesses that should be denied. Introduction of negative
authorizations introduces the problem of the different semantics that denials can carry
which should be properly represented with different conflict resolution criteria in the
model. For the time being we therefore do not consider negative authorizations.
Permissions only, however, result limiting. For instance, suppose we want to say that
only UScitizens can access a document. In a permission only scenario we could specify a
rule stating the permissions but the semantics of the only (meaning no one el se can access
the document) is not supported, since the insertion of any additional rule can grant the
access to some noncitizens. As another example suppose we want to say that access to a

V0.7
27 Nov 2001

257
258

259
260
261
262
263

264
265
266
267
268

269
270
271
272

273
274
275
276

277
278
279

280

281

282

283

284

285
286

287
288
289

290

given document requires (beside additional conditions to be specified by the security
administrator) presentation of a

payment certificate (stated as a SAML assertion). In a permission only scenario we
should make sure that the payment condition is included in a the rules that apply to the
access. Beside being difficult o control, this would introduce complicated rules
(intuitively the conditions would have to be repeated in AND in every rule instead of
being factored out.

Looking at the real world cases, we often find access rules stated in restrictive form rather
than in the inclusive positive form just mentioned. By restrictive form we mean rules that
state conditions hat must be satisfied for an access to be granted and such hat, if at |east
one condition is not satisfied, the access should not be granted. For instance, a rule can
state that " access to document-1 can be alowed only to citizens'. It is easy to

see that such a restriction cannot be simply represented as an permission stating that
citizens can be authorized. In fact, while the single authorization brings the desired
behavior, its combination with other authorizations may not, leading the only constraint
to be not satisfied anymore.

A possible approach would be supporting two kinds of rules. restrictions and
authorizations. Intuitively, restrictions are useful to specify requirements of the exclusive
only if form stated above; while authorizations specify requirements in the traditional
positive if form.

- RESTRICTIONS: specify requirements that must all be satisfied for an access to be
granted. Lack to satisfy any of the requirements that apply to a given request implies the
request will be denied.

Syntacticaly, restrictions have the form
<request-description} > <conditions} >
where
request-description is the principal, resource, action and environment expressions
and

conditions is a Boolean expression of conditions that every request to which the
restriction applies must satisfy.

- AUTHORIZATIONS: specify permissions for the access. An access is granted if there
is satisfaction of at least one of the permissions that apply to the given request and no
restriction is violated.

Syntactically, authorizations have the form

V0.7
27 Nov 2001
10

291

292
293

294
295
296
297

298

299

300

301

302
303
304

305
306
307

308
309
310
311
312

313
314
315

316

317

<request-description} > <conditions} >

where request-description} has the same meaning as before and <conditions}> is a
Boolean expression of conditions whose satisfaction authorizes the access.

Unlike for restrictions, lack of satisfaction of a condition in an authorization simply
makes the authorization inapplicable but it does not imply the access will be denied. In
particular, access can be authorized if there is at least one authorization that applies to it
for which the conditions are satisfied.

3.2.7. Things to discuss

- purpose of access (discussed in the last concall), still to be inserted
- dynamic conditions. conditions that cannot be evaluated but can trigger procedures
- post-conditions

- content-based filtering: We should decide whether the resource expression can contain
conditions evaluating the resource content. The complication arises from the fact that
content-querying depends on the specific application/data-model/system.

- atribute reference (syntactical matter): in the examples we have used naming based
notation to refer to parameters of an action. Should we alow (XPath permits it)
positional-based notation as well?

- examples and simplification: Now the language can seem a bit too complicated. For
instance, we need to say principal}/login_name="bob', in cases where we would
have just said "bob' in traditional systems. This is however consistent with the fact
that for us a principal is not a user ‘login-name' but it is characterized through
assertions. However, we could find away to simplify expressions in some cases.

- deding with unknown attributes: SAML assertions (as well as resource properties)
are not predefined and can change. What happens if a rule has a condition on some
SAML assertions that cannot be found at runtime?

- description of run-time behavior of access control

The language model is shown in Figure 2.

V0.7
27 Nov 2001
11

318
319

320
321
322
323
324
325

resource action applicable policy| principal
> ——
* 1 1
* 1 1 *
*
rule
1 ’ 1
1 1 1 . 1
classification pre-condition post-condition role
1 1 1
1
*
predicate
i
1 1
* *
* * %
classification attribute environment attribute role attribute
«subglass»
«subclass» «subclass»
J7Y7J7

attribute

Figure2 - Policy model

The various objects of the model are created by policy administrators, and may (or may
not) be integrity protected using a digital signature or other integrity/authenticity
mechanism. A set of objects may only be protected by the same integrity sea if they
exist at the same place and the same time. Nothing in the model is intended to impose
restrictions on the sequence in which the various objects are created and the combinations
in which they may exist.

V0.7
27 Nov 2001

12

326
327

328

329

330

331

332
333
334
335
336
337
338
339
340
341

342

343
344

345

346

347

For purposes of explanation, the language model divides into six sections. These are
each described in the following sub-sections.

3.2.8. Principal/role/attribute
The principal/role/attribute section of the language model is shown in gray in Figure 3.

Figure 3 - Principal/role/attribute section of the language model

An authorization request relates to a single principal. XACML policy instances may
reference attributes of a particular principal, or a role of the principal. The PDP should
use attribute assertions to confirm that the principal occupies a required role. Both the
principal and the role may have attributes. For instance, the principa "Joe" may have an
attribute of type "role" set equal to the value "purchasing officer”. Alternatively, the role
"purchasing officer" may have an attribute of type "signing limit" set equal to the value
"US$100,000". Principal and role attributes are asserted by authorities and distributed in
the form of SAML attribute assertions. The PDP must check that the attribute values it
operates upon are asserted by suitable authorities. This operation is described in Section
3.2.14, below.

3.2.9. Resource/classification/attribute

The resource/classification/attribute section of the language model is shown in gray in
Figure 4.

Figure 4 - Resour ce/classification/attribute section of the language model

V0.7
27 Nov 2001
13

348
349
350
351
352
353
354
355
356

357
358
359
360
361
362
363

364

365

366

367

368
369
370
371
372
373
374

375

376
377

378

An authorization request relates to a single resource. XACML policies may reference
attributes of a particular resource or a classification of the resource. The PDP must
confirm that the resource occupies the required classification. In the case where the
resource is an XML document, it may do this by examining an attribute or element within
the resource itself. In other cases, the PDP may use attribute assertions. Both the
resource and classification may have attributes. For instance, a purchase order may have
an attribute of type "total price" set equal to the value "US$87,750.00". Alternatively, the
classification "capital equipment” may have an attribute of type "category of goods" set
equal to the value "computer equipment”.

The PDP must locate and retrieve resource attributes referenced by the applicable
XACML policy instance. In the case where the resource is an XML document, it may do
this by examining an attribute or element within the resource itself. In other cases,
resource and classification attributes are asserted by authorities and distributed in the
form of SAML attribute assertions. The PDP must check that the attribute values it
operates upon are asserted by suitable authorities. This operation is described in Section
3.2.14, below.

3.2.10. Environment/attribute

The environment/attribute section of the language model is shown in gray in Figure 5.

Figure5 - Environment/attribute section of the language model

XACML policy instances may reference attributes that are not directly associated either
with the principal or the resource. These are called environment attributes. For instance,
the "current time of day" is an environment attribute that may be referenced by a policy
instance. Environment attributes are asserted by authorities and distributed in the form of
SAML attribute assertions. The PDP must check that the attribute values it operates upon
are asserted by suitable authorities. This operation is described in "Attribute
identification", below.

3.2.11. Policy/action/resource/classification

The policy/action/classification section of the language model is shown in gray in Figure
6.

V0.7
27 Nov 2001
14

379

380

381
382
383
384
385
386
387
388

389

390
391

392

393

394

395
396
397
398
399
400

Figure 6 - Policy/action/r esour ce/classification section of the language model

Policy instances are identified with a classification/action pair. In some cases the policy
instance contains elements or attributes that identify the classification and action to which
it is applicable. The PDP must check that the policy instance it uses to compute the
authorization decision is applicable to the authorization request. It does this by verifying
that the action identified in the authorization request is the same as the action identified in
the policy instance, and that the resource identified in the authorization request belongs to
the classification identified in the policy instance. How the PDP does this is described
above.

3.2.12. Rule/pre-condition/predicate

The rule/pre-condition/predicate section of the language model is shown in gray in Figure
7.

Figure 7 - Rule/pre-condition/predicate section of the language model

XACML policy instances are built from a logical combination of rules. Each rule
comprises one pre-condition and zero or more post-conditions. A pre-condition is a
logical operator or predicate. A predicate is a statement about attributes that can be
verified by the PDP. If the policy instance applicable to an authorization request
evauatesto TRUE, and all internal post-conditions are satisfied, then the PDP may return
an authorization decision with the value TRUE to the PEP.

V0.7
27 Nov 2001
15

401

402
403

404
405

406
407
408
409
410

411

412
413
414
415
416
417
418
419
420
421

422

423
424
425
426
427

3.2.13. Post-condition

The post-condition section of the language model is shown in gray in Figure 8.

Figure 8 - Post-condition section of the language model

Post-conditions are actions specified in an XACML policy instance. Post-conditions are
of two types. Interna post-conditions must be successfully executed prior to returning an
authorization decision with the value TRUE. External post-conditions must be returned
by the PDP to the PEP and an authorization decision with the value TRUE may be issued
without confirmation that the condition has been successfully executed.

3.2.14. Attribute identification

Attribute specifiers are formed of two components: the first component identifies the
authority for the attribute and the second component identifies the attribute type. For
instance, the specifier may be an XPath expression in the form of a URI. The "host-
name" component of the URI identifies the authority for the attribute, and the local-path
component identifies the attribute type in terms of the structure of a SAML attribute
assertion. In the case where a suitable attribute assertion is provided by the PEP in the
decision request, the PDP identifies the appropriate assertion by comparing the host-name
in the URI with the issuer field of the assertion. In the case where no suitable assertion is
provided by the PEP, then the host-name component can be used to locate a suitable
attribute authority to which to send a SAML attribute request.

3.3. Administrative model

It is essential that XACML policy instances only contain references to attributes and
post-conditions that are accessible by the PDP or PEP. The administrative model, shown
in Figure 9, illustrates how this is achieved. The various SAML attribute authorities
involved must provide an interface by which the policy administration point can discover
the attribute types available from it.

V0.7
27 Nov 2001
16

428

429
430

Attribute
authority
(principal)

Attribute
authority
(role)

principal attribute values

Attribute
authority
(resource)

role attributg values

principal attribute types resource attribyitg values

Attribute
authority
(classification)

role attributg: types classification attrjbyte|values

Attribute
authority
(environment)

resource attribut¢ types

T nvironment attribute value:

classification attfibuitg types

Post-
conditions

environment attfibiitel types
Port

available post gonditions

PAP applicable policy: PRP applicable policy

Figure9 - Administrative model

PDP/PEP

V0.7
27 Nov 2001

17

430

431

432
433

434

Chapter Two

4. Policy syntax

Theinformation in this section is normative, with the exception of the schema

fragments. SAML

V0.7
27 Nov 2001

18

434
435

436

437
438
439
440
441
442
443

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461

462
463

464
465
466
467
468

469

470
471
472
473

474
475
476
477
478
479
480
481

Appendix A - Schema contains the normative version of the schema.

5. Applicable policy

Applicable policy is the top-level element. It contains a description of the access to
which the policy applies, in the form of "resource classification" and "resource action”. It
also contains the policy element. PDPs should use the applicability element to locate,
retrieve and verify the policy required for processing a particular
samlp:authorizationQuery. Verification means confirming that the value of the
resourceActions element in applicable policy is equal to the value of the saml:Actions
element in the samlp:authorizationQuery.

<xs:element name="applicablePolicy">
<xs:complexType name="scopedPolicy">
<xs:sequence>
<xs:element name="applicability" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="resourceClassification" type="xs:anyURI"/>
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="policy"/>
</xs:sequence>
</xs:complexType>
</xs:element>

6. Policy

The policy element is an aggregation of rules. Rules must be combines with logical
operations, not merely listed.

<xs:complexType name="policy">
<xs:sequence>
<xs:element ref="rule" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

7. Rule

A rule consists of a pre-condition and zero or more post-conditions. If the pre-condition
evaluates to TRUE and the internal post-conditions are successfully executed, then the
PDP should return the "permit" value in the samlp:Response/StatusCode element.
Otherwise, it must return the "deny" value.

<xs:element name="rule">
<xs:complexType>
<xs:sequence>
<xs:element name="preCondition">
<xs:complexType>
<xs:choice>
<xs:.element ref="and"/>
<xs:element ref="or"/>

V0.7
27 Nov 2001
19

482
483
484
485
486
487
488
489
490

491

492

493

494
495

496
497
498
499
500
501
502
503

504

505

506

507
508
509
510
511
512
513
514

515

516

517

518
519
520
521
522
523
524
525

526

527
528

529
530

<xs:element ref="not"/>
<xs:element ref="predicate"/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

8. Pre-condition

The preCondition element is a predicate or logically-combined set of predicates.

8.1. And

The"And" pre-condition evaluatesto TRUE if and only if all the predicate elements that
it contains evaluate to TRUE.

<xs:element name="and">
<xs:complexType>
<xs:sequence>
</xs:sequence>
</xs:complexType>
</xs:element>

8.2. Or

The"Or" pre-condition evaluates to TRUE if one or more of the predicate elements that it
contains evaluate to TRUE.

<xs:element name="or">
<xs:complexType>
<xs:.sequence>
<xs:element ref="rule" minOccurs="2" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.3. Not

The"Not" pre-condition evaluates to TRUE if the predicate element that it contains
evaluates to FALSE.

<xs:element name="not">
<xs:complexType>
<xs:sequence>
<xs:element ref="rule"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.4. Predicate
The predicate element contains either one of the predicates defined here, or an external
function.

<xs:element name="predicate">
<xs:complexType>

V0.7
27 Nov 2001
20

531
532
533
534
535
536
537
538
539
540
541
542

543

544

545
546
547
548
549
550
551

552

553
554

555
556
557
558
559
560
561
562

563

564
565
566
567
568
569
570
571
572
573
574
575
576

577
578

<xs:choice>
<xs:element ref="present"/>
<xs:element ref="equality"/>
<xs:element ref="greaterOrEqual"/>
<xs:element ref="lessOrEqual"/>
<xs:element ref="subsetOf"/>
<xs:element ref="supersetOf"/>
<xs:element ref="nonNullSetIntersection"/>
<xs:element ref="externalFunction"/>

</xs:choice>

</xs:complexType>
</xs:element>

8.5. Present
The Present predicate evaluates to TRUE if the element referenced by it is popul ated.

<xs:element name="present">
<xs:complexType>
<xs:.sequence>
<xs:element ref="referencedData"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.6. Equality

The Equality predicate evaluates to TRUE if the two elements referenced by it are equal.
Both elements must be of the same type.

<xs:element name="equality">
<xs:complexType>
<xs:sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.7. Greater or equal

The greaterOrEqual predicate evaluates to TRUE if the first element is greater than or
equal to the second element. The elements must be of the same type, which may be
string, normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer,
positivelnteger, negativelnteger, nonNegativelnteger, nonPositivelnteger, int,
unsignedint, long, unsignedLong, short, unsignedShort, decimal, float, double, time,
dateTime, duration, date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name or
Qname.
<xs:element name="greaterOrEqual">
<xs:complexType>
<xs.sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand"/>
</xs:sequence>

</xs:complexType>
</xs:element>

V0.7
27 Nov 2001
21

579

580
581
582
583
584
585

586
587
588
589
590
591
592
593
594

595

596
597

598
599
600
601
602
603
604
605

606

607
608

609
610
611
612
613
614
615
616

617

618
619

620
621
622
623
624
625
626
627

8.8. Less orequal

The lessOrEqual predicate evaluates to TRUE if the first element is less than or equal to
the second element. The elements must be of the same type, which may be string,
normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer, positivelnteger,
negativelnteger, nonNegativelnteger, nonPositivelnteger, int, unsignedint, long,
unsignedLong, short, unsignedShort, decimal, float, double, time, dateTime, duration,
date, gMonth, gY ear, gY earMonth, gDay, gMonthDay, Name or Qname.

<xs:element name="lessOrEqual">
<xs:complexType>
<xs:sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.9. Sub-set of

The subSetOf predicate evaluates to TRUE if the value of the first element is amongst the
set of values referenced by the second element.

<xs:element name="subsetOf">
<xs:complexType>
<xs:sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.10. Super-set of

The superSetOf predicate evaluates to TRUE if the set of values referenced by the first
element includes al the value(s) of the second element.

<xs:element name="supersetOf">
<xs:complexType>
<xs:sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

8.11. Non-null Set Intersection

The nonNullSetIntersection predicate evaluates to TRUE if the set of values referenced
by the two elements have at |east one value in common.

<xs:element name="nonNullSetIntersection">
<xs:complexType>
<xs:sequence>
<xs:element ref="referencedData"/>
<xs:element ref="secondOperand" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

V0.7
27 Nov 2001
22

628

629
630
631

632

633

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651

652

653
654
655
656
657
658
659
660
661
662
663

664

665
666
667
668
669
670
671
672

673
674

8.12. External function

The externalFunction €ement contains a definition of the interface to an external
function. The externa function is defined as a WSDL "definition" eement for a
"request-response” operation. The response must be a Boolean.

<xs:element name="externalFunction" type="wsdl:definitions"/>

8.13. Post-condition

The postCondition element contains a definition of the interface to an external function.
The external function is defined as a WSDL "definition” element for a "one-way"
operation. Internal post conditions are expected to be performed by the PDP, and a
"permit" statusCode must not be returned unless such conditions are successfully
executed. External post conditions are expected to be performed by the PEP, and they
must include them in the authorization decision. The PDP may return a "permit”
rstatusCode without confirmation that such conditions have been successfully executed.

<xs:element name="postCondition" type="wsdl:definitions">
<xs:complexType name="">
<xs:sequence>
<xs:element name = "internalPostCondition" type:"wsdl definitions" minOccurs="0"

nAn

nAn

</xs:sequence>
</xs:complexType>
</xs:element>

8.14. Referenced data

The referencedData element contains elements for attributes of the main model entities:
principal, resource and environment.
<xs:element name="referencedData">
<xs:complexType>
<xs:choice>
<xs:element name="roleAttribute" type="attributeReference"/>
<xs:element name="classificationAttribute" type="attributeReference"/>
<xs:element name="environmentAttribute" type="attributeReference"/>
</xs:choice>
</xs:complexType>
</xs:element>

8.15. Attribute reference

The "attribute reference” element is a pointer to an attribute. The pointer isin the form of
a URI. It may contain an XPATH expression into a SAML attribute assertion for a
principal, resource or environment. If the resource is an XML document, then it may
contain an XPATH Expression identifying an element of the resource. If the URI does
not indicate a SAML assertion passed to the PDP in the samlp:authorizationQuery, then
the PDP should obtain the value from the attribute authority identified by the attribute
reference.
<xs:simpleType name="attributeReference">

<xs:restriction base="xs:anyURI"/>
</xs:simpleType>

V0.7
27 Nov 2001
23

675

676
677

678
679
680
681
682
683
684
685

686

687
688
689

690

691

692
693

8.16. Second operand

The second operand element is a choice between a referenced data element and a hard-

coded value.

<xs:element name="secondOperand">
<xs:complexType>
<xs:choice>
<xs:element ref="referencedData"/>
<xs:element ref="hardcodedValue"/>
</xs:choice>
</xs:complexType>
</xs:element>

8.17. Hard-coded value

The "hard-coded value" element contains a value written directly into the policy instance.
Its type must be identical to that of any element with which it is paired in a predicate sub-

element.

<xs:element name="hardcodedValue" type="xs:string"/>

9. References
SAML

V0.7
27 Nov 2001

24

693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

Appendix A - Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlIns:wsdI="http://www.schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmIns:saml|="http://www.oasis-
open.org/committees/security/docs/draft-sstc-scheam-assertion-19.xsd" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="applicablePolicy">
<xs:complexType name="scopedPolicy">
<xs:sequence>
<xs:element name="applicability" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="resourceClassification" type="xs:anyURI"/>
<xs:element name="resourceAction" type="saml:Actions" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="policy"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="policy">
<xs:sequence>
<xs:element ref="rule" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="rule">
<xs:complexType>
<xs:sequence>
<xs:element name="preCondition">
<xs:complexType>
<xs:choice>
<xs:element ref="and"/>
<xs:element ref="or"/>
<xs:element ref="not"/>
<xs:element ref="predicate"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element ref="postCondition" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="and">
<xs:complexType>
<xs:sequence>
<xs:element ref="rule" minOccurs="2" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="or">
<xs:complexType>
<xs:sequence>
<xs:element ref="rule" minOccurs="2" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="not">
<xs:complexType>
<xs:sequence>
<xs:element ref="rule"/>
</xs:sequence>

V0.7
27 Nov 2001

25

757 </xs:complexType>

758 </xs:element>
759 <xs:element name="predicate">
760 <xs:complexType>
761 <xs:choice>
762 <xs:element ref="present"/>
763 <xs:element ref="equality"/>
764 <xs:element ref="greaterOrEqual"/>
765 <xs:element ref="lessOrEqual"/>
766 <xs:element ref="subsetOf"/>
767 <xs:element ref="supersetOf"/>
768 <xs:element ref="nonNullSetintersection"/>
769 <xs:element ref="externalFunction"/>
770 </xs:choice>
771 </xs:complexType>
772 </xs:element>
773 <xs:element name="present">
774 <xs:complexType>
775 <xs:sequence>
776 <xs:element ref="referencedData"/>
777 </xs:sequence>
778 </xs:complexType>
779 </xs:element>
780 <xs:element name="equality">
781 <xs:complexType>
782 <xs:sequence>
783 <xs:element ref="referencedData"/>
784 <xs:element ref="secondOperand"/>
785 </xs:sequence>
786 </xs:complexType>
787 </xs:element>
788 <xs:element name="greaterOrEqual">
789 <xs:complexType>
790 <xs:sequence>
791 <xs:element ref="referencedData"/>
792 <xs:element ref="secondOperand"/>
793 </xs:sequence>
794 </xs:complexType>
795 </xs:element>
796 <xs:element name="lessOrEqual">
797 <xs:complexType>
798 <xs:sequence>
799 <xs:element ref="referencedData"/>
800 <xs:element ref="secondOperand"/>
801 </xs:sequence>
802 </xs:complexType>
803 </xs:element>
804 <xs:element name="subsetOf">
805 <xs:complexType>
806 <xs:sequence>
807 <xs:element ref="referencedData"/>
808 <xs:element ref="secondOperand" maxOccurs="unbounded"/>
809 </xs:sequence>
810 </xs:complexType>
811 </xs:element>
812 <xs:element name="supersetOf">
813 <xs:complexType>
814 <xs:sequence>
815 <xs:element ref="referencedData"/>
816 <xs:element ref="secondOperand" maxOccurs="unbounded"/>
817 </xs:sequence>
818 </xs:complexType>
819 </xs:element>
820 <xs:element name="nonNullSetIntersection">
821 <xs:complexType>
822 <xs:sequence>
V0.7

27 Nov 2001

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

<xs:element ref="referencedData"/>
<xs:element ref="secondOperand" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="externalFunction" type="wsdl:definitions"/>
<xs:element name="postCondition" type="wsdl:definitions">
<xs:complexType name="">
<xs:sequence>
<xs:element name = "internalPostCondition" type:"wsdl definitions" minOccurs="0"
maxOccurs="0"/>
<xs:element name = "externalPostCondition" type:"wsdl definitions" minOccurs="0"
maxOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="referencedData">
<xs:complexType>
<xs:choice>
<xs:element name="roleAttribute" type="attributeReference"/>
<xs:element name="classificationAttribute" type="attributeReference"/>
<xs:element name="environmentAttribute" type="attributeReference"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:simpleType name="attributeReference">
<xs:restriction base="xs:anyURI"/>
</xs:simpleType>
<xs:element name="secondOperand">
<xs:complexType>
<xs:choice>
<xs:element ref="referencedData"/>
<xs:element ref="hardcodedValue"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="hardcodedValue" type="xs:string"/>
</xs:schema>

V0.7
27 Nov 2001

27

863

864
865
866

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

Appendix B - Test cases

The text in this appendix will be replaced by normative test cases. The test cases will
comprise a SAML authorization request message, an XACML policy instance and the
resulting SAML authorization response message.

Aut horities and assertions.

Attribute authority issues attribute assertions. Resource authority

i ssues resource assertions. Environnental authority issues environment
assertions. Application authority issues application-specific
assertions.

Attribute assertions.

<Assertion ...>

<Conditions.../>

<Advice.../>

<Attri buteStatenent >
<Subject .../>
<Attribute AttributeNanespace="..." AttributeNanme="wei ght">

<Attri buteVal ue>100</ Attri but eVal ue>

</Attribute>

</ AttributeStatenent>

</ Assertion>

Resource assertions.
<Assertion ...>
<Conditions .../>
<Advice .../>
<Resour ceSt at enent >
<Resource ResourceNanme="..." ResourceType="..."/>
<Attribute AttributeNanespace="..." AttributeName="owner">
<Attri but eVal ue>super man</ Attri but eVal ue>
<Attribute/>
<Attribute AttributeNanespace="..." AttributeName="col or">
<Attri but eVal ue>bl ue</ Attri but evVal ue>
</Attribute>
</ Resour ceSt at enent >
</ Assertion>

Request | ooks like this:

<Request ...>
<Aut hori zati onQuery Resource="...">
<Subject .../>
<Actions .../>
<Evi dence .../>

</ Aut hori zati onQuery>
</ Request >

Expr essi ons.
Expression consists of elenentary conditions joined by |ogical ‘and or
‘“or’ or grouped by ‘paren’.

<exp nanme="..">

V0.7
27 Nov 2001
28

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

<cnd test=".7/>

<and/ >

<cnd test="."/>
</ exp>

Nane is an id-type attribute of expression el enment.
To nmake it nore conmpact we can assune <and> by defaul t:

<exp nane="..>
<cnd test=".1/>
<cnd test="."/>
</ exp>

Conditions can be enclosed in parens: a and (b or c)

<exp nane="..>
<cnd test="."/>
<par en>
<cnd test=".7/>
<or/>
<cnd test="."/>
</ par en>
</ exp>

Conditions “test” attribute is a Bool ean over some xpath expression

Here is a long form Suppose we want to say that statenent bal ance
shoul d be over 50 dollars. Statement bal ance is presented as a san
attribute assertion. Xpath expression is:

[AttributeStatenent/Attribute[@G\ttributeNanmespace=" www. foo.com |[@\ttri
but eNane=" bal ance’]/ Attri but eVal ue=" 50

We can put it in condition

<cnd

test="//AttributeStatenment/Attribute[@\tributeNanmespace=" www. f 0oo. com][
@\t tribut eName=" bal ance’]/ AttributeVal ue="50""/>

Macr os.
To make above condition nore readable we can define macros:

<macr o nanme="bal”
def="//AttributeStatement/Attribute[@\ttributeNamespace=" ww. foo.com][@
AttributeNane=' bal ance’]/ Attri but eval ue”/ >

“$ sign applied to macro nane denotes macro expansion. | do not know if
it’'s the best choice. W can use ‘'# instead or sonething else. W also
need to be able to escape macro-expansi on synbol .

Then condition is:
<cnd test="%$bal =50 />

Macros can be reused with macros as well. For exanple we can define
nanespace nmacro and reuse it in attribute nacros

<macr o nanme="nyns”
def="//AttributeStatenent/Attribute[@ttributeNanmespace=" ww. f oo. com "/ >

<macro nanme="bal " def="$nyns[@\ttri but eNane=' bal ance’]/ Attri buteVal ue”/>

Rul es.
Rule is in the form
<al l ow action=".">
<subj ect >
expression reference, or conds.

V0.7
27 Nov 2001
29

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

</ subj ect >
<resource nanme=".">
expression reference,
</resource>
<if>
expression reference,
</if>
</ al |l ow>

or conds.

or conds.

Each conponent within a rule can include expression references or a set

of conditions.

For exanple we can have expression for the good custoners that we want

to reference in the rul e:

<exp nane="goodcust”>
<cnd test="$bal > ‘100 />
<cnd test="$pnt > ‘15’ />
</ exp>

<al |l ow action=".">
<subj ect >

<exp nane="goodcust”/>

</ subj ect >
<resource ..[>
<if ..I[>

</ all ow>

We can join expressions and augnment themw th conditions:

<al |l ow action=".">
<subj ect >

<exp nane="goodcust”/>

<exp nane="anexhol der”/ >

<cnd test="%$birthnonth="may’ "/ >
<cnd test="$birthyear="1861""/>

</ subj ect >
<resource ../[>
<if .[>

</ al | ow>

Reserved synbol s.

Let Reg-> refer to the current request.
Subj-> refer to the attribute assertion about requestor
Res-> refer to the attribute assertion about requested resource.

Can we write expressions for that? I’mnot even sure that this is right.

<macr o nane="Req->" def="/Request/Aut hori zati onQuery/”/>

<macro nane="Subj->" def="//Attri
Attribute[precedi ng-sibling:: Subj

but eSt at enent /
ect/ Nanmel denti fi er/ @ane=

$Req- >Subj ect/ Nanel denti fier/ @Nanme]/ "/ >

<macro name="Res->"
def ="// Resour ceSt at enent /
Attri bute[precedi ng-sibling:: Subj

ect/ Namel denti fi er/ @lane=

$Req- >Subj ect / Nanel dent i fier/ @ane] /" />

Rol es and groups.
Predi cat e groupnenber (groupnane,
is a nenber of a group

subj ect) evaluates to true if subject

V0.7
27 Nov 2001

30

