
cs-xacml-specification-1.0.doc

1

 1

OASIS eXtensible Access Control 2

Markup Language (XACML) 3

Committee Specification 1.0, 6 November 4

2002 5

Document identifier: cs-xacml-specification-1.0.doc 6

Location: http://www.oasis-open.org/committees/xacml/docs/ 7

Send comments to: xacml-comment@lists.oasis-open.org 8

Editors: 9

Simon Godik, Overxeer (simon.godik@overxeer.com) 10
Tim Moses, Entrust (tim.moses@entrust.com) 11

Contributors: 12

Anne Anderson, Sun Microsystems 13
Bill Parducci, Overxeer 14
Carlisle Adams, Entrust 15
Daniel Engovatov, CrossLogix 16
Don Flinn, Quadrasis 17
Ernesto Damiani, University of Milan 18
James MacLean, Affinitex 19
Hal Lockhart, Entegrity 20
Ken Yagen, CrossLogix 21
Konstantin Beznosov, Quadrasis 22
Michiharu Kudo, IBM 23
Pierangela Samarati, University of Milan 24
Pirasenna Velandai Thiyagarajan, Sun Microsystems 25
Polar Humenn, Syracuse University 26
Sekhar Vajjhala, Sun Microsystems 27
Seth Proctor, Sun Microsystems 28
Steve Anderson, OpenNetworks 29
Suresh Damodaran, Sterling Commerce 30
Gerald Brose, Xtradyne 31

Abstract: 32

This specification defines an XML schema for an extensible access-control policy 33
language. 34

Status: 35

cs-xacml-specification-1.0.doc 2

This version of the specification is a working draft of the committee. As such, it is expected 36
to change prior to adoption as an OASIS standard. 37

If you are on the xacml@lists.oasis-open.org list for committee members, send comments 38
there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list 39
and send comments there. To subscribe, send an email message to xacml-comment-40
request@lists.oasis-open.org with the word "subscribe" as the body of the message. 41

 42

Copyright (C) OASIS Open 2002. All Rights Reserved.43

cs-xacml-specification-1.0.doc 3

Table of contents 44

1. Introduction (non-normative) 9 45

1.1. Glossary 9 46

1.1.1 Preferred terms 9 47

1.1.2 Related terms 10 48

1.2. Notation 10 49

1.3. Schema organization and namespaces 11 50

2. Background (non-normative) 11 51

2.1. Requirements 12 52

2.2. Rule and policy combining 13 53

2.3. Combining algorithms 13 54

2.4. Multiple subjects 14 55

2.5. Policies based on subject and resource attributes 14 56

2.6. Multi-valued attributes 14 57

2.7. Policies based on resource contents 15 58

2.8. Operators 15 59

2.9. Policy distribution 16 60

2.10. Policy indexing 16 61

2.11. Abstraction layer 16 62

2.12. Actions performed in conjunction with enforcement 17 63

3. Models (non-normative) 17 64

3.1. Data-flow model 17 65

3.2. XACML context 19 66

3.3. Policy language model 19 67

3.3.1 Rule 20 68

3.3.2 Policy 22 69

3.3.3 Policy set 23 70

4. Examples (non-normative) 23 71

4.1. Example one 24 72

4.1.1 Example policy 24 73

4.1.2 Example request context 26 74

4.1.3 Example response context 27 75

4.2. Example two 28 76

4.2.1 Example medical record instance 28 77

4.2.2 Example request context 29 78

4.2.3 Example plain-language rules 31 79

cs-xacml-specification-1.0.doc 4

4.2.4 Example XACML rule instances 31 80

5. Policy syntax (normative, with the exception of the schema fragments) 45 81

5.1. Element <PolicySet> 45 82

5.2. Element <Description> 46 83

5.3. Element <PolicySetDefaults> 46 84

5.4. Element <XPathVersion> 47 85

5.5. Element <Target> 47 86

5.6. Element <Subjects> 48 87

5.7. Element <Subject> 48 88

5.8. Element <AnySubject> 48 89

5.9. Element <SubjectMatch> 48 90

5.10. Element <Resources> 49 91

5.11. Element <Resource> 49 92

5.12. Element <AnyResource> 50 93

5.13. Element <ResourceMatch> 50 94

5.14. Element <Actions> 51 95

5.15. Element <Action> 51 96

5.16. Element <AnyAction> 51 97

5.17. Element <ActionMatch> 52 98

5.18. Element <PolicySetIdReference> 52 99

5.19. Element <PolicyIdReference> 52 100

5.20. Element <Policy> 53 101

5.21. Element <Rule> 54 102

5.22. Simple type EffectType 55 103

5.23. Element <Condition> 55 104

5.24. Element <Apply> 55 105

5.25. Element <Function> 56 106

5.26. Complex type AttributeDesignatorType 57 107

5.27. Element <ResourceAttributeDesignator> 57 108

5.28. Element <ActionAttributeDesignator> 59 109

5.29. Element <EnvironmentAttributeDesignator> 60 110

5.30. Element <ResourceAttributeIsPresent> 61 111

5.31. Element <ActionAttributeIsPresent> 62 112

5.32. Element <EnvironmentAttributeIsPresent> 63 113

5.33. Complex type SubjectAttributeDesignatorType 64 114

5.34. Element <SubjectAttributeIsPresent> 65 115

5.35. Element <AttributeSelector> 66 116

cs-xacml-specification-1.0.doc 5

5.36. Element <AttributeValue> 67 117

5.37. Element <Obligations> 67 118

5.38. Element <Obligation> 67 119

5.39. Element <AttributeAssignment> 68 120

6. Context syntax (normative with the exception of the schema fragments) 69 121

6.1. Element <Request> 69 122

6.2. Element <Subject> 70 123

6.3. Element <Resource> 70 124

6.4. Element <ResourceContent> 71 125

6.5. Element <Action> 71 126

6.6. Element <Environment> 71 127

6.7. Element <Attribute> 72 128

6.8. Element <AttributeValue> 72 129

6.9. Element <Response> 73 130

6.10. Element <Result> 73 131

6.11. Element <Decision> 74 132

6.12. Element <Status> 74 133

6.13. Element <StatusCode> 75 134

6.14. Element <StatusMessage> 75 135

6.15. Element <StatusDetail> 75 136

7. Functional requirements (normative) 76 137

7.1. Policy enforcement point 76 138

7.2. Base policy 77 139

7.3. Target evaluation 77 140

7.4. Condition evaluation 77 141

7.5. Rule evaluation 77 142

7.6. Policy evaluation 78 143

7.7. Policy Set evaluation 78 144

7.8. Hierarchical resources 79 145

7.9. Attributes 80 146

7.9.1. Attribute Matching 80 147

7.9.2. Attribute Retrieval 80 148

7.9.3. Environment Attributes 81 149

7.9.4. Subject Attributes 81 150

7.10. Authorization decision 81 151

7.11. Obligations 81 152

8. XACML extensibility points (non-normative) 82 153

cs-xacml-specification-1.0.doc 6

8.1. Extensible XML attribute types 82 154

8.2. Extensible XACML attribute types 82 155

8.3. Structured attributes 83 156

9. Security and privacy considerations (non-normative) 83 157

9.1. Threat model 83 158

9.1.1. Unauthorized disclosure 84 159

9.1.2. Message replay 84 160

9.1.3. Message insertion 84 161

9.1.4. Message deletion 84 162

9.1.5. Message modification 84 163

9.1.6. Not-applicable results 84 164

9.1.7. Negative rules 85 165

9.2. Safeguards 86 166

9.2.1. Authentication 86 167

9.2.2. Policy administration 86 168

9.2.3. Confidentiality 86 169

9.2.4. Policy integrity 87 170

9.2.5. Policy identifiers 87 171

9.2.6. Trust model 88 172

9.2.7. Privacy 88 173

10. Conformance (normative) 88 174

10.1. Introduction 88 175

10.2. Attestation 89 176

10.3. Conformance tables 89 177

10.3.1. Schema elements 89 178

10.3.2. Identifier Prefixes 90 179

10.3.3. Algorithms 90 180

10.3.4. Status Codes 90 181

10.3.5. Attributes 91 182

10.3.6. Identifiers 91 183

10.3.7. Data Types 91 184

10.3.8. Functions 92 185

11. References 94 186

Appendix A. Standard data types, functions and their semantics (normative) 96 187

A.1. Introduction 96 188

A.2. Primitive types 96 189

A.3. Structured types 97 190

cs-xacml-specification-1.0.doc 7

A.4. Representations 97 191

A.5. Bags 98 192

A.6. Expressions 98 193

A.7. Element <AttributeValue> 99 194

A.8. Elements <AttributeDesignator> and <AttributeSelector> 99 195

A.9. Element <Apply> 99 196

A.10. Element <Condition> 99 197

A.11. Element <Function> 100 198

A.12. Matching elements 100 199

A.13. Arithmetic evaluation 101 200

A.14. XACML standard functions 102 201

A14.1 Equality predicates 102 202

A14.2 Arithmetic functions 104 203

A14.3 String conversion functions 105 204

A14.4 Numeric type conversion functions 105 205

A14.5 Logical functions 105 206

A14.6 Arithmetic comparison functions 106 207

A14.7 Date and time arithmetic functions 107 208

A14.8 Non-numeric comparison functions 108 209

A14.9 Bag functions 110 210

A14.10 Set functions 111 211

A14.11 Higher-order bag functions 111 212

A14.12 Special match functions 118 213

A14.13 XPath-based functions 119 214

A14.14 Extension functions and primitive types 119 215

Appendix B. XACML identifiers (normative) 120 216

B.1. XACML namespaces 120 217

B.2. Access subject categories 120 218

B.3. XACML functions 120 219

B.4. Data types 121 220

B.5. Subject attributes 121 221

B.6. Resource attributes 122 222

B.7. Action attributes 123 223

B.8. Environment attributes 123 224

B.9. Status codes 123 225

B.10. Combining algorithms 124 226

Appendix C. Combining algorithms (normative) 125 227

cs-xacml-specification-1.0.doc 8

C.1. Deny-overrides 125 228

C.2. Permit-overrides 127 229

C.3. First-applicable 129 230

C.4. Only-one-applicable 130 231

Appendix D. Acknowledgments 132 232

Appendix E. Revision history 133 233

Appendix F. Notices 134 234

 235

cs-xacml-specification-1.0.doc 9

 236

1. Introduction (non-normative) 237

1.1. Glossary 238

1.1.1 Preferred terms 239

Access - Performing an action 240

Access control - Controlling access in accordance with a policy 241

Action - An operation on a resource 242

Applicable policy - The set of policies and policy sets that governs access for a specific 243
decision request 244

Attribute - Characteristic of a subject, resource, action or environment that may be referenced 245
in a predicate or target 246

Authorization decision - The result of evaluating applicable policy, returned by the PDP to the 247
PEP. A function that evaluates to "Permit”, “Deny”, “Indeterminate” or “Not-applicable", and 248
(optionally) a set of obligations 249

Bag – An unordered collection of values, in which there may be duplicate values 250

Condition - An expression of predicates. A function that evaluates to "True", "False" or 251
“Indeterminate” 252

Conjunctive sequence - a sequence of elements combined using the logical ‘AND’ operation 253

Context - The canonical representation of a decision request and an authorization decision 254

Context handler - The system entity that converts decision requests in the native request format 255
to the XACML canonical form and converts authorization decisions in the XACML canonical form 256
to the native response format 257

Decision – The result of evaluating a rule, policy or policy set 258

Decision request - The request by a PEP to a PDP to render an authorization decision 259

Disjunctive sequence - a sequence of elements combined using the logical ‘OR’ operation 260

Effect - The intended consequence of a satisfied rule (either "Permit" or "Deny") 261

Environment - The set of attributes that are relevant to an authorization decision and are 262
independent of a particular subject, resource or action 263

Obligation - An operation specified in a policy or policy set that should be performed in 264
conjunction with the enforcement of an authorization decision 265

cs-xacml-specification-1.0.doc 10

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a set of 266
obligations. May be a component of a policy set 267

Policy administration point (PAP) - The system entity that creates a policy or policy set 268

Policy-combining algorithm - The procedure for combining the decision and obligations from 269
multiple policies 270

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an 271
authorization decision 272

Policy enforcement point (PEP) - The system entity that performs access control, by making 273
decision requests and enforcing authorization decisions 274

Policy information point (PIP) - The system entity that acts as a source of attribute values 275

Policy set - A set of policies, other policy sets, a policy-combining algorithm and (optionally) a 276
set of obligations. May be a component of another policy set 277

Predicate - A statement about attributes whose truth can be evaluated 278

Resource - Data, service or system component 279

Rule - A target, an effect and a condition. A component of a policy 280

Rule-combining algorithm - The procedure for combining decisions from multiple rules 281

Subject - An actor whose attributes may be referenced by a predicate 282

Target - The set of decision requests, identified by definitions for resource, subject and action, 283
that a rule, policy or policy set is intended to evaluate 284

1.1.2 Related terms 285

In the field of access control and authorization there are several closely related terms in common 286
use. For purposes of precision and clarity, certain of these terms are not used in this specification. 287

For instance, the term attribute is used in place of the terms: group and role. 288

In place of the terms: privilege, permission, authorization, entitlement and right, we use the term 289
rule. 290

The term object is also in common use, but we use the term resource in this specification. 291

Requestors and initiators are covered by the term subject. 292

1.2. Notation 293

This specification contains schema conforming to W3C XML Schema and normative text to 294
describe the syntax and semantics of XML-encoded policy statements. 295

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 296
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be 297
interpreted as described in IETF RFC 2119 [RFC2119] 298

cs-xacml-specification-1.0.doc 11

"they MUST only be used where it is actually required for interoperation or to limit 299
behavior which has potential for causing harm (e.g., limiting retransmissions)" 300

These keywords are thus capitalized when used to unambiguously specify requirements over 301
protocol and application features and behavior that affect the interoperability and security of 302
implementations. When these words are not capitalized, they are meant in their natural-language 303
sense. 304

Li st i ngs of XACML schemas appear l i ke t hi s. 305
 306
Exampl e code l i s t i ngs appear l i ke t hi s. 307

Conventional XML namespace prefixes are used throughout the listings in this specification to 308
stand for their respective namespaces as follows, whether or not a namespace declaration is 309
present in the example: 310

• The prefix saml : stands for the SAML assertion namespace [SAML]. 311

• The prefix ds: stands for the W3C XML Signature namespace [DS]. 312

• The prefix xs: stands for the W3C XML Schema namespace [XS]. 313

• The prefix xf : stands for the XPath query and function specification namespace [XF]. 314

This specification uses the following typographical conventions in text: <XACMLEl ement >, 315
<ns: For ei gnEl ement >, At t r i but e, Datatype, Ot her Code. Terms in italic bold-face are 316
intended to have the meaning defined in the Glossary. 317

1.3. Schema organization and namespaces 318

The XACML policy syntax is defined in a schema associated with the following XML namespace: 319

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy 320

The XACML context syntax is defined in a schema associated with the following XML namespace: 321

ur n: oasi s: names: t c: xacml : 1. 0: cont ext 322

XACML data-types are defined in the following XML namespace: 323

ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype 324

The XML Signature XMLSigXSD is imported into the XACML schema and is associated with the 325
following XML namespace: 326

ht t p: / / www. w3. or g/ 2000/ 09/ xml dsi g# 327

2. Background (non-normative) 328

The "economics of scale" have driven computing platform vendors to develop products with very 329
generalized functionality, so that they can be used in the widest possible range of situations. "Out 330
of the box", these products have the maximum possible privilege for accessing data and executing 331
software, so that they can be used in as many application environments as possible, including 332
those with the most permissive security policies. In the more common case of a relatively 333
restrictive security policy, the platform's inherent privileges must be constrained, by configuration. 334

cs-xacml-specification-1.0.doc 12

The security policy of a large enterprise has many elements and many points of enforcement. 335
Elements of policy may be managed by the Information Systems department, by Human 336
Resources, by the Legal department and by the Finance department. And the policy may be 337
enforced by the extranet, mail, WAN and remote-access systems; platforms which inherently 338
implement a permissive security policy. The current practice is to manage the configuration of each 339
point of enforcement independently in order to implement the security policy as accurately as 340
possible. Consequently, it is an expensive and unreliable proposition to modify the security policy. 341
And, it is virtually impossible to obtain a consolidated view of the safeguards in effect throughout 342
the enterprise to enforce the policy. At the same time, there is increasing pressure on corporate 343
and government executives from consumers, shareholders and regulators to demonstrate "best 344
practice" in the protection of the information assets of the enterprise and its customers. 345

For these reasons, there is a pressing need for a common language for expressing security policy. 346
If implemented throughout an enterprise, a common policy language allows the enterprise to 347
manage the enforcement of all the elements of its security policy in all the components of its 348
information systems. Managing security policy may include some or all of the following steps: 349
writing, reviewing, testing, approving, issuing, combining, analyzing, modifying, withdrawing, 350
retrieving and enforcing policy. 351

XML is a natural choice as the basis for the common security-policy language, due to the ease with 352
which its syntax and semantics can be extended to accommodate the unique requirements of this 353
application, and the widespread support that it enjoys from all the main platform and tool vendors. 354

2.1. Requirements 355

The basic requirements of a policy language for expressing information system security policy are: 356

• To provide a method for combining individual rules and policies into a single policy set that 357
applies to a given action. 358

• To provide a method for flexible definition of the procedure by which rules and policies are 359
combined. 360

• To provide a method for dealingwith multiple subjects acting in different capacities. 361

• To provide a method for basing an authorization decision on attributes of the subject and 362
resource. 363

• To provide a method for dealing with multi-valued attributes. 364

• To provide a method for basing an authorization decision on the contents of an information 365
resource. 366

• To provide a set of logical and mathematical operators on attributes of the subject, resource 367
and environment. 368

• To provide a method for handling a distributed set of policy components, while abstracting the 369
method for locating, retrieving and authenticating the policy components. 370

• To provide a method for rapidly identifying the policy that applies to a given action, based upon 371
the values of attributes of the subjects, resource and action. 372

• To provide an abstraction-layer that insulates the policy-writer from the details of the application 373
environment. 374

cs-xacml-specification-1.0.doc 13

• To provide a method for specifying a set of actions that must be performed in conjunction with 375
policy enforcement. 376

The motivation behind XACML is to express these well-established ideas in the field of access-377
control policy using an extension language of XML. The XACML solutions for each of these 378
requirements are discussed in the following sections. 379

2.2. Rule and policy combining 380

The complete policy applicable to a particular decision request may be composed of a number of 381
individual rules or policies. For instance, in a personal privacy application, the owner of the 382
personal information may define certain aspects of disclosure policy, whereas the enterprise that is 383
the custodian of the information may define certain other aspects. In order to render an 384
authorization decision, it must be possible to combine the two separate policies to form the 385
single policy applicable to the request. 386

XACML defines three top-level policy elements: <Rul e>, <Pol i cy> and <Pol i cySet >. The 387
<Rul e> element contains a boolean expression that can be evaluated in isolation, but that is not 388
intended to be accessed in isolation by a PDP. So, it is not intended to form the basis of an 389
authorization decision by itself. It is intended to exist in isolation only within an XACML PAP, 390
where it may form the basic unit of management, and be re-used in multiple policies. 391

The <Pol i cy> element contains a set of <Rul e> elements and a specified procedure for 392
combining the results of their evaluation. It is the basic unit of policy used by the PDP, and so it is 393
intended to form the basis of an authorization decision. 394

The <Pol i cySet > element contains a set of <Pol i cy> or other <Pol i cySet > elements and a 395
specified procedure for combining the results of their evaluation. It is the standard means for 396
combining separate policies into a single combined policy. 397

Hinton et al [Hinton94] discuss the question of the compatibility of separate policies applicable to 398
the same decision request. 399

2.3. Combining algorithms 400

XACML defines a number of combining algorithms that can be identified by a 401
Rul eCombi ni ngAl gI d or Pol i cyCombi ni ngAl gI d attribute of the <Pol i cy> or <Pol i cySet > 402
elements, respectively. The rule-combining algorithm defines a procedure for arriving at an 403
authorization decision given the individual results of evaluation of a set of rules. Similarly, the 404
policy-combining algorithm defines a procedure for arriving at an authorization decision given 405
the individual results of evaluation of a set of policies. Standard combining algorithms are defined 406
for: 407

• Deny-overrides, 408

• Permit-overrides, 409

• First applicable and 410

• Only-one-applicable. 411

In the first case, if a single <Rul e> or <Pol i cy> element is encountered that evaluates to "Deny", 412
then, regardless of the evaluation result of the other <Rul e> or <Pol i cy> elements in the 413
applicable policy, the combined result is "Deny". Likewise, in the second case, if a single "Permit" 414
result is encountered, then the combined result is "Permit". In the case of the “First-applicable” 415

cs-xacml-specification-1.0.doc 14

combining algorithm, the combined result is the same as the result of evaluating the first <Rul e>, 416
<Pol i cy> or <Pol i cySet > element in the list of rules whose target is applicable to the decision 417
request. The "Only-one-applicable" policy-combining algorithm only applies to policies. The 418
result of this combining algorithm ensures that one and only one policy or policy set is applicable 419
by virtue of their targets. If no policy or policy set applies, then the result is "Not-applicable", but 420
if more than one policy or policy set is applicable, then the result is "Indeterminate". When exactly 421
one policy or policy set is applicable, the result of the combining algorithm is the result of 422
evaluating the single applicable policy or policy set. 423

Users of this specification may, if necessary, define their own combining algorithms. 424

2.4. Multiple subjects 425

Access-control policies often place requirements on the actions of more than one subject. For 426
instance, the policy governing the execution of a high-value financial transaction may require the 427
approval of more than one individual, acting in different capacities. Therefore, XACML recognizes 428
that there may be more than one subject relevant to a decision request. An attribute called 429
“subject-category” is used to differentiate between subjects acting in different capacities. Some 430
standard values for this attribute are specified, and users may define additional ones. 431

2.5. Policies based on subject and resource attributes 432

Another common requirement is to base an authorization decision on some characteristic of the 433
subject other than its identity. Perhaps, the most common application of this idea is the subject's 434
role [RBAC]. XACML provides facilities to support this approach. Attributes of subjects may be 435
identified by the <Subj ect At t r i but eDesi gnat or > element. This element contains a URN that 436
identifies the attribute. Alternatively, the <At t r i but eSel ect or > element may contain an XPath 437
expression over the request context to identify a particular subject attribute value by its location in 438
the context (see section 2.11 for an explanation of context). XACML provides a standard way to 439
reference the attributes defined in the LDAP series of specifications [LDAP-1, LDAP-2]. This is 440
intended to encourage implementers to use standard attribute identifiers for some common 441
subject attributes. 442

Another common requirement is to base an authorization decision on some characteristic of the 443
resource other than its identity. XACML provides facilities to support this approach. Attributes of 444
resource may be identified by the <Resour ceAt t r i but eDesi gnat or > element. This element 445
contains a URN that identifies the attribute. Alternatively, the <At t r i but eSel ect or > element 446
may contain an XPath expression over the request context to identify a particular resource 447
attribute value by its location in the context. 448

2.6. Multi-valued attributes 449

The most common techniques for communicating attributes (LDAP, XPath, SAML, etc.) support 450
multiple values per attribute. Therefore, when an XACML PDP retrieves the value of a named 451
attribute, the result may contain multiple values. A collection of such values is called a bag. A 452
bag differs from a set in that it may contain duplicate values, whereas a set may not. Sometimes 453
this situation represents an error. Sometimes the XACML rule is satisfied if any one of the 454
attribute values meets the criteria expressed in the rule. 455

XACML provides a set of functions that allow a policy writer to be absolutely clear about how the 456
PDP should handle the case of multiple attribute values. These are the “higher-order” functions. 457

cs-xacml-specification-1.0.doc 15

2.7. Policies based on resource contents 458

In many applications, it is required to base an authorization decision on data contained in the 459
information resource to which access is requested. For instance, a common component of privacy 460
policy is that a person should be allowed to read records for which he or she is the subject. The 461
corresponding policy must contain a reference to the subject identified in the information resource 462
itself. 463

XACML provides facilities for doing this when the information resource can be represented as an 464
XML document. The <At t r i but eSel ect or > element may contain an XPath expression over the 465
request context to identify data in the information resource to be used in the policy evaluation. 466

In cases where the information resource is not an XML document, specified attributes of the 467
resource can be referenced, as described in Section 2.4. 468

2.8. Operators 469

Information security policies operate upon attributes of subjects, the resource and the action to 470
be performed on the resource in order to arrive at an authorization decision. In the process of 471
arriving at the authorization decision, attributes of many different types may have to be 472
compared or computed. For instance, in a financial application, a person's available credit may 473
have to be calculated by adding their credit limit to their account balance. The result may then have 474
to be compared with the transaction value. This sort of situation gives rise to the need for 475
arithmetic operations on attributes of the subject (account balance and credit limit) and the 476
resource (transaction value). 477

Even more commonly, a policy may identify the set of roles that are permitted to perform a 478
particular action. The corresponding operation involves checking whether there is a non-empty 479
intersection between the set of roles occupied by the subject and the set of roles identified in the 480
policy. Hence the need for set operations. 481

XACML includes a number of built-in functions and a method of adding non-standard functions. 482
These functions may be nested to build arbitrarily complex expressions. This is achieved with the 483
<Appl y> element. The <Appl y> element has an XML attribute called Funct i onI d that identifies 484
the function to be applied to the contents of the element. Each standard function is defined for 485
specific argument type combinations, and its return type is also specified. Therefore, type 486
consistency of the policy can be checked at the time the policy is written or parsed. And, the 487
types of the data values presented in the request context can be checked against the values 488
expected by the policy to ensure a predictable outcome. 489

In addition to operators on numerical and set arguments, operators are defined for date, time and 490
duration arguments. 491

Relationship operators (equality and comparison) are also defined for a number of data-types, 492
including the RFC822 and X.500 name-forms, strings, URIs, etc.. 493

Also noteworthy are the operators over boolean data types, which permit the logical combination of 494
predicates in a rule. For example, a rule may contain the statement that access may be 495
permitted during business hours AND from a terminal on business premises. 496

The XACML method of representing functions borrows from MathML [MathML] and from XPath 497
Query and Functions [XF]. 498

cs-xacml-specification-1.0.doc 16

2.9. Policy distribution 499

In a distributed system, individual policy statements may be written by several policy writers and 500
enforced at several enforcement points. In addition to facilitating the collection and combination of 501
independent policy components, this approach allows policies to be updated as required. XACML 502
policy statements may be distributed in any one of a number of ways. But, XACML does not 503
describe any normative way to do this. Regardless of the means of distribution, PDPs are 504
expected to confirm, by examining the policy's <Tar get > element that the policy is applicable to 505
the decision request that it is processing. 506

<Pol i cy> elements may be attached to the information resources to which they apply, as 507
described by Perritt [Perritt93]. Alternatively, <Pol i cy> elements may be maintained in one or 508
more locations from which they are retrieved for evaluation. In such cases, the applicable policy 509
may be referenced by an identifier or locator closely associated with the information resource. 510

2.10. Policy indexing 511

For efficiency of evaluation and ease of management, the overall security policy in force across an 512
enterprise may be expressed as multiple independent policy components. In this case, it is 513
necessary to identify and retrieve the applicable policy statement and verify that it is the correct 514
one for the requested action before evaluating it. This is the purpose of the <Tar get > element in 515
XACML. 516

Two approaches are supported: 517

1. Policy statements may be stored in a database, whose data-model is congruent with that of the 518
<Tar get > element. The PDP should use the contents of the decision request that it is 519
processing to form the database read command by which applicable policy statements are 520
retrieved. Nevertheless, the PDP should still evaluate the <Tar get > element of the retrieved 521
policy or policy set statements as defined by the XACML specification. 522

2. Alternatively, the PDP may evaluate the <Tar get > element from each of the policies or policy 523
sets that it has available to it, in the context of a particular decision request, in order to identify 524
the policies and policy sets that are applicable to that request. 525

The use of constraints limiting the applicability of a policy were described by Sloman 526
[Sloman94]. 527

2.11. Abstraction layer 528

PEPs come in many forms. For instance, a PEP may be part of a remote-access gateway, part of 529
a Web server or part of an email user-agent, etc.. It is unrealistic to expect that all PEPs in an 530
enterprise do currently, or will in the future, issue decision requests to a PDP in a common format. 531
Nevertheless, a particular policy may have to be enforced by multiple PEPs. It would be inefficient 532
to force a policy writer to write the same policy several different ways in order to accommodate the 533
format requirements of each PEP. Similarly attributes may be contained in various envelope types 534
(e.g. X.509 attribute certificates, SAML attribute assertions, etc.). Therefore, there is a need for a 535
canonical form of the request and response handled by an XACML PDP. This canonical form is 536
called the XACML "Context". Its syntax is defined in XML schema. 537

Naturally, XACML-conformant PEPs may issue requests and receive responses in the form of an 538
XACML context. But, where this situation does not exist, an intermediate step is required to 539
convert between the request/response format understood by the PEP and the XACML context 540
format understood by the PDP. 541

cs-xacml-specification-1.0.doc 17

The benefit of this approach is that policies may be written and analyzed independent of the 542
specific environment in which they are to be enforced. 543

In the case where the native request/response format is specified in XML Schema (e.g. a SAML-544
conformant PEP), the transformation between the native format and the XACML context may be 545
specified in the form of an Extensible Stylesheet Language Transformation [XSLT]. 546

Similarly, in the case where the resource to which access is requested is an XML document, the 547
resource itself may be included in, or referenced by, the request context. Then, through the use 548
of XPath expressions [XPath] in the policy, values in the resource may be included in the policy 549
evaluation. 550

2.12. Actions performed in conjunction with enforcement 551

In many applications, policies specify actions that MUST be performed, either instead of, or in 552
addition to, actions that MAY be performed. This idea was described by Sloman [Sloman94]. 553
XACML provides facilities to specify actions that MUST be performed in conjunction with policy 554
evaluation in the <Obligations> element. This idea was described as a provisional action by Kudo 555
[Kudo00]. There are no standard definitions for these actions in version 1.0 of XACML. Therefore, 556
bilateral agreement between a PAP and the PEP that will enforce its policies is required for correct 557
interpretation. PEPs that conform with v1.0 of XACML are required to deny access unless they 558
understand all the <Obl i gat i ons> elements associated with the applicable policy. 559
<Obl i gat i ons> elements are returned to the PEP for enforcement. 560

3. Models (non-normative) 561

The data-flow model and language model of XACML are described in the following sub-sections. 562

3.1. Data-flow model 563

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1. 564

cs-xacml-specification-1.0.doc 18

 565

Figure 1 - Data-flow diagram 566

Note: some of the data-flows shown in the diagram may be facilitated by a repository. For instance, 567
the communications between the context handler and the PIP or the communications between the 568
PDP and the PAP may be facilitated by a repository. The XACML specification is not intended to 569
place restrictions on the location of any such repository, or indeed to prescribe a particular 570
communication protocol for any of the data-flows. 571

The model operates by the following steps. 572

1. PAPs write policies and make them available to the PDP. Its policies represent the complete 573
policy for a specified target. 574

2. The access requester sends a request for access to the PEP. 575

3. The PEP sends the request for access to the context handler in its native request format, 576
optionally including attributes of the subjects, resource and action. The context handler 577
constructs an XACML request context in accordance with steps 4,5,6 and 7. 578

4. Subject, resource and environment attributes may be requested from a PIP. 579

5. The PIP obtains the requested attributes. 580

PEP

context
handler

8. request
context

PIP

4. attribute
query

9. response
context

1. policy

6. attribute

environment

resource

subjects

5b. environment
attributes

PAP

obligations
service

11. obligations

PDP

access
requester

2. access request

7. resource

3. request 10. response

5c. resource
attributes

5a. subject
attributes

cs-xacml-specification-1.0.doc 19

6. The PIP returns the requested attributes to the context handler. 581

7. Optionally, the context handler includes the resource in the context. 582

8. The context handler makes information about the request context available to the PDP. The 583
PDP identifies the policy applicable to the request context. The PDP evaluates the policy. 584

9. The PDP returns the response context (including the authorization decision) to the context 585
handler. 586

10. The context handler translates the response context to the native response format of the 587
PEP. The context handler returns the response to the PEP. 588

11. The PEP fulfills the obligations. 589

12. (Not shown) If access is permitted, then the PEP permits access to the resource; otherwise, it 590
denies access. 591

3.2. XACML context 592

XACML is intended to be suitable for a variety of application environments. The core language is 593
insulated from the application environment by the XACML context, as shown in Figure 2, in which 594
the scope of the XACML specification is indicated by the shaded area. The XACML context is 595
defined in XML schema, describing a canonical representation for the inputs and outputs of the 596
PDP. Attributes referenced by an instance of XACML policy may be in the form of XPath 597
expressions on the context, or attribute designators that identify the attribute by subject, 598
resource, action or environment and its identifier. Implementations must convert between the 599
attribute representations in the application environment (e.g., SAML, J2SE, CORBA, and so on) 600
and the attribute representations in the XACML context. How this is achieved is outside the 601
scope of the XACML specification. In some cases, such as SAML, this conversion may be 602
accomplished in an automated way through the use of an XSLT transformation. 603

domain-specific
inputs

domain-specific
outputs

xacml Context/
Request.xml

xacml Context/
Response.xml

PDP

xacml
Policy.xml

 604

Figure 2 - XACML context 605

Note: The PDP may be implemented such that it uses a processed form of the XML files. 606

See Section 7.9 for a more detailed discussion of the request context. 607

3.3. Policy language model 608

The policy language model is shown in Figure 3. The main components of the model are: 609

• Rule; 610

• Policy; and 611

cs-xacml-specification-1.0.doc 20

• Policy set. 612

These are described in the following sub-sections. 613

1

1..*

1

1..*

1

1..*

Condition

Target

Rule

1

0..1

Policy

1

1

Obligations

1

1

1

0..*

1 0..1

ActionResourceSubject

PolicySet

1

0..*

1

1

Policy
Combining
Alogorithm

1

0..*

Rule
Combining
Algorithm

1

0..*

1

0..1

10..1

Effect

1 1

 614

Figure 3 - Policy language model 615

3.3.1 Rule 616

The main components of a rule are: 617

• a target; 618

cs-xacml-specification-1.0.doc 21

• an effect; and 619

• a condition. 620

These are discussed in the following sub-sections. 621

3.3.1.1. Rule target 622

The target defines the set of: 623

• resources; 624

• subjects; and 625

• actions 626

to which the rule is intended to apply. The <Condi t i on> element may further refine the 627
applicability established by the target. If the rule is intended to apply to all entities of a particular 628
type, then an empty element named <AnySubj ect / >, <AnyResour ce/ > or <AnyAct i on/ > is 629
used. An XACML PDP verifies that the subjects, resource and action identified in the request 630
context are all present in the target of the rules that it uses to evaluate the decision request. 631
Target definitions are discrete, in order that applicable rules may be efficiently identified by the 632
PDP. 633

The <Tar get > element may be absent from a <Rul e>. In this case, the <Rul e> inherits its target 634
from the parent <Pol i cy> element. 635

Certain subject name-forms, resource name-forms and certain types of resource are internally 636
structured. For instance, the X.500 directory name-form and RFC 822 name-form are structured 637
subject name-forms, whereas an account number commonly has no discernible structure. UNIX 638
file-system path-names and URIs are examples of structured resource name-forms. And an XML 639
document is an example of a structured resource. 640

Generally, the name of a node (other than a leaf node) in a structured name-form is also a legal 641
instance of the name-form. So, for instance, the RFC822 name "medico.com" is a legal RFC822 642
name identifying the set of mail addresses hosted by the medico.com mail server. And the 643
XPath/XPointer value "//ctx:ResourceContent/md:record/md:patient/ is a legal XPath/XPointer value 644
identifying a node-set in an XML document. 645

The question arises: how should a name that identifies a set of subjects or resources be 646
interpreted by the PDP, whether it appears in a policy or a request context? Are they intended to 647
represent just the node explicitly identified by the name, or are they intended to represent the entire 648
sub-tree subordinate to that node? 649

In the case of subjects, there is no real entity that corresponds to such a node. So, names of this 650
type always refer to the set of subjects subordinate in the name structure to the identified node. 651
Consequently, non-leaf subject names should not be used in equality functions, only in match 652
functions, such as “urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match” not 653
“urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal” (see Appendix A). 654

On the other hand, in the case of resource names and resources themselves, three options exist. 655
The name could refer to: 656

1. the contents of the identified node only, 657

2. the contents of the identified node and the contents of its immediate child nodes or 658

3. the contents of the identified node and all its descendant nodes. 659

All three options are supported in XACML. 660

cs-xacml-specification-1.0.doc 22

3.3.1.2. Effect 661

The effect of the rule indicates the rule-writer's intended consequence of a "True" evaluation for 662
the rule. Two values are allowed: "Permit" and "Deny". 663

3.3.1.3. Condition 664

Condition represents a boolean expression that refines the applicability of the rule beyond the 665
predicates implied by its target. Therefore, it may be absent. 666

3.3.2 Policy 667

From the data-flow model one can see that rules are not exchanged amongst system entities. 668
Therefore, a PAP combines rules in a policy. A policy comprises four main components: 669

• a target; 670

• a rule-combining algorithm-identifier; 671

• a set of rules; and 672

• obligations. 673

Rules are described above. The remaining components are described in the following sub-674
sections. 675

3.3.2.1. Policy target 676

An XACML <Pol i cySet >, <Pol i cy> or <Rul e> element contains a <Tar get > element that 677
specifies the set of subjects, resources and actions to which it applies. The <Tar get > of a 678
<Pol i cySet > or <Pol i cy> may be declared by the writer of the <Pol i cySet > or <Pol i cy>, or 679
it may be calculated from the <Tar get > elements of the <Pol i cySet >, <Pol i cy> and <Rul e> 680
elements that it contains. 681

A system entity that calculates a <Tar get > in this way is not defined by XACML, but there are two 682
logical methods that might be used. In one method, the <Tar get > element of the outer 683
<Pol i cySet > or <Pol i cy> (the "outer component") is calculated as the union of all the 684
<Tar get > elements of the referenced <Pol i cySet >, <Pol i cy> or <Rul e> elements (the "inner 685
components"). In another method, the <Tar get > element of the outer component is calculated as 686
the intersection of all the <Tar get > elements of the inner components. The results of evaluation in 687
each case will be very different: in the first case, the <Tar get > element of the outer component 688
makes it applicable to any decision request that matches the <Tar get > element of at least one 689
inner component; in the second case, the <Tar get > element of the outer component makes it 690
applicable only to decision requests that match the <Tar get > elements of every inner 691
component. Note that computing the intersection of a set of <Tar get > elements is likely only 692
practical if the target data-model is relatively simple. 693

In cases where the <Tar get > of a <Pol i cy> is declared by the policy writer, any component 694
<Rul e> elements in the <Pol i cy> that have the same <Tar get > element as the <Pol i cy> 695
element may omit the <Tar get > element. Such <Rul e> elements inherit the <Tar get > of the 696
<Pol i cy> in which they are contained. 697

cs-xacml-specification-1.0.doc 23

3.3.2.2. Rule-combining algorithm 698

The rule-combining algorithm specifies the procedure by which the results of evaluating the 699
component rules are combined when evaluating the policy, i.e. the Deci s i on value placed in the 700
response context by the PDP is the value of the policy, as defined by the rule-combining 701
algorithm. 702

See Appendix C for definitions of the normative rule-combining algorithms. 703

3.3.2.3. Obligations 704

The XACML <Rul e> syntax does not contain an element suitable for carrying obligations; 705
therefore, if required in a policy, obligations must be added by the writer of the policy. 706

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to 707
the PEP in the response context. Section 7.11 explains which obligations are to be returned. 708

3.3.3 Policy set 709

A policy set comprises four main components: 710

• a target; 711

• a policy-combining algorithm-identifier 712

• a set of policies; and 713

• obligations. 714

The target and policy components are described above. The other components are described in 715
the following sub-sections. 716

3.3.3.1. Policy-combining algorithm 717

The policy-combining algorithm specifies the procedure by which the results of evaluating the 718
component policies are combined when evaluating the policy set, i.e.the Deci s i on value placed 719
in the response context by the PDP is the result of evaluating the policy set, as defined by the 720
policy-combining algorithm. 721

See Appendix C for definitions of the normative policy-combining algorithms. 722

3.3.3.2. Obligations 723

The writer of a policy set may add obligations to the policy set, in addition to those contained in 724
the component policies and policy sets. 725

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations 726
to the PEP in its response context. Section 7.11 explains which obligations are to be returned. 727

4. Examples (non-normative) 728

This section contains two examples of the use of XACML for illustrative purposes. The first example 729
is a relatively simple one to illustrate the use of target, context, matching functions and subject 730

cs-xacml-specification-1.0.doc 24

attributes. The second example additionally illustrates the use of the rule-combining algorithm, 731
conditions and obligations. 732

4.1. Example one 733

4.1.1 Example policy 734

Assume that a corporation named Medi Corp (medico.com) has an access control policy that 735
states, in English: 736

Any user with an e-mail name in the "medico.com" namespace is allowed to perform any 737
action on any resource. 738

An XACML policy consists of header information, an optional text description of the policy, a 739
target, one or more rules and an optional set of obligations. 740

The header for this policy is 741

[p01] <?xml version=1.0" encoding="UTF-8"?>
[p02] <Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
[p03] xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
[p04] xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy
[p05] http://www.oasis-open.org/tc/xacml/1.0/cs-xacml-schema-policy-01.xsd"
[p06] PolicyId="identifier:example:SimplePolicy1"
[p07] RuleCombiningAlgId="identifier:rule-combining-algorithm:deny-overrides">

Line [p01] is a standard XML document tag indicating which version of XML is being used and what 742
the character encoding is. 743

Line [p02] introduces the XACML Policy itself. 744

Lines [p03-p05] are XML namespace declarations. 745

Line [p05] gives a URL to the schema for XACML policies. 746

Line [p06] assigns a name to this policy instance. The name of a policy should be unique for a 747
given PDP so that there is no ambiguity if one policy is referenced from another policy. 748

Line [p07] specifies the algorithm that will be used to resolve the results of the various rules that 749
may be in the policy. The deny-overrides rule-combining algorithm specified here says that, if 750
any rule evaluates to “Deny”, then that policy must return “Deny”. If all rules evaluate to “Permit”, 751
then the policy must return “Permit”. The rule-combining algorithm, which is fully described in 752
Appendix C, also says what to do if an error were to occur when evaluating any rule, and what to 753
do with rules that do not apply to a particular decision request. 754

[p08] <Description>
[p09] Medi Corp access control policy
[p10] </Description>

Lines [p08-p10] provide a text description of the policy. This description is optional. 755

[p11] <Target>
[p12] <Subjects>
[p13] <AnySubject/>
[p14] </Subjects>
[p15] <Resources>
[p16] <AnyResource/>
[p17] </Resources>
[p18] <Actions>
[p19] <AnyAction/>

cs-xacml-specification-1.0.doc 25

[p20] </Actions>
[p21] </Target>

Lines [p11-p21] describe the decision requests to which this policy applies. If the subject, 756
resource and action in a decision request do not match the values specified in the target, then 757
the remainder of the policy does not need to be evaluated. This target section is very useful for 758
creating an index to a set of policies. In this simple example, the target section says the policy is 759
applicable to any decision request. 760

[p22] <Rule
[p23] RuleId= "urn:oasis:names:tc:xacml:1.0:example:SimpleRule1"
[p24] Effect="Permit">

Line [p22] introduces the one and only rule in this simple policy. Just as for a policy, each rule 761
must have a unique identifier (at least unique for any PDP that will be using the policy). 762

Line [p23] specifies the identifier for this rule. 763

Line [p24] says what effect this rule has if the rule evaluates to “True”. Rules can have an effect 764
of either “Permit” or “Deny”. In this case, the rule will evaluate to “Permit”, meaning that, as far as 765
this one rule is concerned, the requested access should be permitted. If a rule evaluates to 766
“False”, then it returns a result of “Not-applicable”. If an error occurs when evaluating the rule, the 767
rule returns a result of “Indeterminate”. As mentioned above, the rule-combining algorithm for 768
the policy tells how various rule values are combined into a single policy value. 769

[p25] <Description>
[p26] Any subject with an e-mail name in the medico.com domain
[p27] can perform any action on any resource.
[p28] </Description>

Lines [p25-p28] provide a text description of this rule. This description is optional. 770

[p29] <Target>

Line [p29] introduces the target of the rule. As described above for the target of a policy, the 771
target of a rule describes the decision requests to which this rule applies. If the subject, 772
resource and action in a decision request do not match the values specified in the rule target, 773
then the remainder of the rule does not need to be evaluated, and a value of “Not-applicable” is 774
returned to the policy evaluation. 775

[p30] <Subjects>
[p31] <Subject>
[p32] <SubjectMatch MatchId=" urn:oasis:names:tc:xacml:1.0:function:rfc822Name-

match">
[p33] <SubjectAttributeDesignator
[p34] AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
[p35] DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name"/>
[p36] <AttributeValue
[p37] DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">medico.com
[p38] </AttributeValue>
[p39] </SubjectMatch>
[p40] </Subject>
[p41] </Subjects>
[p42] <Resources>
[p43] <AnyResource/>
[p44] </Resources>
[p45] <Actions>
[p46] <AnyAction/>
[p47] </Actions>
[p48] </Target>

cs-xacml-specification-1.0.doc 26

The rule target is similar to the target of the policy itself, but with one important difference. Lines 776
[p32-p41] do not say <AnySubj ect / >, but instead spell out a specific value that the subject in the 777
decision request must match. The <Subj ect Mat ch> element specifies a matching function in 778
the Mat chI d attribute, a pointer to a specific subject attribute in the request context by means of 779
the <Subj ect At t r i but eDesi gnat or > element, and a literal value of “medico.com”. The 780
matching function will be used to compare the value of the subject attribute with the literal value. 781
Only if the match returns “True” will this rule apply to a particular decision request. If the match 782
returns “False”, then this rule will return a value of “Not-applicable”. 783

[p49] </Rule>
[p50] </xacml:Policy>

Line [p49] closes the rule we have been examining. In this rule, all the work is done in the 784
<Tar get > element. In more complex rules, the <Tar get > may have been followed by a 785
<Condi t i on> (which could also be a set of conditions to be ANDed or ORed together). 786

Line [p50] closes the policy we have been examining. As mentioned above, this policy has only 787
one rule, but more complex policies may have any number of rules. 788

4.1.2 Example request context 789

Let's examine a hypothetical decision request that might be submitted to a PDP using the policy 790
above. In English, the access request that generates the decision request may be stated as 791
follows: 792

Bart Simpson, with e-mail name "bs@simpsons.com", wants to read his medical record at 793
Medi Corp. 794

In XACML, the information in the decision request is formatted into a request context statement 795
that looks as follows.: 796

[c01] <?xml version="1.0" encoding="UTF-8"?>
[c02] <Request xmlns="urn:oasis:names:tc:xacml:1.0:context"
[c03] xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
[c04] xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context
[c05] http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd">

Lines [c01-c05] are the header for the request context, and are used the same way as the header 797
for the policy explained above. 798

[c06] <Subject>
[c07] <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
[c08] DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
[c09] <AttributeValue>bs@simpsons.com</AttributeValue>
[c10] </Attribute>
[c11] </Subject>

The <Subj ect > element contains one or more attributes of the entity making the access request. 799
There can be multiple subjects, and each subject can have multiple attributes. In this case, in 800
lines [c06-c11], there is only one subject, and the subject has only one attribute: the subject's 801
identity, expressed as an e-mail name, is “bs@simpsons.com”. 802

[c12] <Resource>
[c13] <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ufs-path"
[c14] DataType="http://www.w3.org/2001/XMLSchema#anyURI">
[c15] <AttributeValue>/medico/record/patient/BartSimpson</AttributeValue>
[c16] </Attribute>
[c17] </Resource>

cs-xacml-specification-1.0.doc 27

The <Resour ce> element contains one or more attributes of the resource to which the subject 803
(or subjects) has requested access. There can be only one <Resour ce> per decision request. 804
Lines [c13-c16] contain the one attribute of the resource to which Bart Simpson has requested 805
access: the resource unix file-system path-name, which is “/medico/record/patient/BartSimpson”. 806

[c18] <Action>
[c19] <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
[c20] DataType="http://www.w3.org/2001/XMLSchema#string">
[c21] <AttributeValue>read</AttributeValue>
[c22] </Attribute>
[c23] </Action>

The <Act i on> element contains one or more attributes of the action that the subject (or 807
subjects) wishes to take on the resource. There can be only one action per decision request. 808
Lines [c18-c23] describe the identity of the action Bart Simpson wishes to take, which is “read”. 809

[c24] </Request>

Line [c24] closes the request context. A more complex request context may have contained 810
some attributes not associated with either the subject, the resource or the action. These would 811
have been placed in an optional <Envi r onment > element following the <Act i on> element. 812

The PDP processing this request context locates the policy in its policy repository. It compares 813
the subject, resource and action in the request context with the subjects, resources and 814
actions in the policy target. Since the policy target matches the <AnySubj ect / >, 815
<AnyResour ce/ > and <AnyAct i on/ > el ement s , the policy matches this context. 816

The PDP now compares the subject, resource and action in the request context with the target 817
of the one rule in this policy. The requested resource matches the <AnyResour ce/ > element 818
and the requested action matches the <AnyAct i on/ > element, but the requesting subject-id 819
attribute does not match "*@medico.com". 820

4.1.3 Example response context 821

As a result, there is no rule in this policy that returns a "Permit" result for this request. The rule-822
combining algorithm for the policy specifies that, in this case, a result of "Not-applicable" should 823
be returned. The response context looks as follows: 824

[r01] <?xml version="1.0" encoding="UTF-8"?>
[r02] <Response xmlns="urn:oasis:names:tc:xacml:1.0:context"
[r03] xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context
[r04] http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd">

Lines [r01-r04] contain the same sort of header information for the response as was described 825
above for a policy. 826

[r05] <Result>
[r06] <Decision>Not-applicable</Decision>
[r07] </Result>

The <Resul t > element in lines [r05-r07] contains the result of evaluating the decision request 827
against the policy. In this case, the result is “Not-applicable”. A policy can return “Permit”, “Deny”, 828
“Not-applicable” or “Indeterminate”. 829

[r08] </Response>

Line [r08] closes the response context. 830

cs-xacml-specification-1.0.doc 28

4.2. Example two 831

This section contains an example XML document, an example request context and example 832
XACML rules. The XML document is a medical record. Four separate rules are defined. These 833
illustrate a rule-combining algorithm, conditions and obligations. 834

4.2.1 Example medical record instance 835

The following is an instance of a medical record to which the example XACML rules can be 836
applied. The <r ecor d> schema is defined in the registered namespace administered by 837
"//medico.com". 838

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 839
<r ecor d xml ns=" ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd " 840
xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance> 841
 <pat i ent > 842
 <pat i ent Name> 843
 <f i r st >Bar t hol omew</ f i r st > 844
 <l ast >Si mpson</ l ast > 845
 </ pat i ent Name> 846
 <pat i ent Cont act > 847
 <st r eet >27 Shel byvi l l e Road</ st r eet > 848
 <ci t y>Spr i ngf i el d</ ci t y> 849
 <st at e>MA</ st at e> 850
 <zi p>12345</ zi p> 851
 <phone>555. 123. 4567</ phone> 852
 <f ax/ > 853
 <emai l / > 854
 </ pat i ent Cont act > 855
 <pat i ent DoB ht t p: / / www. w3. or g/ 2001/ XMLSchema#t ype=" dat e" >1992- 03-856
21</ pat i ent DoB> 857
 <pat i ent Gender 858
ht t p: / / www. w3. or g/ 2001/ XMLSchema#t ype=" st r i ng" >mal e</ pat i ent Gender > 859
 <pol i cyNumber 860
ht t p: / / www. w3. or g/ 2001/ XMLSchema#t ype=" st r i ng" >555555</ pol i cyNumber > 861
 </ pat i ent > 862
 <par ent Guar di an> 863
 <par ent Guar di anI d>HS001</ par ent Guar di anI d> 864
 <par ent Guar di anName> 865
 <f i r st >Homer </ f i r st > 866
 <l ast >Si mpson</ l ast > 867
 </ par ent Guar di anName> 868
 <par ent Guar di anCont act > 869
 <st r eet >27 Shel byvi l l e Road</ st r eet > 870
 <ci t y>Spr i ngf i el d</ ci t y> 871
 <st at e>MA</ st at e> 872
 <zi p>12345</ zi p> 873
 <phone>555. 123. 4567</ phone> 874
 <f ax/ > 875
 <emai l >homer s@aol . com</ emai l > 876
 </ par ent Guar di anCont act > 877
 </ par ent Guar di an> 878
 <pr i mar yCar ePhysi c i an> 879
 <physi c i anName> 880
 <f i r st >Jul i us</ f i r st > 881
 <l ast >Hi bber t </ l ast > 882
 </ physi c i anName> 883
 <physi c i anCont act > 884
 <st r eet >1 Fi r st St </ st r eet > 885
 <ci t y>Spr i ngf i el d</ ci t y> 886
 <st at e>MA</ st at e> 887

cs-xacml-specification-1.0.doc 29

 <zi p>12345</ zi p> 888
 <phone>555. 123. 9012</ phone> 889
 <f ax>555. 123. 9013</ f ax> 890
 <emai l / > 891
 </ physi c i anCont act > 892
 <r egi st r at i onI D>ABC123</ r egi st r at i onI D> 893
 </ pr i mar yCar ePhysi c i an> 894
 <i nsur er > 895
 <name>Bl ue Cr oss</ name> 896
 <st r eet >1234 Mai n St </ st r eet > 897
 <ci t y>Spr i ngf i el d</ ci t y> 898
 <st at e>MA</ st at e> 899
 <zi p>12345</ zi p> 900
 <phone>555. 123. 5678</ phone> 901
 <f ax>555. 123. 5679</ f ax> 902
 <emai l / > 903
 </ i nsur er > 904
 <medi cal > 905
 <t r eat ment > 906
 <dr ug> 907
 <name>met hyl pheni dat e hydr ochl or i de</ name> 908
 <dai l yDosage>30mgs</ dai l yDosage> 909
 <st ar t Dat e>1999- 01- 12</ st ar t Dat e> 910
 </ dr ug> 911
 <comment >pat i ent exhi bi t s s i de- ef f ect s of ski n col or at i on and car pal 912
degener at i on</ comment > 913
 </ t r eat ment > 914
 <r esul t > 915
 <t est >bl ood pr essur e</ t est > 916
 <val ue>120/ 80</ val ue> 917
 <dat e>2001- 06- 09</ dat e> 918
 <per f or medBy>Nur se Bet t y</ per f or medBy> 919
 </ r esul t > 920
 </ medi cal > 921
</ r ecor d> 922

4.2.2 Example request context 923

The following example illustrates a request context to which the example rules may be applicable. 924
It represents a request by the physician Julius Hibbert to read the patient date of birth in the record 925
of Bartholomew Simpson. 926

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 927
[02] <Request xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: cont ext " 928
[03] xml ns: xacml =" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 929
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 930
[05] <Subj ect > 931
[06] <At t r i but e At t r i but eI d= 932
[07] " ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y" 933
[08] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” 934
[09] I ssuer =" www. medi co. com" 935
[10] I ssueI nst ant =" 2001- 12- 17T09: 30: 47- 05: 00" > 936
[11] <At t r i but eVal ue> 937
[12] ur n: oasi s: names: t c: xacml : 1. 0: subj ect : cat egor y: access- subj ect 938
[13] </ At t r i but eVal ue> 939
[14] </ At t r i but e> 940
[15] <At t r i but e At t r i but eI d= 941
[16] " ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d" 942
[17] Dat aType= 943
[18] ” ur n: oasi s: names: t c: xacml : 1. 0. dat a- t ype: x500name” 944
[19] I ssuer =" www. medi co. com" 945
[20] I ssueI nst ant =" 2001- 12- 17T09: 30: 47- 05: 00" > 946

cs-xacml-specification-1.0.doc 30

[21] <At t r i but eVal ue>CN=Jul i us Hi bber t </ At t r i but eVal ue> 947
[22] </ At t r i but e> 948
[23] <At t r i but e At t r i but eI d= 949
[24] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: r ol e" 950
[25] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” 951
[26] I ssuer =" www. medi co. com" 952
[27] I ssueI nst ant =" 2001- 12- 17T09: 30: 47- 05: 00" > 953
[28] <At t r i but eVal ue>physi c i an</ At t r i but eVal ue> 954
[29] </ At t r i but e> 955
[30] <At t r i but e At t r i but eI d= 956
[31] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: physi c i an- i d" 957
[32] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” 958
[33] I ssuer =" www. medi co. com" 959
[34] I ssueI nst ant =" 2001- 12- 17T09: 30: 47- 05: 00" > 960
[35] <At t r i but eVal ue>j h1234</ At t r i but eVal ue> 961
[36] </ At t r i but e> 962
[37] </ Subj ect > 963
[38] <Resour ce> 964
[39] <Resour ceCont ent > 965
[40] <md: r ecor d 966
[41] xml ns: md=" / / ht t p: www. medi co. com/ schemas/ r ecor d. xsd" > 967
[42] <md: pat i ent > 968
[43] <md: pat i ent DoB>1992- 03- 21</ md: pat i ent DoB> 969
[44] </ md: pat i ent > 970
[45] <! - - ot her f i el ds - - > 971
[46] </ md: r ecor d> 972
[47] </ Resour ceCont ent > 973
[48] <At t r i but e At t r i but eI d= 974
[49] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- i d" 975
[50] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 976
[55] <At t r i but eVal ue> 977
[56] / / medi co. com/ r ecor ds/ bar t - s i mpson. xml # 978
[57] xml ns(md=/ / ht t p: www. medi co. com/ schemas/ r ecor d. xsd) 979
[58] xpoi nt er (/ md: r ecor d/ md: pat i ent / md: pat i ent DoB) 980
[59] </ At t r i but eVal ue> 981
[60] </ At t r i but e> 982
[61] <At t r i but e At t r i but eI d= 983
[62] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h" 984
[63] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 985
[64] <At t r i but eVal ue> 986
[65] xml ns(md=ht t p: www. medi co. com/ schemas/ r ecor d. xsd) 987
[66] xpoi nt er (/ md: r ecor d/ md: pat i ent / md: pat i ent DoB) 988
[67] </ At t r i but eVal ue> 989
[68] </ At t r i but e> 990
[69] <At t r i but e At t r i but eI d= 991
[70] ” ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace” 992
[71] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 993
[72] <At t r i but eVal ue> 994
[73] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd 995
[74] </ At t r i but eVal ue> 996
[75] </ At t r i but e> 997
[76] </ Resour ce> 998
[77] <Act i on> 999
[78] <At t r i but e At t r i but eI d= 1000
[79] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1001
[80] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1002
[81] <At t r i but eVal ue>r ead</ At t r i but eVal ue> 1003
[82] </ At t r i but e> 1004
[83] </ Act i on> 1005
[84] </ Request > 1006

 [02]-[04] Standard namespace declarations. 1007

cs-xacml-specification-1.0.doc 31

[05]-[37] Subject attributes are placed in the Subj ect section of the Request . Each attribute 1008
consists of the attribute meta-data and the attribute value. 1009

[06]-[14] Each Subj ect section must have one and only one subject-category attribute. The 1010
value of this attribute describes the role that the subject plays in making the decision request. 1011
The value of “access- subj ect ” denotes the identity for which the request was issued. 1012

[15]-[22] Subject subj ect - i d attribute. 1013

[23]-[29] Subject r ol e attribute. 1014

[30]-[36] Subject physi c i an- i d attribute. 1015

[38]-[69] Resource attributes are placed in the Resour ce section of the Request . Each attribute 1016
consists of attribute meta-data and an attribute value. 1017

[39]-[47] Resource content. The XML document that is being requested is placed here. 1018

[48]-[60] Resource identifier. 1019

[56]-[58] The Resource is identified with an Xpointer expression that names the URI of the file that 1020
is accessed, the target namespace of the document, and the XPath location path to the specific 1021
element. 1022

[61]-[68] The XPath location path in the “r esour ce- i d” attribute is extracted and placed in the 1023
xpat h attribute. 1024

[69]-[75] Resource t ar get - namespace attribute. 1025

[77]-[84] Action attributes are placed in the Act i on section of the Request . 1026

[78]-[82] Action identifier. 1027

4.2.3 Example plain-language rules 1028

The following plain-language rules are to be enforced: 1029

Rule 1: A person may read any record for which he or she is the designated patient. 1030

Rule 2: A person may read any record for which he or she is the designated parent or 1031
guardian, and for which the patient is under 16 years of age. 1032

Rule 3: A physician may write to any medical element for which he or she is the designated 1033
primary care physician, provided an email is sent to the patient. 1034

Rule 4: An administrator shall not be permitted to read or write to medical elements of a 1035
patient record. 1036

These rules may be written by different PAPs operating independently, or by a single PAP. 1037

4.2.4 Example XACML rule instances 1038

4.2.4.1. Rule 1 1039

Rule 1 illustrates a simple rule with a single <Condi t i on> element. The following XACML 1040
<Rul e> instance expresses Rule 1: 1041

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 1042
[02] <Rul e 1043

cs-xacml-specification-1.0.doc 32

[03] xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 1044
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 1045
[05] xml ns: ct x=" ur n: oasi s: names: t c: xacml : 1. 0: cont ext " 1046
[06] xml ns: md=" ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd" 1047
[07] Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 1" 1048
[08] Ef f ect =" Per mi t " > 1049
[09] <Descr i pt i on> 1050
[10] A per son may r ead any medi cal r ecor d i n t he 1051
[11] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd namespace 1052
[12] f or whi ch he or she i s a desi gnat ed pat i ent 1053
[13] </ Descr i pt i on> 1054
[14] <Tar get > 1055
[15] <Subj ect s> 1056
[16] <AnySubj ect / > 1057
[17] </ Subj ect s> 1058
[18] <Resour ces> 1059
[20] <Resour ce> 1060
[21] <! - - mat ch document t ar get namespace - - > 1061
[22] <Resour ceMat ch 1062
Mat chI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1063
[23] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1064
[24] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace" 1065
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1066
[25] <At t r i but eVal ue 1067
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1068
[26] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd 1069
[27] </ At t r i but eVal ue> 1070
[28] </ Resour ceMat ch> 1071
[29] <! - - mat ch r equest ed xml el ement - - > 1072
[30] <Resour ceMat ch Mat chI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: xpat h-1073
node- mat ch" > 1074
[31] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1075
[32] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h" 1076
 Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1077
[33] <At t r i but eVal ue 1078
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >/ md: r ecor d</ At t r i but eVal ue> 1079
[34] </ Resour ceMat ch> 1080
[35] </ Resour ce> 1081
[36] </ Resour ces> 1082
[37] <Act i ons> 1083
[38] <Act i on> 1084
[39] <Act i onMat ch Mat chI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1085
equal " > 1086
[40] <Act i onAt t r i but eDesi gnat or At t r i but eI d= 1087
[41] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1088
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1089
[42] <At t r i but eVal ue 1090
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >r ead</ At t r i but eVal ue> 1091
[43] </ Act i onMat ch> 1092
[44] </ Act i on> 1093
[45] </ Act i ons> 1094
[46] </ Tar get > 1095
[47] <! - - compar e pol i cy number i n t he document wi t h 1096
[48] pol i cy- number at t r i but e - - > 1097
[49] <Condi t i on Funct i onI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1098
[50] <Appl y Funct i onI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one- and-1099
onl y" > 1100
[51] <! - - pol i cy- number at t r i but e - - > 1101
[52] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1102
[53] " ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: pol i cy- number " 1103
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1104
[54] </ Appl y> 1105

cs-xacml-specification-1.0.doc 33

[55] <Appl y Funct i onI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one- and-1106
onl y" > 1107
[56] <! - - pol i cy number i n t he document - - > 1108
[57] <At t r i but eSel ect or Request Cont ext Pat h= 1109
[58] " / / md: r ecor d/ md: pat i ent / md: pol i cyNumber " 1110
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1111
[59] </ At t r i but eSel ect or > 1112
[60] </ Appl y> 1113
[61] </ Condi t i on> 1114
[62] </ Rul e> 1115

 [02]-[06]. XML namespace declarations. 1116

[07] Rule identifier. 1117

[08]. When a rule evaluates to ‘True’ it emits the value of the Ef f ect attribute. This value is 1118
combined with the Ef f ect values of other rules according to the rule-combining algorithm. 1119

[09]-[13] Free form description of the rule. 1120

[14]-[46]. A rule target defines a set of decision requests that are applicable to the rule. A 1121
decision request, such that the value of the 1122
“ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace” resource attribute is 1123
equal to “http://www.medico.com/schema/records.xsd” and the value of the 1124
“ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h” resource attribute matches the XPath 1125
expression / md: r ecor d and the value of the 1126
“ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d” action attribute is equal to “r ead”, 1127
matches the target of this rule. 1128

 [15]-[17]. The Subj ect s element may contain either a disjunctive sequence of Subj ect 1129
elements or AnySubj ect element. 1130

[16] The AnySubj ect element is a special element that matches any subject in the request 1131
context. 1132

[18]-[36]. The Resour ces element may contain either a disjunctive sequence of Resour ce 1133
elements or AnyResour ce element. 1134

[20]-[35] The Resour ce element encloses the conjunctive sequence of Resour ceMat ch 1135
elements. 1136

[22]-[28] The Resour ceMat ch element compares its first and second child elements according to 1137
the matching function. A match is positive if any of the values selected by the first argument match 1138
the explicit value of the second argument. This match compares the target namespace of the 1139
requested document with the value of “http://www.medico.com/schema.records.xsd”. 1140

[22] The Mat chI d attribute names the matching function. 1141

[23]-[24] The Resour ceAt t r i but eDesi gnat or element selects the resource attribute values 1142
from the request context. The attribute name is specified by the At t r i but eI d. The selection 1143
result is a bag of values. 1144

[25]-[27] Literal attribute value to match. 1145

[30]-[34] The Resour ceMat ch. This match compares the results of two XPath expressions. The 1146
first XPath expression is the location path to the requested xml element and the second XPath 1147
expression is / md: r ecor d. The “xpath-node-match” function evaluates to “True” if the requested 1148
XML element is below the / md: r ecor d element. 1149

[30] Mat chI d attribute names the matching function. 1150

cs-xacml-specification-1.0.doc 34

[31]-[32] The Resour ceAt t r i but eDesi gnat or selects the bag of values for the 1151
“ur n: oasi s: names: t c: xacml : 1. 0: xpat h” resource attribute. Here, there is just one 1152
element in the bag, which is the location path for the requested XML element. 1153

[33] The literal XPath expression to match. The md prefix is resolved using a standard namespace 1154
declaration. 1155

[37]-[45] The Act i ons element may contain either a disjunctive sequence of Act i on elements 1156
or an AnyAct i on element. 1157

[38]-[44] The Act i on element contains a conjunctive sequence of Act i onMat ch elements. 1158

[39]-[43] The Act i onMat ch element compares its first and second child elements according to the 1159
matching function. Match is positive, if any of the values selected by the first argument match 1160
explicit value of the second argument. In this case, the value of the act i on- i d action attribute in 1161
the request context is compared with the value “r ead”. 1162

[39] The Mat chI d attribute names the matching function. 1163

[40]-[41] The Act i onAt t r i but eDesi gnat or selects action attribute values from the request 1164
context. The attribute name is specified by the At t r i but eI d. The selection result is a bag of 1165
values. “ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d” is the predefined name for 1166
the action identifier. 1167

[42] The Attribute value to match. This is an action name. 1168

[49]-[61] The Condi t i on element. A condition must evaluate to “True” for the rule to be 1169
applicable. This condition evaluates the truth of the statement: the pol i cy- number subject 1170
attribute is equal to the policy number in the XML document. 1171

[49] The Funct i onI d attribute of the Condi t i on element names the function to be used for 1172
comparison. In this case, comparison is done with f unct i on: st r i ng- equal ; this function takes 1173
two arguments of the “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” type. 1174

[50] The first argument to the f unct i on: st r i ng- equal in the Condi t i on. Functions can take 1175
other functions as arguments. The Appl y element encodes the function call with the Funct i onI d 1176
attribute naming the function. Since f unct i on: st r i ng- equal takes arguments of the 1177
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” type and 1178
Subj ect At t r i but eDesi gnat or selects a bag of 1179
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” values, “f unct i on: st r i ng- one- and-1180
onl y” is used. This function guarantees that its argument evaluates to a bag containing one and 1181
only one “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” element. 1182

[52]-[53] The Subj ect At t r i but eDesi gnat or selects a bag of values for the pol i cy- number 1183
subject attribute in the request context. 1184

[55] The second argument to the “f unct i on: st r i ng- equal ” in the Condi t i on. Functions can 1185
take other functions as arguments. The Appl y element encodes function call with the 1186
Funct i onI d attribute naming the function. Since “f unct i on: st r i ng- equal ” takes arguments 1187
of the “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” type and the At t r i but eSel ect or 1188
selects a bag of “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” values, 1189
“f unct i on: st r i ng- one- and- onl y” is used. This function guarantees that its argument 1190
evaluates to a bag containing one and only one 1191
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” element. 1192

[57] The AttributeSelector element selects a bag of values from the request context. The 1193
At t r i but eSel ect or is a free-form XPath pointing device into the request context. The 1194

cs-xacml-specification-1.0.doc 35

Request Cont ext Pat h attribute specifies an XPath expression over the content of the requested 1195
XML document, selecting the policy number. Note that the namespace prefixes in the XPath 1196
expression are resolved with the standard XML namespace declarations. 1197

4.2.4.2. Rule 2 1198

Rule 2 illustrates the use of a mathematical function, i.e. the <Appl y> element with f unct i onI d 1199
"urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration" to calculate date. It also 1200
illustrates the use of predicate expressions, with the f unct i onI d 1201
"urn:oasis:names:tc:xacml:1.0:function:and". 1202

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 1203
[02] <Rul e 1204
[03] xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 1205
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 1206
[05] xml ns: ct x=" ur n: oasi s: names: t c: xacml : 1. 0: cont ext " 1207
[06] xml ns: md=" ht t p: www. medi co. com/ schemas/ r ecor d. xsd" 1208
[07] Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 2" 1209
[08] Ef f ect =" Per mi t " > 1210
[09] <Descr i pt i on> 1211
[10] A per son may r ead any medi cal r ecor d i n t he 1212
[11] ht t p: / / www. medi co. com/ r ecor ds. xsd namespace 1213
[12] f or whi ch he or she i s t he desi gnat ed par ent or guar di an, 1214
[13] and f or whi ch t he pat i ent i s under 16 year s of age 1215
[14] </ Descr i pt i on> 1216
[15] <Tar get > 1217
[16] <Subj ect s> 1218
[17] <AnySubj ect / > 1219
[18] </ Subj ect s> 1220
[19] <Resour ces> 1221
[20] <Resour ce> 1222
[21] <! - - mat ch document t ar get namespace - - > 1223
[22] <Resour ceMat ch 1224
Mat chI d=" ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1225
[23] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1226
[24] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace" 1227
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1228
[25] <At t r i but eVal ue 1229
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1230
[26] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd 1231
[27] </ At t r i but eVal ue> 1232
[28] </ Resour ceMat ch> 1233
[29] <! - - mat ch r equest ed xml el ement - - > 1234
[30] <Resour ceMat ch Mat chI d=” ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: xpat h-1235
node- mat ch" > 1236
[31] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1237
[32] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h" 1238
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1239
[33] <At t r i but eVal ue 1240
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >/ md: r ecor d</ At t r i but eVal ue> 1241
[34] </ Resour ceMat ch> 1242
[35] </ Resour ce> 1243
[36] </ Resour ces> 1244
[37] <Act i ons> 1245
[38] <Act i on> 1246
[39] <! - - mat ch ' r ead' act i on - - > 1247
[40] <Act i onMat ch Mat chI d=” ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1248
equal " > 1249
[41] <Act i onAt t r i but eDesi gnat or At t r i but eI d= 1250
[42] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1251
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1252

cs-xacml-specification-1.0.doc 36

[43] <At t r i but eVal ue 1253
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >r ead</ At t r i but eVal ue> 1254
[44] </ Act i onMat ch> 1255
[45] </ Act i on> 1256
[46] </ Act i ons> 1257
[47] </ Tar get > 1258
[48] <Condi t i on Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: and" > 1259
[49] <! - - compar e par ent - guar di an- i d subj ect at t r i but e wi t h 1260
[50] t he val ue i n t he document - - > 1261
[51] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1262
[52] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one-1263
and- onl y" > 1264
[53] <! - - par ent - guar di an- i d subj ect at t r i but e - - > 1265
[54] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1266
[55] " ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: 1267
[56] par ent - guar di an- i d" 1268
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1269
[57] </ Appl y> 1270
[58] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one-1271
and- onl y" > 1272
[59] <! - - par ent - guar di an- i d el ement i n t he document - - > 1273
[60] <At t r i but eSel ect or Request Cont ext Pat h= 1274
[61] " / / md: r ecor d/ md: par ent Guar di an/ md: par ent Guar di anI d" 1275
[62] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1276
[63] </ At t r i but eSel ect or > 1277
[64] </ Appl y> 1278
[65] </ Appl y> 1279
[66] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: dat e- l ess- or -1280
equal ” > 1281
[67] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: dat e- one- and-1282
onl y” > 1283
[68] <Envi r onment At t r i but eDesi gnat or At t r i but eI d= 1284
[69] ” ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat e” 1285
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e” / > 1286
[70] </ Appl y> 1287
[71] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: dat e- add-1288
year Mont hDur at i on” > 1289
[73] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: dat e- one-1290
and- onl y” > 1291
[74] <! - - pat i ent dob r ecor ded i n t he document - - > 1292
[75] <At t r i but eSel ect or Request Cont ext Pat h= 1293
[76] " / / md: r ecor d/ md: pat i ent / md: pat i ent DoB" 1294
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e” > 1295
[77] </ At t r i but eSel ect or > 1296
[78] </ Appl y> 1297
[79] <At t r i but eVal ue Dat aType=” xf : year Mont hDur at i on” > 1298
[80] P16Y 1299
[81] </ At t r i but eVal ue> 1300
[82] </ Appl y> 1301
[83] </ Appl y> 1302
[84] </ Condi t i on> 1303
[85] </ Rul e> 1304

[02]-[47] Rule declaration and rule target. See Rule 1 in section 4.2.4.1 for the detailed 1305
explanation of these elements. 1306

[48]-[82] The Condi t i on element. Condition must evaluate to “True” for the rule to be applicable. 1307
This condition evaluates the truth of the statement: the requestor is the designated parent or 1308
guardian and the patient is under 16 years of age. 1309

cs-xacml-specification-1.0.doc 37

[48] The Condi t i on is using the “f unct i on: and” function. This is a boolean function that takes 1310
one or more boolean arguments (2 in this case) and performs the logical “AND” operation to 1311
compute the truth value of the expression. 1312

[51]-[65] The truth of the first part of the condition is evaluated: The requestor is the designated 1313
parent or guardian. The Appl y element contains a function invocation. The function name is 1314
contained in the Funct i onI d attribute. The comparison is done with “f unct i on: st r i ng-1315
equal ” that takes 2 arguments of “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” type. 1316

[52] Since “f unct i on: st r i ng- equal ” takes arguments of the 1317
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” type, “f unct i on: st r i ng- one- and-1318
onl y” is used to ensure that the subject attribute 1319
“urn:oasis:names:tc:xacml:1.0:examples:attribute:parent-guardian-id” in the request context 1320
contains one and only one value. “Funct i on: st r i ng- equal ” takes an argument expression 1321
that evaluates to a bag of “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” values. 1322

[54] Value of the subject attribute 1323
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: par ent - guar di an- i d” is 1324
selected from the request context with the Subj ect At t r i but eDesi gnat or element. This 1325
expression evaluates to a bag of “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” values. 1326

[58] “f unct i on: st r i ng- one- and- onl y” is used to ensure that the bag of values selected by 1327
it’s argument contains one and only one value of type 1328
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” . 1329

[60] The value of the md: par ent Guar di anI d element is selected from the resource content with 1330
the At t r i but eSel ect or element. At t r i but eSel ect or is a free-form XPath expression, 1331
pointing into the request context. The Request Cont ext Pat h XML attribute contains an XPath 1332
expression over the request context. Note that all namespace prefixes in the XPath expression 1333
are resolved with standard namespace declarations. The At t r i but eSel ect or evaluates to the 1334
bag of values of type “ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” . 1335

[66]-[83] The expression: “the patient is under 16 years of age” is evaluated. The patient is under 1336
16 years of age if the current date is less than the date computed by adding 16 to the patient’s date 1337
of birth. 1338

[66] “f unct i on: dat e- l ess- or - equal ” is used to compute the difference of two dates. 1339

[67] “f unct i on: dat e- one- and- onl y” is used to ensure that the bag of values selected by its 1340
argument contains one and only one value of type 1341
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e” . 1342

[68]-[69] Current date is evaluated by selecting the 1343
“ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat e” environment attribute. 1344

[71] “f unct i on: dat e- add- year Mont hDur at i on” is used to compute the date by adding 16 to 1345
the patient’s date of birth. The first argument is a 1346
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e” , and the second argument is an 1347
“xf : year Mont hDur at i on” . 1348

[73] “f unct i on: dat e- one- and- onl y” is used to ensure that the bag of values selected by it’s 1349
argument contains one and only one value of type 1350
”ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e” . 1351

[75]-[76] The <At t r i but eSel ect or > element selects the patient’s date of birth by taking the 1352
XPath expression over the document content. 1353

[79]-[81] Year Month Duration of 16 years. 1354

cs-xacml-specification-1.0.doc 38

4.2.4.3. Rule 3 1355

Rule 3 illustrates the use of an obligation. The XACML <Rul e> element syntax does not include 1356
an element suitable for carrying an obligation, therefore Rule 3 has to be formatted as a 1357
<Pol i cy> element. 1358

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 1359
[02] <Pol i cy 1360
[03] xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 1361
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 1362
[05] xml ns: ct x=" ur n: oasi s: names: t c: xacml : 1. 0: cont ext " 1363
[06] xml ns: md=" ht t p: www. medi co. com/ schemas/ r ecor d. xsd" 1364
[07] Pol i cyI d=" ur n: oasi s: names: t c: xacml : exampl es: pol i cyi d: 3" 1365
[08] Rul eCombi ni ngAl gI d=" ur n: oasi s: names: t c: xacml : 1. 0: 1366
[09] r ul e- combi ni ng- al gor i t hm: deny- over r i des" > 1367
[10] <Descr i pt i on> 1368
[11] Pol i cy f or any medi cal r ecor d i n t he 1369
[12] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd namespace 1370
[13] </ Descr i pt i on> 1371
[14] <Tar get > 1372
[15] <Subj ect s> 1373
[16] <AnySubj ect / > 1374
[17] </ Subj ect s> 1375
[18] <Resour ces> 1376
[19] <Resour ce> 1377
[20] <! - - mat ch document t ar get namespace - - > 1378
[21] <Resour ceMat ch 1379
Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1380
[22] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1381
[23] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace" 1382
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1383
[24] <At t r i but eVal ue 1384
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1385
[25] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd 1386
[26] </ At t r i but eVal ue> 1387
[27] </ Resour ceMat ch> 1388
[28] </ Resour ce> 1389
[29] </ Resour ces> 1390
[30] <Act i ons> 1391
[31] <AnyAct i on/ > 1392
[32] </ Act i ons> 1393
[33] </ Tar get > 1394
[34] <Rul e Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 3" 1395
[35] Ef f ect =" Per mi t " > 1396
[36] <Descr i pt i on> 1397
[37] A physi c i an may wr i t e any medi cal el ement i n a r ecor d 1398
[38] f or whi ch he or she i s t he desi gnat ed pr i mar y car e 1399
[39] physi c i an, pr ovi ded an emai l i s sent t o t he pat i ent 1400
[40] </ Descr i pt i on> 1401
[41] <Tar get > 1402
[42] <Subj ect s> 1403
[43] <Subj ect > 1404
[44] <! - - mat ch subj ect gr oup at t r i but e - - > 1405
[45] <Subj ect Mat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1406
equal " > 1407
[46] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1408
[47] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: r ol e" 1409
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1410
[48] <At t r i but eVal ue 1411
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >physi c i an</ At t r i but eVal ue> 1412
[49] </ Subj ect Mat ch> 1413
[50] </ Subj ect > 1414

cs-xacml-specification-1.0.doc 39

[51] </ Subj ect s> 1415
[52] <Resour ces> 1416
[53] <Resour ce> 1417
[54] <! - - mat ch r equest ed xml el ement - - > 1418
[55] <Resour ceMat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: xpat h-1419
node- mat ch" > 1420
[56] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1421
[57] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h" 1422
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1423
[58] <At t r i but eVal ue 1424
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1425
[59] / md: r ecor d/ md: medi cal 1426
[60] </ At t r i but eVal ue> 1427
[61] </ Resour ceMat ch> 1428
[62] </ Resour ce> 1429
[63] </ Resour ces> 1430
[64] <Act i ons> 1431
[65] <Act i on> 1432
[66] <! - - mat ch act i on - - > 1433
[67] <Act i onMat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1434
equal " > 1435
[68] <Act i onAt t r i but eDesi gnat or At t r i but eI d= 1436
[069] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1437
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1438
[070] <At t r i but eVal ue 1439
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >wr i t e</ At t r i but eVal ue> 1440
[071] </ Act i onMat ch> 1441
[072] </ Act i on> 1442
[073] </ Act i ons> 1443
[074] </ Tar get > 1444
[075] <Condi t i on Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1445
equal " > 1446
[076] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one-1447
and- onl y" > 1448
[077] <! - - physi c i an- i d subj ect at t r i but e - - > 1449
[078] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1450
[079] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: 1451
[080] at t r i but e: physi c i an- i d" 1452
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1453
[081] </ Appl y> 1454
[082] <Appl y Funct i onI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- one-1455
and- onl y" > 1456
[083] <At t r i but eSel ect or Request Cont ext Pat h= 1457
[084] " / / md: r ecor d/ md: pr i mar yCar ePhysi c i an/ md: r egi st r at i onI D" 1458
[085] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1459
[086] </ Appl y> 1460
[087] </ Condi t i on> 1461
[089] </ Rul e> 1462
[090] <Obl i gat i ons> 1463
[091] <! - - send e- mai l message t o t he document owner - - > 1464
[092] <Obl i gat i on Obl i gat i onI d= 1465
[093] " ur n: oasi s: names: t c: xacml : exampl e: obl i gat i on: emai l " 1466
[094] Ful f i l l On=" Per mi t " > 1467
[095] <At t r i but eAssi gnment At t r i but eI d= 1468
[096] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: mai l t o" 1469
[097] Dat aType=" ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng" > 1470
[098] <At t r i but eSel ect or Request Cont ext Pat h= 1471
[099] " / / md: / r ecor d/ md: pat i ent / md: pat i ent Cont act / md: emai l " 1472
[100] Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1473
[101] </ At t r i but eAssi gnment > 1474
[102] <At t r i but eAssi gnment At t r i but eI d= 1475
[103] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: t ext " 1476
[104] Dat aType=" ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng" > 1477

cs-xacml-specification-1.0.doc 40

[105] <At t r i but eVal ue> 1478
[106] Your medi cal r ecor d has been accessed by: 1479
[107] </ At t r i but eVal ue> 1480
[108] </ At t r i but eAssi gnment > 1481
[109] <At t r i but eAssi gnment At t r i but eI d= 1482
[110] " ur n: oasi s: names: t c: xacml : exampl e: at t r i but e: t ext " 1483
[111] Dat aType=" ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng" > 1484
[112] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1485
[113] " ur n: osasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d" 1486
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1487
[114] </ At t r i but eAssi gnment > 1488
[115] </ Obl i gat i on> 1489
[116] </ Obl i gat i ons> 1490
[117] </ Pol i cy> 1491

[01]-[09] The Pol i cy element includes standard namespace declarations as well as policy specific 1492
parameters, such as Pol i cyI d and Rul eCombi ni ngAl gI d. 1493

[07] Policy identifier. This parameter is used for the inclusion of the Pol i cy in the Pol i cySet 1494
element. 1495

[08]-[09] Rule combining algorithm identifier. This parameter is used to compute the combined 1496
outcome of rule effects for rules that are applicable to the decision request. 1497

[10-13] Free-form description of the policy. 1498

[14]-[33] Policy target. The policy target defines a set of applicable decision requests. The 1499
structure of the Tar get element in the Pol i cy is identical to the structure of the Tar get element 1500
in the Rul e. In this case, the policy target is a set of all XML documents conforming to the 1501
“http://www.medico.com/schemas/record.xsd” target namespace. For the detailed description of 1502
the Tar get element see Rule 1, section 4.2.4.1. 1503

[34]-[89] The only Rul e element included in this Pol i cy . Two parameters are specified in the rule 1504
header: Rul eI d and Ef f ect . For the detailed description of the Rul e structure see Rule 1, 1505
section 4.2.4.1. 1506

[41]-[74] A rule target narrows down a policy target. Decision requests with the value of 1507
“ur n: oasi s: names: t c: xacml : 1. 0: exampe: at t r i but e: r ol e” subject attribute equal to 1508
“physi c i an” [42]-[51], and that access elements of the medical record that “xpath-node-match” 1509
the “/ md: r ecor d/ md: medi cal ” XPath expression [52]-[63], and that have the value of the 1510
“ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d” action attribute equal to “r ead”. 1511

[65]-[73] match the target of this rule. For a detailed description of the rule target see example 1, 1512
section 4.2.4.1. 1513

[75]-[87] The Condi t i on element. For the rule to be applicable to the authorization request, 1514
condition must evaluate to True. This rule condition compares the value of the 1515
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: physi c i an- i d” subject 1516
attribute with the value of the physi c i an i d element in the medical record that is being 1517
accessed. For a detailed explanation of rule condition see Rule 1, section 4.2.4.1. 1518

[90]-[116] The Obl i gat i ons element. Obligations are a set of operations that must be 1519
performed by the PEP in conjunction with an authorization decision. An obligation may be 1520
associated with a positive or negative authorization decision. 1521

[92]-[115] The Obl i gat i on element consists of the Obl i gat i onI d, the authorization decision 1522
value for which it must fulfill, and a set of attribute assignments. 1523

cs-xacml-specification-1.0.doc 41

[92]-[93] Obl i gat i onI d identifies an obligation. Obligation names are not interpreted by the 1524
PDP. 1525

[94] Ful f i l l On attribute defines an authorization decision value for which this obligation must 1526
be fulfilled. 1527

[95]-[101] Obligation may have one or more parameters. The obligation parameter 1528
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: mai l t o” is assigned the value 1529
from the content of the xml document. 1530

[95-96] At t r i but eI d declares 1531
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: mai l t o” obligation parameter. 1532

[97] The obligation parameter data type is defined. 1533

[98]-[100] The obligation parameter value is selected from the content of the XML document that is 1534
being accessed with the XPath expression over request context. 1535

[102]-[108] The obligation parameter 1536
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: t ext ” of type 1537
“ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” is assigned the literal value “Your 1538
medi cal r ecor d has been accessed by: ” 1539

[109]-[114] The obligation parameter 1540
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: t ext ” of the 1541
“http://www.w3.org/2001/XMLSchema#strng” data type is assigned the value of the 1542
“ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d” subject attribute. 1543

4.2.4.4. Rule 4 1544

Rule 4 illustrates the use of the "Deny" Ef f ect value, and a Rul e with no Condi t i on element. 1545

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 1546
[02] <Rul e 1547
[03] xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 1548
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 1549
[05] xml ns: ct x=" ur n: oasi s: names: t c: xacml : 1. 0: cont ext " 1550
[06] xml ns: md=" ht t p: www. medi co. com/ schemas/ r ecor d. xsd" 1551
[07] Rul eI d=" ur n: oasi s: names: t c: xacml : exampl e: r ul ei d: 4" 1552
[08] Ef f ect =" Deny" > 1553
[09] <Descr i pt i on> 1554
[10] An Admi ni st r at or shal l not be per mi t t ed t o r ead or wr i t e 1555
[11] medi cal el ement s of a pat i ent r ecor d i n t he 1556
[12] ht t p: / / www. medi co. com/ r ecor ds. xsd namespace. 1557
[13] </ Descr i pt i on> 1558
[14] <Tar get > 1559
[15] <Subj ect s> 1560
[16] <Subj ect > 1561
[17] <! - - mat ch r ol e subj ect at t r i but e - - > 1562
[18] <Subj ect Mat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1563
equal " > 1564
[19] <Subj ect At t r i but eDesi gnat or At t r i but eI d= 1565
[20] " ur n: oasi s: names: t c: xacml : 1. 0: exampl e: at t r i but e: r ol e" 1566
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1567
[21] <At t r i but eVal ue 1568
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >admi ni st r at or </ At t r i but eVal ue> 1569
[22] </ Subj ect Mat ch> 1570
[23] </ Subj ect > 1571
[24] </ Subj ect s> 1572
[25] <Resour ces> 1573

cs-xacml-specification-1.0.doc 42

[26] <Resour ce> 1574
[27] <! - - mat ch document t ar get namespace - - > 1575
[28] <Resour ceMat ch 1576
Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1577
[29] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1578
[30] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace" 1579
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1580
[31] <At t r i but eVal ue 1581
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1582
[32] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd 1583
[33] </ At t r i but eVal ue> 1584
[34] </ Resour ceMat ch> 1585
[35] <! - - mat ch r equest ed xml el ement - - > 1586
[36] <Resour ceMat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: xpat h-1587
node- mat ch" > 1588
[37] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1589
[38] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h" 1590
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1591
[39] <At t r i but eVal ue 1592
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1593
[40] / md: r ecor d/ md: medi cal 1594
[41] </ At t r i but eVal ue> 1595
[42] </ Resour ceMat ch> 1596
[43] </ Resour ce> 1597
[44] </ Resour ces> 1598
[45] <Act i ons> 1599
[46] <Act i on> 1600
[47] <! - - mat ch ' r ead' act i on - - > 1601
[48] <Act i onMat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1602
equal " > 1603
[49] <Act i onAt t r i but eDesi gnat or At t r i but eI d= 1604
[50] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1605
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1606
[51] <At t r i but eVal ue 1607
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >r ead</ At t r i but eVal ue> 1608
[52] </ Act i onMat ch> 1609
[53] </ Act i on> 1610
[54] <Act i on> 1611
[55] <! - - mat ch ' wr i t e' act i on - - > 1612
[56] <Act i onMat ch Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng-1613
equal " > 1614
[57] <Act i onAt t r i but eDesi gnat or At t r i but eI d= 1615
[58] " ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d" 1616
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1617
[59] <At t r i but eVal ue 1618
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >wr i t e</ At t r i but eVal ue> 1619
[60] </ Act i onMat ch> 1620
[61] </ Act i on> 1621
[62] </ Act i ons> 1622
[63] </ Tar get > 1623
[64] </ Rul e> 1624

[01]-[08] The Rul e element declaration. The most important parameter here is Ef f ect . See Rule 1625
1, section 4.2.4.1 for a detailed explanation of the Rul e structure. 1626

[08] Rule Ef f ect . Every rule that evaluates to “True” emits rule effect as its value that will be 1627
combined later on with other rule effects according to the rule combining algorithm. This rule 1628
Ef f ect is “Deny” meaning that according to this rule, access must be denied. 1629

[09]-[13] Free form description of the rule. 1630

cs-xacml-specification-1.0.doc 43

[14]-[63] Rule target. The Rule target defines a set of decision requests that are applicable to 1631
the rule. This rule is matched by: 1632

• a decision request with subject attribute 1633
“ur n: oasi s: names: t c: xacml : 1. 0: exampl es: at t r i but e: r ol e” equal to 1634
“admi ni st r at or ”; 1635

• the value of resource attribute 1636
“ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace” is equal to 1637
“ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd” 1638

• the value of the requested XML element matches the XPath expression 1639
“/ md: r ecor d/ md: medi cal ” ; 1640

• the value of action attribute “urn:oasis:names:tc:xacml:1.0:action:action-id” is equal to 1641
“read” 1642

See Rule 1, section 4.2.4.1 for the detailed explanation of the Tar get element. 1643

This rule does not have a Condi t i on element. 1644

4.2.4.5. Example PolicySet 1645

This section uses the examples of the previous sections to illustrate the process of combining 1646
policies. The policy governing read access to medical elements of a record is formed from each of 1647
the four rules described in Section 4.2.3. In plain language, the combined rule is: 1648

• Either the requestor is the patient; or 1649

• the requestor is the parent or guardian and the patient is under 16; or 1650

• the requestor is the primary care physician and a notification is sent to the patient; and 1651

• the requestor is not an administrator. 1652

The following XACML <Pol i cySet > illustrates the combined policies. Policy 3 is included by 1653
reference and policy 2 is explicitly included. 1654

[01] <?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?> 1655
[02] <Pol i cySet 1656
[03] xml ns=" ur n: oasi s: names: t c: xacml : 1. 0: pol i cy" 1657
[04] xml ns: xsi =” ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance” 1658
[05] Pol i cySet I d= 1659
[06] " ur n: oasi s: names: t c: xacml : 1. 0: exampl es: pol i cyset i d: 1" 1660
[07] Pol i cyCombi ni ngAl gI d=” ur n: oasi s: names: t c: xacml : 1. 0: 1661
[071] pol i cy- combi ni ng- al gor i t hm: deny- over r i des” / > 1662
[08] <Descr i pt i on> 1663
[09] Exampl e pol i cy set . 1664
[10] </ Descr i pt i on> 1665
[11] <Tar get > 1666
[12] <Subj ect s> 1667
[13] <Subj ect > 1668
[14] <! - - any subj ect - - > 1669
[15] <AnySubj ect / > 1670
[16] </ Subj ect > 1671
[17] </ Subj ect s> 1672
[18] <Resour ces> 1673
[19] <Resour ce> 1674
[20] <! - - any r esour ce i n t he t ar get namespace - - > 1675
[21] <Resour ceMat ch 1676
Mat chI d=“ ur n: oasi s: names: t c: xacml : 1. 0: f unct i on: st r i ng- equal " > 1677

cs-xacml-specification-1.0.doc 44

[22] <Resour ceAt t r i but eDesi gnat or At t r i but eI d= 1678
[23] " ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: t ar get - namespace" 1679
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” / > 1680
[24] <At t r i but eVal ue 1681
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” > 1682
[25] ht t p: / / www. medi co. com/ r ecor ds. xsd 1683
[26] </ At t r i but eVal ue> 1684
[27] </ Resour ceMat ch> 1685
[28] </ Resour ce> 1686
[29] </ Resour ces> 1687
[30] <Act i ons> 1688
[31] <Act i on> 1689
[32] <! - - any act i on - - > 1690
[33] <AnyAct i on/ > 1691
[34] </ Act i on> 1692
[35] </ Act i ons> 1693
[36] </ Tar get > 1694
[37] <! - - i ncl ude pol i cy f r om t he exampl e 3 by r ef er ence - - > 1695
[38] <Pol i cyI dRef er ence> 1696
[39] ur n: oasi s: names: t c: xacml : 1. 0: exampl es: pol i cyi d: 3 1697
[40] </ Pol i cyI dRef er ence> 1698
[41] <! - - pol i cy 2 combi nes r ul es f r om t he exampl es 1, 2, 1699
[42] and 4 i s i ncl uded by val ue. - - > 1700
[43] <Pol i cy 1701
[44] Pol i cyI d=" ur n: oasi s: names: t c: xacml : exampl es: pol i cyi d: 2" 1702
[45] Rul eCombi ni ngAl gI d= 1703
[46] " ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng- al gor i t hm: deny- over r i des" > 1704
[47] <Descr i pt i on> 1705
[48] Pol i cy f or any medi cal r ecor d i n t he 1706
[49] ht t p: / / www. medi co. com/ schemas/ r ecor d. xsd namespace 1707
[50] </ Descr i pt i on> 1708
[51] <Tar get > . . . </ Tar get > 1709
[52] <Rul e 1710
[53] Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 1" 1711
[54] Ef f ect =" Per mi t " > . . . </ Rul e> 1712
[55] <Rul e Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 2" 1713
[56] Ef f ect =" Per mi t " > . . . </ Rul e> 1714
[57] <Rul e Rul eI d=" ur n: oasi s: names: t c: xacml : exampl es: r ul ei d: 4" 1715
[58] Ef f ect =" Deny" > . . . </ Rul e> 1716
[59] <Obl i gat i ons> . . . </ Obl i gat i ons> 1717
[60] </ Pol i cy> 1718
[61] </ Pol i cySet > 1719

 1720

[02]-[07] Pol i cySet declaration. Standard XML namespace declarations are included as well as 1721
Pol i cySet I d, and policy combining algorithm identifier. 1722

[05]-[06] Pol i cySet I d is used for identifying this policy set and for possible inclusion of this 1723
policy set into another policy set. 1724

[07] Policy combining algorithm identifier. Policies in the policy set are combined according to 1725
the specified policy combining algorithm identifier when the authorization decision is 1726
computed. 1727

[08]-[10] Free form description of the policy set. 1728

[11]-[36] Pol i cySet Tar get element defines a set of decision requests that are applicable to 1729
this Pol i cySet . 1730

[38]-[40] Pol i cyI dRef er ence includes policy by id. 1731

[43]-[60] Policy 2 is explicitly included in this policy set. 1732

cs-xacml-specification-1.0.doc 45

5. Policy syntax (normative, with the exception of 1733

the schema fragments) 1734

5.1. Element <PolicySet> 1735

The <Pol i cySet > element is a top-level element in the XACML policy schema. <Pol i cySet > is 1736
an aggregation of other policy sets and policies. Policy sets MAY be included in an enclosing 1737
<Pol i cySet > element either directly by the <Pol i cySet > element or indirectly by the 1738
<Pol i cySet I dRef er ence> element. Policies MAY be included in an enclosing <Pol i cySet > 1739
element either directly by the <Policy> element or indirectly by the <Pol i cyI dRef er ence> 1740
element. 1741

If a <Pol i cySet > element contains references to other policy sets or policies in the form of 1742
URLs, then these references may be resolvable. 1743

Policies included in the <Pol i cySet > element MUST be combined by the algorithm specified by 1744
the Pol i cyCombi ni ngAl gI d attribute. 1745

The <Tar get > element defines the applicability of the <Pol i cySet > to decision requests. If 1746
there is a match between the <Tar get > element within <Pol i cySet > and the request context, 1747
then the <Pol i cySet > element MAY be used by the PDP in making its authorization decision. 1748

The <Obl i gat i ons> element contains a set of obligations that MUST be fulfilled by the PEP in 1749
conjunction with the authorization decision. If the PEP does not understand any of the 1750
obligations, then it MUST act as if the PDP had returned a “Deny” authorization decision value. 1751

 <xs: el ement name=" Pol i cySet " t ype=" xacml : Pol i cySet Type" / > 1752
 <xs: compl exType name=" Pol i cySet Type" > 1753
 <xs: sequence> 1754
 <xs: el ement r ef =" xacml : Descr i pt i on" mi nOccur s=" 0" / > 1755
 <xs: el ement r ef =" xacml : Pol i cySet Def aul t s" mi nOccur s=" 0" / > 1756
 <xs: el ement r ef =" xacml : Tar get " / > 1757
 <xs: choi ce mi nOccur s=" 0" maxOccur s=" unbounded" > 1758
 <xs: el ement r ef =" xacml : Pol i cySet " / > 1759
 <xs: el ement r ef =" xacml : Pol i cy" / > 1760
 <xs: el ement r ef =" xacml : Pol i cySet I dRef er ence" / > 1761
 <xs: el ement r ef =" xacml : Pol i cyI dRef er ence" / > 1762
 </ xs: choi ce> 1763
 <xs: el ement r ef =" xacml : Obl i gat i ons" mi nOccur s=" 0" / > 1764
 </ xs: sequence> 1765
 <xs: at t r i but e name=" Pol i cySet I d" 1766
t ype=" ht t p: / / www. w3. or g/ 2001/ XMLSchema#anyURI " use=" r equi r ed" / > 1767
 <xs: at t r i but e name=" Pol i cyCombi ni ngAl gI d" 1768
t ype=" ht t p: / / www. w3. or g/ 2001/ XMLSchema#anyURI " use=" r equi r ed" / > 1769
 </ xs: compl exType> 1770

The <Pol i cySet > element is of PolicySetType complex type. 1771

The <Pol i cySet > element contains the following attributes and elements: 1772

Pol i cySet I d [Required] 1773

Policy set identifier. It is the responsibility of the PAP to ensure that no two policies 1774
visible to the PDP have the same identifier. This MAY be achieved by following a 1775
predefined URN or URI scheme. If the policy set identifier is in the form of a URL, then it 1776
MAY be resolvable. 1777

cs-xacml-specification-1.0.doc 46

Pol i cyCombi ni ngAl gI d [Required] 1778

The identifier of the policy-combining algorithm by which the <Pol i cySet > 1779
components MUST be combined. Standard policy-combining algorithms are listed in 1780
Appendix C. Standard policy-combining algorithm identifiers are listed in Section B.10. 1781

<Description> [Optional] 1782

 A free-form description of the <Pol i cySet >. 1783

<Pol i cySet Def aul t s> [Optional] 1784

A set of default values applicable to the <Pol i cySet >. The scope of the 1785
<Pol i cyDef aul t s> element SHALL be the enclosing policy. 1786

<Tar get > [Required] 1787

The <Target> element defines the applicability of a <PolicySet> to decision requests. 1788

The <Target> element MAY be declared by the creator of the <PolicySet> or it MAY be 1789
computed from the <Target> elements of the referenced <Policy> elements, either as an 1790
intersection or as a union. 1791

<Pol i cySet > [Any Number] 1792

 A policy set component that is included in this policy set. 1793

<Pol i cy> [Any Number] 1794

 A policy component that is included in this policy set. 1795

<Pol i cySet I dRef er ence> [Any Number] 1796

A reference to a <Pol i cySet > component that MUST be included in this policy set. If 1797
<Pol i cySet I dRef er ence> is a URL, then it MAY be resolvable. 1798

<Pol i cyI dRef er ence> [Any Number] 1799

A reference to a <Pol i cy> component that MUST be included in this policy set. If the 1800
<Pol i cyI dRef er ence> is a URL, then it MAY be resolvable. 1801

<Obl i gat i ons> [Optional] 1802

Contains the set of <Obl i gat i on> elements. See Section 7.11 for a description of how 1803
the set of obligations to be returned by the PDP shall be determined. 1804

5.2. Element <Description> 1805

The <Descr i pt i on> element is used for a free-form description of the <Pol i cySet > element 1806
and <Pol i cy> element. The <Descr i pt i on> element is of xs:string simple type. 1807

 <xs: el ement name=" Descr i pt i on" t ype=" xs: st r i ng" / > 1808

5.3. Element <PolicySetDefaults> 1809

The <Pol i cySet Def aul t s> element SHALL specify default values that apply to the 1810
<Pol i cySet > element. 1811

 <xs: el ement name=" Pol i cySet Def aul t s" t ype=" xacml : Def aul t sType" / > 1812

cs-xacml-specification-1.0.doc 47

 <xs: compl exType name=” Def aul t sType” > 1813
 <xs: sequence> 1814
 <xs: choi ce> 1815
 <xs: el ement r ef =” xacml : XPat hVer si on” mi nOccur s=” 0” / > 1816
 </ xs: choi ce> 1817
 </ xs: sequence> 1818
 </ xs: compl exType> 1819

<Pol i cySet Def aul t s> element is of DefaultsType complex type. 1820

<XPat hVer si on> [Optional] 1821

Default XPath version. 1822

5.4. Element <XPathVersion> 1823

The <XPat hVer si on> element SHALL specify the version of the XPath specification to be used by 1824
<At t r i but eSel ect or > elements. 1825

 <xs: el ement name=" XPat hVer si on" t ype=" xs: anyURI " / > 1826

The URI for the XPath 1.0 specification is “ ht t p: / / www. w3. or g/ TR/ 1999/ Rec- xpat h-1827
19991116” . The <XPat hVer si on> element is REQUIRED if the XACML policy contains 1828
<At t r i but eSel ect or > elements. 1829

5.5. Element <Target> 1830

The <Tar get > element identifies the set of decision requests that the parent element is intended 1831
to evaluate. The <Tar get > element SHALL appear as a child of <Pol i cySet >, <Pol i cy> and 1832
<Rul e> elements. It contains definitions for subjects, resources and actions. 1833

The <Tar get > element SHALL contain a conjunctive sequence of <Subj ect s>, <Resour ces> 1834
and <Act i ons> elements. For the parent of the <Tar get > element to be applicable to the 1835
decision request, there MUST be at least one positive match between each section of the 1836
<Tar get > element and the corresponding section of the <xacml - cont ext : Request > element. 1837

 <xs: el ement name=" Tar get " t ype=" xacml : Tar get Type" / > 1838
 <xs: compl exType name=" Tar get Type" > 1839
 <xs: sequence> 1840
 <xs: el ement r ef =" xacml : Subj ect s" / > 1841
 <xs: el ement r ef =" xacml : Resour ces" / > 1842
 <xs: el ement r ef =" xacml : Act i ons" / > 1843
 </ xs: sequence> 1844
 </ xs: compl exType> 1845

The <Tar get > element is of TargetType complex type. 1846

<Subj ect s> [Required] 1847

Matching specification for the subject attributes in the context. 1848

<Resour ces> [Required] 1849

Matching specification for the resource attributes in the context. 1850

<Act i ons> [Required] 1851

Matching specification for the action attributes in the context. 1852

cs-xacml-specification-1.0.doc 48

5.6. Element <Subjects> 1853

The <Subj ect s> element SHALL contains a disjunctive sequence of <Subj ect > elements. 1854

<xs: el ement name=" Subj ect s" t ype=" xacml : Subj ect sType" / > 1855
<xs: compl exType name=" Subj ect sType" > 1856
 <xs: choi ce> 1857
 <xs: el ement r ef =" xacml : Subj ect " maxOccur s=" unbounded" / > 1858
 <xs: el ement r ef =" xacml : AnySubj ect " / > 1859
 </ xs: choi ce> 1860
</ xs: compl exType> 1861

The <Subj ect s> element is of SubjectsType complex type. 1862

<Subj ect > [One To Many, Required Choice] 1863

See section 5.7. 1864

<AnySubj ect > [Required Choice] 1865

 See section 5.8. 1866

5.7. Element <Subject> 1867

The <Subj ect > element SHALL contain a conjunctive sequence of <Subj ect Mat ch> 1868
elements. 1869

 <xs: el ement name=" Subj ect " t ype=" xacml : Subj ect Type" / > 1870
 <xs: compl exType name=" Subj ect Type" > 1871
 <xs: sequence> 1872
 <xs: el ement r ef =" xacml : Subj ect Mat ch" maxOccur s=" unbounded" / > 1873
 </ xs: sequence> 1874
 </ xs: compl exType> 1875

The <Subj ect > element is of SubjectType complex type. 1876

<Subj ect > element contains the following elements: 1877

<Subj ect Mat ch> [One to Many] 1878

A conjunctive sequence of individual matches of the subject attributes in the context 1879
and the embedded attribute values. 1880

5.8. Element <AnySubject> 1881

The <AnySubj ect > element SHALL match any subject attribute in the context. 1882

<xs: el ement name=" AnySubj ect " / > 1883

5.9. Element <SubjectMatch> 1884

The <Subj ect Mat ch> element SHALL identify a set of subject-related entities by matching 1885
attribute values in the <xacml - cont ext : Subj ect > element of the context with the embedded 1886
attribute value. 1887

 <xs: el ement name=" Subj ect Mat ch" t ype=" xacml : Subj ect Mat chType" / > 1888
 <xs: compl exType name=" Subj ect Mat chType" > 1889
 <xs: sequence> 1890
 <xs: choi ce> 1891

cs-xacml-specification-1.0.doc 49

 <xs: el ement r ef =" xacml : Subj ect At t r i but eDesi gnat or " / > 1892
 <xs: el ement r ef =" xacml : At t r i but eSel ect or " / > 1893
 </ xs: choi ce> 1894
 <xs: el ement r ef =" xacml : At t r i but eVal ue" / > 1895
 </ xs: sequence> 1896
 <xs: at t r i but e name=" Mat chI d" t ype=" xs: anyURI " use=" r equi r ed" / > 1897
 </ xs: compl exType> 1898

The <Subj ect Mat ch> element is of SubjectMatchType complex type. 1899

The <Subj ect Mat ch> element contains the following attributes and elements: 1900

Mat chI d [Required] 1901

Specifies a matching function. The value of this attribute MUST be of type xs:anyURI with 1902
legal values documented in Appendix A. 1903

<Subj ect At t r i but eDesi gnat or > [Required choice] 1904

Identifies one or more attribute values in the <xacml - cont ext : Subj ect > child of the 1905
<xacml - cont ext : Request > element. 1906

<At t r i but eSel ect or > [Required choice] 1907

MAY be used to identify one or more attribute values in the <xacml - cont ext : Subj ect > 1908
child of the <xacml - cont ext : Request > element. 1909

<At t r i but eVal ue> [Required] 1910

 Embedded attribute value. 1911

5.10. Element <Resources> 1912

The <Resour ces> element SHALL contain a disjunctive sequence of <Resour ce> elements. 1913

 <xs: el ement name=" Resour ces" t ype=" xacml : Resour cesType" / > 1914
 <xs: compl exType name=" Resour cesType" > 1915
 <xs: choi ce> 1916
 <xs: el ement r ef =" xacml : Resour ce" maxOccur s=" unbounded" / > 1917
 <xs: el ement r ef =" xacml : AnyResour ce" / > 1918
 </ xs: choi ce> 1919
 </ xs: compl exType> 1920

The <Resour ces> element is of ResourcesType complex type. 1921

The <Resour ces> element consists of the following elements: 1922

<Resour ce> [One To Many, Required Choice] 1923

See section 5.11. 1924

<AnyResour ce> [Required Choice] 1925

 See section 5.12. 1926

5.11. Element <Resource> 1927

The <Resour ce> element SHALL container a conjunctive sequence of <Resour ceMat ch> 1928
elements. 1929

cs-xacml-specification-1.0.doc 50

 <xs: el ement name=" Resour ce" t ype=" xacml : Resour ceType" / > 1930
 <xs: compl exType name=" Resour ceType" > 1931
 <xs: sequence> 1932
 <xs: el ement r ef =" xacml : Resour ceMat ch" maxOccur s=" unbounded" / > 1933
 </ xs: sequence> 1934
 </ xs: compl exType> 1935

The <Resour ce> element is of ResourceType complex type. 1936

The <Resour ce> element contains the following elements: 1937

<Resour ceMat ch> [One to Many] 1938

A conjunctive sequence of individual matches of the resource attributes in the context 1939
and the embedded attribute values. 1940

5.12. Element <AnyResource> 1941

The <AnyResour ce> element SHALL match any resource attribute in the context. 1942

<xs: el ement name=" AnyResour ce" / > 1943

5.13. Element <ResourceMatch> 1944

The <Resour ceMat ch> element SHALL identify a set of resource-related entities by matching 1945
attribute values in the <xacml - cont ext : Resour ce> element of the context with the embedded 1946
attribute value. 1947

 <xs: el ement name=" Resour ceMat ch" t ype=" xacml : Resour ceMat chType" / > 1948
 <xs: compl exType name=" Resour ceMat chType" > 1949
 <xs: sequence> 1950
 <xs: choi ce> 1951
 <xs: el ement r ef =" xacml : Resour ceAt t r i but eDesi gnat or " / > 1952
 <xs: el ement r ef =" xacml : At t r i but eSel ect or " / > 1953
 </ xs: choi ce> 1954
 <xs: el ement r ef =" xacml : At t r i but eVal ue" / > 1955
 </ xs: sequence> 1956
 <xs: at t r i but e name=" Mat chI d" t ype=" xs: anyMat ch" use=" r equi r ed" / > 1957
 </ xs: compl exType> 1958

The <Resour ceMat ch> element is of ResourceMatchType complex type. 1959

The <Resour ceMat ch> element contains the following attributes and elements: 1960

Mat chI d [Required] 1961

Specifies a matching function. Values of this attribute MUST be of type xs:anyURI, with 1962
legal values documented in Appendix A. 1963

<Resour ceAt t r i but eDesi gnat or > [Required Choice] 1964

Identifies one or more attribute values in the <xacml - cont ext : Resour ce> child of the 1965
<xacml-context:Request> element. 1966

<At t r i but eSel ect or > [Required Choice] 1967

MAY be used to identify one or more attribute values in the <xacml -1968
cont ext : Resour ce> child of the <xacml - cont ext : Request > element. 1969

<At t r i but eVal ue> [Required] 1970

cs-xacml-specification-1.0.doc 51

 Embedded attribute value. 1971

5.14. Element <Actions> 1972

The <Act i ons> element SHALL contain a disjunctive sequence of <Act i on> elements. 1973

<xs: el ement name=" Act i ons" t ype=" xacml : Act i onsType" / > 1974
<xs: compl exType name=" Act i onsType" > 1975
 <xs: choi ce> 1976
 <xs: el ement r ef =" xacml : Act i on" maxOccur s=" unbounded" / > 1977
 <xs: el ement r ef =" xacml : AnyAct i on" / > 1978
 </ xs: choi ce> 1979
</ xs: compl exType> 1980

The <Act i ons> element is of ActionsType complex type. 1981

The <Act i ons> element contains the following elements: 1982

<Act i on> [One To Many, Required Choice] 1983

See section 5.15. 1984

<AnyAct i on> [Required Choice] 1985

 See section 5.16. 1986

5.15. Element <Action> 1987

The <Act i on> element SHALL contain a conjunctive sequence of <Act i onMat ch> elements. 1988

<xs: el ement name=" Act i on" t ype=" xacml : Act i onType" / > 1989
<xs: compl exType name=" Act i onType" > 1990
 <xs: sequence> 1991
 <xs: el ement r ef =" xacml : Act i onMat ch" maxOccur s=" unbounded" / > 1992
 </ xs: sequence> 1993
</ xs: compl exType> 1994

The <Act i on> element is of ActionType complex type. 1995

The <Act i on> element contains the following elements: 1996

<Act i onMat ch> [One to Many] 1997

A conjunctive sequence of individual matches of the action attributes in the context and 1998
the embedded attribute values. 1999

5.16. Element <AnyAction> 2000

The <AnyAct i on> element SHALL match any action attribute in the context. 2001

<xs: el ement name=" AnyAct i on" / > 2002

 2003

cs-xacml-specification-1.0.doc 52

5.17. Element <ActionMatch> 2004

The <Act i onMat ch> element SHALL identify a set of action-related entities by matching attribute 2005
values in the <xacml - cont ext : Act i on> element of the context with the embedded attribute 2006
value. 2007

<xs: el ement name=" Act i onMat ch" t ype=" xacml : Act i onMat chType" / > 2008
<xs: compl exType name=" Act i onMat chType" > 2009
 <xs: sequence> 2010
 <xs: choi ce> 2011
 <xs: el ement r ef =" xacml : Act i onAt t r i but eDesi gnat or " / > 2012
 <xs: el ement r ef =" xacml : At t r i but eSel ect or " / > 2013
 </ xs: choi ce> 2014
 <xs: el ement r ef =" xacml : At t r i but eVal ue" / > 2015
 </ xs: sequence> 2016
 <xs: at t r i but e name=" Mat chI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2017
</ xs: compl exType> 2018

The <Act i onMat ch> element is of ActionMatchType complex type. 2019

The <Act i onMat ch> element contains the following attributes and elements: 2020

Mat chI d [Required] 2021

Specifies a matching function. The value of this attribute MUST be of type xs:anyURI, with 2022
legal values documented in Appendix A. 2023

<Act i onAt t r i but eDesi gnat or > [Required Choice] 2024

Identifies one or more attribute values in the <xacml - cont ext : Act i on> child of the 2025
<xacml - cont ext : Request > element. 2026

<At t r i but eSel ect or > [Required Choice] 2027

MAY be used to identify one or more attribute values in the <xacml - cont ext : Act i on> 2028
child of the <xacml - cont ext : Request > element. 2029

<At t r i but eVal ue> [Required] 2030

 Embedded attribute value. 2031

5.18. Element <PolicySetIdReference> 2032

The <Pol i cySet I dRef er ence> element SHALL be used to reference a <Pol i cySet > element 2033
by id. If <Pol i cySet I dRef er ence> is a URL, then it MAY be resolvable to the <Pol i cySet >. 2034
The mechanism for resolving a policy set reference to the corresponding policy set is 2035
implementation dependent. 2036

<xs: el ement name=" Pol i cySet I dRef er ence" t ype=" xs: anyURI " / > 2037

Element <Pol i cySet I dRef er ence> is of xs:anyURI simple type. 2038

5.19. Element <PolicyIdReference> 2039

The <xacml : Pol i cyI dRef er ence> element SHALL be used to reference a <Pol i cy> element 2040
by id. If <Pol i cyI dRef er ence> is a URL, then it MAY be resolvable to the <Pol i cy>. The 2041
mechanism for resolving a policy reference to the corresponding policy is implementation 2042
dependent. 2043

cs-xacml-specification-1.0.doc 53

 <xs: el ement name=" Pol i cyI dRef er ence" t ype=" xs: anyURI " / > 2044

Element <Pol i cyI dRef er ence> is of xs:anyURI simple type. 2045

5.20. Element <Policy> 2046

The <Pol i cy> element is the smallest entity that SHALL be presented to the PDP for evaluation. 2047

The main components of this element are the <Tar get >, <Rul e> and <Obl i gat i ons> elements 2048
and the Rul eCombi ni ngAl gI d attribute. 2049

The <Tar get > element SHALL define <Pol i cy> applicability to decision requests. A sequence 2050
of <Rul e> elements SHALL specify authorizations that MUST be combined according to the 2051
Rul eCombi ni ngAl gI d attribute. The <Obl i gat i ons> element SHALL contain a set of 2052
obligations that MUST be discharged by the PDP in conjunction with the authorization decision. 2053

 <xs: el ement name=" Pol i cy" t ype=" xacml : Pol i cyType" / > 2054
 <xs: compl exType name=" Pol i cyType" > 2055
 <xs: sequence> 2056
 <xs: el ement r ef =" xacml : Descr i pt i on" mi nOccur s=" 0" / > 2057
 <xs: el ement r ef =" xacml : Pol i cyDef aul t s" mi nOccur s=" 0" / > 2058
 <xs: el ement r ef =" xacml : Tar get " / > 2059
 <xs: el ement r ef =" xacml : Rul e" mi nOccur s=" 0" maxOccur s=" unbounded" / > 2060
 <xs: el ement r ef =" xacml : Obl i gat i ons" mi nOccur s=" 0" / > 2061
 </ xs: sequence> 2062
 <xs: at t r i but e name=" Pol i cyI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2063
 <xs: at t r i but e name=" Rul eCombi ni ngAl gI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2064
 </ xs: compl exType> 2065

The <Pol i cy> element is of PolicyType complex type. 2066

The <Pol i cy> element contains the following attributes and elements: 2067

Pol i cyI d [Required] 2068

Policy identifier. The party assigning this identifier MUST minimize the potential of some 2069
other party reusing the same identifier. This MAY be achieved by following a predefined 2070
URN or URL scheme. It is OPTIONAL for the Pol i cy I d URL to be resolvable to the 2071
corresponding <Pol i cy> object. 2072

RuleCombiningAlgId [Required] 2073

The identifier of the rule-combining algorithm by which the <Policy> components MUST be 2074
combined. Standard rule-combining algorithms are listed in Appendix C. Standard rule-2075
combining algorithm identifiers are listed in Section B.10. 2076

<Descr i pt i on> [Opt i onal] 2077

 A free-form description of the policy. 2078

<Pol i cyDef aul t s> [Optional] 2079

Defines a set of default values applicable to the policy. The scope of the 2080
<Pol i cyDef aul t s> element SHALL be the enclosing policy. 2081

<Tar get > [Required] 2082

The <Target> element SHALL define the applicability of a <Policy> to decision requests. 2083

cs-xacml-specification-1.0.doc 54

The <Tar get > element MAY be declared by the creator of the <Pol i cy> element, or it 2084
MAY be computed from the <Tar get > elements of the referenced <Rul e> elements either 2085
as an intersection or as a union. 2086

<Rul e> [Any Number] 2087

A sequence of authorizations that MUST be combined according to the 2088
Rul eCombi ni ngAl gI d attribute. Rules whose <Tar get > elements match the decision 2089
request MUST be considered. Rules whose <Tar get > elements do not match the 2090
decision request MUST NOT be considered. Applicability of rules to the decision 2091
request is detailed in Appendix C. 2092

<Obl i gat i ons> [Optional] 2093

A conjunctive sequence of obligations that MUST be discharged by the PEP in 2094
conjunction with the authorization decision. See Section 7.11 for a description of how the 2095
set of obligations to be returned by the PDP shall be determined. 2096

5.21. Element <Rule> 2097

The <Rul e> element SHALL define individual rules in the policy. The main components of this 2098
element are the <Tar get > and <Condi t i on> elements and the Effect attribute. 2099

 <xs: el ement name=" Rul e" t ype=" xacml : Rul eType" / > 2100
 <xs: compl exType name=" Rul eType" > 2101
 <xs: sequence> 2102
 <xs: el ement r ef =" xacml : Descr i pt i on" mi nOccur s=" 0" / > 2103
 <xs: el ement r ef =" xacml : Tar get " mi nOccur s=" 0" / > 2104
 <xs: el ement r ef =" xacml : Condi t i on" mi nOccur s=" 0" / > 2105
 </ xs: sequence> 2106
 <xs: at t r i but e name=" Rul eI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2107
 <xs: at t r i but e name=" Ef f ect " t ype=" xacml : Ef f ect Type" use=" r equi r ed" / > 2108
 </ xs: compl exType> 2109

The <Rul e> element is of RuleType complex type. 2110

The <Rul e> element contains the following attributes and elements: 2111

Rul eI d [Requi r ed] 2112

 A URN identifying this rule. 2113

Ef f ect [Requi r ed] 2114

Rule effect. Values of this attribute are either “Permit” or “Deny”. 2115

<Descr i pt i on> [optional] 2116

 A free-form description of the rule. 2117

<Tar get > [optional] 2118

Identifies the set of decision requests that the <Rul e> element is intended to evaluate. If 2119
this element is omitted, then the target for the <Rul e> SHALL be defined by the enclosing 2120
<Pol i cy> element. See Section 5.5 for details. 2121

<Condi t i on> [optional] 2122

cs-xacml-specification-1.0.doc 55

A predicate that MUST be satisfied for the rule to be assigned its Ef f ect value. A 2123
condition is a boolean function over a combination of subject, resource, action and 2124
environment attributes or other functions. 2125

5.22. Simple type EffectType 2126

The EffectType simple type defines the values allowed for the Ef f ect attribute of the <Rul e> 2127
element and for the Ful f i l l On attribute of the <Obl i gat i on> element. 2128

 <xs: s i mpl eType name=" Ef f ect Type" > 2129
 <xs: r est r i ct i on base=" xs: st r i ng" > 2130
 <xs: enumer at i on val ue=" Per mi t " / > 2131
 <xs: enumer at i on val ue=" Deny" / > 2132
 </ xs: r est r i ct i on> 2133
 </ xs: s i mpl eType> 2134

5.23. Element <Condition> 2135

The <Condi t i on> element is a boolean function over subject, resource, action and 2136
environment attributes or functions of attributes. If the <Condi t i on> element evaluates to 2137
"True", then the enclosing <Rul e> element is assigned its Ef f ect value. 2138

 <xs: el ement name=" Condi t i on" t ype=" xacml : Appl yType" / > 2139

The <Condi t i on> element is of ApplyType complex type. 2140

5.24. Element <Apply> 2141

The <Appl y> element denotes application of a function to its arguments, thus encoding a function 2142
call. The <Appl y> element can be applied to any combination of <Appl y>, 2143
<At t r i but eVal ue>, <Subj ect At t r i but eDesi gnat or >, 2144
<Resour ceAt t r i but eDesi gnat or >, <Act i onAt t r i but eDesi gnat or >, 2145
<Envi r onment At t r i but eDesi gnat or > and <At t r i but eSel ect or > arguments. 2146

 <xs: el ement name=" Appl y" t ype=" xacml : Appl yType" / > 2147
 <xs: compl exType name=" Appl yType" > 2148
 <xs: choi ce mi nOccur s=" 0" maxOccur s=" unbounded" > 2149
 <xs: el ement r ef =” xacml : Funct i on” / > 2150
 <xs: el ement r ef =" xacml : Appl y" / > 2151
 <xs: el ement r ef =" xacml : At t r i but eVal ue" / > 2152
 <xs: el ement r ef =" xacml : Subj ect At t r i but eDesi gnat or " / > 2153
 <xs: el ement r ef =" xacml : Resour ceAt t r i but eDesi gnat or " / > 2154
 <xs: el ement r ef =" xacml : Act i onAt t r i but eDesi gnat or " / > 2155
 <xs: el ement r ef =" xacml : Envi r onment At t r i but eDesi gnat or " / > 2156
 <xs: el ement r ef =” xacml : Subj ect At t r i but eI sPr esent ” / > 2157
 <xs: el ement r ef =” xacml : Resour ceAt t r i but eI sPr esent ” / > 2158
 <xs: el ement r ef =” xacml : Act i onAt t r i but eI sPr esent ” / > 2159
 <xs: el ement r ef =” xacml : Envi r onment At t r i but eI sPr esent ” / > 2160
 <xs: el ement r ef =" xacml : At t r i but eSel ect or " / > 2161
 </ xs: choi ce> 2162
 <xs: at t r i but e name=" Funct i onI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2163
 </ xs: compl exType> 2164

The <Appl y> element is of ApplyType complex type. 2165

The <Appl y> element contains the following attributes and elements: 2166

Funct i onI d [Required] 2167

cs-xacml-specification-1.0.doc 56

The URN of a function. XACML-defined functions are described in Appendix A. 2168

<Function> [Optional] 2169

 The name of a function that is applied to the elements of a bag. See section A14.11. 2170

<Appl y> [Optional] 2171

 A nested function-call argument. 2172

<At t r i but eVal ue> [Optional] 2173

 A literal value argument. 2174

<Resour ceAt t r i but eDesi gnat or > [Optional] 2175

 A resource attribute argument. 2176

<Act i onAt t r i but eDesi gnat or > [Optional] 2177

 An action attribute argument. 2178

<Envi r onment At t r i but eDesi gnat or > [Optional] 2179

 An environment attribute argument. 2180

<Subj ect At t r i but eI sPr esent > [Optional] 2181

 An agrument that tests presence of the subject attribute 2182

<Resour ceAt t r i but eI sPr esent > [Optional] 2183

 An argument that tests presence of the resource attribute 2184

<Act i onAt t r i but eI sPr esent > [Optional] 2185

 An argument that tests presence of the action attribute 2186

<Envi r onment At t r i but eI sPr esent > [Optional] 2187

 An argument that tests presence of the environment attribute 2188

<At t r i but eSel ect or > [Optional] 2189

 An attribute selector argument. 2190

5.25. Element <Function> 2191

The Funct i on element SHALL be used to name a function that is applied by the higher-order bag 2192
functions to every element of a bag. The higher-order bag functions are described in Section 2193
A14.11. 2194

<xs: el ement name=” Funct i on” t ype=” xacml : Funct i onType” / > 2195
<xs: compl exType name=” Funct i onType” > 2196
 <xs: at t r i but e name=” Funct i onI d” t ype=” xs: QName” use=” r equi r ed” / > 2197
</ xs: compl exType> 2198

The Funct i on element is of FunctionType complex type. 2199

The Funct i on element contains the following attributes: 2200

Funct i onI d [Required] 2201

cs-xacml-specification-1.0.doc 57

 The identifier for the function that is applied to the elements of a bag by the higher-order 2202
bag functions. 2203

5.26. Complex type AttributeDesignatorType 2204

The AttributeDesignatorType complex type is the type for elements and extensions that refer to 2205
named attributes. A named attribute has specific criteria with which to match attributes within a 2206
specific part of the <xacml - cont ext : Request > element. The AttributeDesignatorType 2207
complex type specifies the attributes used for the match criteria that are common to all named 2208
attributes. Elements and extensions of the AttributeDesignatorType complex type MAY 2209
determine the presence of named attributes or select attribute values associated with attributes 2210
that match named attributes. Elements and extensions of the AttributeDesignatorType SHALL 2211
NOT alter the match semantics of named attributes, but MAY narrow the search space. 2212

 2213

<xs: compl exType name=" At t r i but eDesi gnat or Type" > 2214
 <xs: at t r i but e name=" At t r i but eI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2215
 <xs: at t r i but e name=" Dat aType" t ype=" xs: anyURI " use=" r equi r ed" / > 2216
 <xs: at t r i but e name=" I ssuer " t ype=" xs: anyURI " use=" opt i onal " / > 2217
 <xs: at t r i but e name=" Must BePr esent " t ype=" xs: bool ean" use=" opt i onal " / > 2218
</ xs: compl exType> 2219

 2220

A named attribute SHALL match an attribute if the values of their respective At t r i but eI d, 2221
Dat aType and I ssuer attributes match. The At t r i but eI d attribute MUST match, by URI 2222
equality, that of the At t r i but eI d attribute of the attribute. The DataType attribute MUST match, 2223
by URI equality, that of the Dat aType attribute of the same attribute. If the I ssuer attribute is 2224
supplied, it MUST match, by URI equality, the I ssuer attribute of the same attribute. If the 2225
I ssuer attribute is not supplied, the matching of the attribute to the named attribute SHALL be 2226
governed by At t r i but eI d and Dat aType attributes alone, regardless of the presence, absence, 2227
or actual value of the I ssuer attribute. 2228

The <At t r i but eDesi gnat or Type> contains the following attributes: 2229

At t r i but eI d [Required] 2230

This attribute SHALL specify the At t r i but eI d with which to match the attribute. 2231

Dat aType [Required] 2232

This attribute SHALL specify the data-type with which to match the attribute. 2233

I ssuer [Optional] 2234

This attribute, if supplied, SHALL specify the I ssuer with which to match the attribute. 2235

Must BePr esent [Optional] 2236

This attribute governs whether the element returns “Indeterminate” in the case of the 2237
absence of the named attribute. If the named attribute is absent and Must BePr esent is 2238
set to “True”, then this element SHALL result in “Indeterminate”. If Must BePr esent is not 2239
supplied, its default value SHALL be f al se. 2240

5.27. Element <ResourceAttributeDesignator> 2241

 2242

cs-xacml-specification-1.0.doc 58

The <Resour ceAt t r i but eDesi gnat or > element retrieves a bag of values for a named 2243
resource attribute. A resource attribute is an attribute that SHALL only be located within the 2244
<Resour ce> element of the <xacml - cont ext : Request > element. A named resource attribute 2245
is a named attribute that matches a resource attribute. A named resource attribute SHALL be 2246
considered present if there is at least one resource attribute that matches the criteria set out 2247
below. A resource attribute value is an attribute value that is contained within a resource 2248
attribute. 2249

The <Resour ceAt t r i but eDesi gnat or > element SHALL return a bag of all the resource 2250
attribute values that are matched by the named resource attribute. The Must BePr esent attribute 2251
governs whether this element returns an empty bag or “Indeterminate” in the case of the absence 2252
of the named resource attribute. If the named resource attribute is not present and the 2253
Must BePr esent attribute is set to “False” (its default value) this element SHALL result in an empty 2254
bag. If the named resource attribute is not present and the Must BePr esent attribute is set to 2255
“True”, this element SHALL result in “Indeterminate”. Regardless of the Must BePr esent attribute, 2256
if it cannot be determined whether the named resource attribute is present or not in the request 2257
context, or the value of the named resource attribute is unavailable, then the expression SHALL 2258
evaluate to “Indeterminate”. 2259

A named resource attribute SHALL match a resource attribute as per the match semantics 2260
specified in the AttributeDesignatorType complex type [Section 5.26] 2261

The <Resour ceAt t r i but eDesi gnat or > MAY appear in the <Resour ceMat ch> element and 2262
MAY be passed to the <Appl y> element as an argument. 2263

 2264

<xs: el ement name=" Resour ceAt t r i but eDesi gnat or " 2265
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2266

 2267

The <Resour ceAt t r i but eDesi gnat or > element is of the AttributeDesignatorType complex 2268
type. 2269

The <Resour ceAt t r i but eDesi gnat or > element has the following attributes: 2270

At t r i but eI d [Required] 2271

This attribute SHALL specify the At t r i but eI d with which to match the resource 2272
attribute. 2273

Dat aType [Required] 2274

This attribute SHALL specify the DataType with which to match the resource attribute. 2275

I ssuer [Optional] 2276

This attribute, if supplied, SHALL specify the I ssuer with which to match the resource 2277
attribute. 2278

Must BePr esent [Optional] 2279

This attribute governs whether the <Resour ceAt t r i but eDesi gnat or > element returns 2280
an empty bag or “Indeterminate” in the case of the absence of the named resource 2281
attribute. If the named resource attribute is absent and Must BePr esent is set to “False”, 2282
then this element SHALL result in an empty bag. If the named resource attribute is absent 2283
and Must BePr esent is set to “True”, then this element SHALL evaluate to 2284

cs-xacml-specification-1.0.doc 59

“Indeterminate”. If Must BePr esent is not supplied, then its default value SHALL be 2285
“False”. 2286

5.28. Element <ActionAttributeDesignator> 2287

 2288

The <Act i onAt t r i but eDesi gnat or > element retrieves a bag of values for a named action 2289
attribute. An action attribute is an attribute that SHALL only be located within the <Act i on> 2290
element of the <xacml - cont ext : Request > element. A named action attribute has specific 2291
criteria (described below) with which to match an action attribute. A named action attribute 2292
SHALL be considered present, i.e. not absent, if there is at least one action attribute that matches 2293
the criteria. A action attribute value is an attribute value that is contained within a action 2294
attribute. 2295

The <Act i onAt t r i but eDesi gnat or > element SHALL return a bag of all the action attribute 2296
values that are matched by the named action attribute. The Must BePr esent attribute governs 2297
whether this element returns an empty bag or indeterminate in the case of the absence of the 2298
named action attribute. If the named action attribute is not present and the Must BePr esent 2299
attribute is set to f al se (its default value) this element SHALL result in an empty bag. If the named 2300
action attribute is not present and the Must BePr esent attribute is set to t r ue, this element 2301
SHALL result in indeterminate. Regardless of the Must BePr esent attribute, if it cannot be 2302
determined whether the named action attribute is present or not present in the request context, or 2303
the value of the named action attribute is unavailable, then the expression SHALL result in 2304
indeterminate. 2305

A named action attribute SHALL match a action attribute as per the match semantics specified 2306
in the AttributeDesignatorType complex type [Section 5.26]. 2307

The <Act i onAt t r i but eDesi gnat or > MAY appear in the <Act i onMat ch> element and MAY 2308
be passed to the <Appl y> element as an argument. 2309

 2310

<xs: el ement name=" Act i onAt t r i but eDesi gnat or " 2311
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2312

 2313

The <Act i onAt t r i but eDesi gnat or > element is of the AttributeDesignatorType complex 2314
type. 2315

The <Act i onAt t r i but eDesi gnat or > element has the following attributes: 2316

At t r i but eI d [Required] 2317

This attribute SHALL specify the At t r i but eI d with which to match the action attribute. 2318

Dat aType [Required] 2319

This attribute SHALL specify the DataType with which to match the action attribute. 2320

I ssuer [Optional] 2321

This attribute, if supplied, SHALL specify the I ssuer with which to match the action 2322
attribute. 2323

Must BePr esent [Optional] 2324

cs-xacml-specification-1.0.doc 60

This attribute governs the whether the <Act i onAt t r i but eDesi gnat or > element returns 2325
an empty bag or indeterminate in the case of the absence of the named action attribute. 2326
If the named action attribute is absent and Must BePr esent is set to f al se, this element 2327
SHALL result in an empty bag. If the named action attribute is absent and 2328
Must BePr esent is set to t r ue, this element SHALL result in indeterminate. If 2329
Must BePr esent is not supplied, its default value SHALL be f al se. 2330

5.29. Element <EnvironmentAttributeDesignator> 2331

 2332

The <Envi r onment At t r i but eDesi gnat or > element retrieves a bag of values for a named 2333
environment attribute. A environment attribute is an attribute that SHALL only be located within 2334
the <Envi r onment > element of the <xacml - cont ext : Request > element. A named 2335
environment attribute has specific criteria (described below) with which to match a environment 2336
attribute. A named environment attribute SHALL be considered present, i.e. not absent, if there 2337
is at least one environment attribute that matches the criteria. A environment attribute value is 2338
an attribute value that is contained within a environment attribute. 2339

The <Envi r onment At t r i but eDesi gnat or > element SHALL return a bag of all the 2340
environment attribute values that are matched by the named environment attribute. The 2341
Must BePr esent attribute governs whether this element returns an empty bag or indeterminate in 2342
the case of the absence of the named environment attribute. If the named environment 2343
attribute is not present and the Must BePr esent attribute is set to f al se (its default value) this 2344
element SHALL result in an empty bag. If the named environment attribute is not present and the 2345
Must BePr esent attribute is set to t r ue, this element SHALL result in indeterminate. Regardless 2346
of the Must BePr esent attribute, if it cannot be determined whether the named environment 2347
attribute is present or not present in the request context, or the value of the named environment 2348
attribute is unavailable, then the expression SHALL result in indeterminate. 2349

A named environment attribute SHALL match a environment attribute as per the match 2350
semantics specified in the AttributeDesignatorType complex type [Section 5.26]. 2351

The <Envi r onment At t r i but eDesi gnat or > MAY be passed to the <Appl y> element as an 2352
argument. 2353

 2354

<xs: el ement name=" Envi r onment At t r i but eDesi gnat or " 2355
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2356

 2357

The <Envi r onment At t r i but eDesi gnat or > element is of the AttributeDesignatorType 2358
complex type. 2359

The <Envi r onment At t r i but eDesi gnat or > element has the following attributes: 2360

At t r i but eI d [Required] 2361

This attribute SHALL specify the At t r i but eI d with which to match the environment 2362
attribute. 2363

Dat aType [Required] 2364

This attribute SHALL specify the DataType with which to match the environment attribute. 2365

I ssuer [Optional] 2366

cs-xacml-specification-1.0.doc 61

This attribute, if supplied, SHALL specify the I ssuer with which to match the environment 2367
attribute. 2368

Must BePr esent [Optional] 2369

This attribute governs the whether the <Envi r onment At t r i but eDesi gnat or > element returns 2370
an empty bag or indeterminate in the case of the absence of the named environment attribute. If 2371
the named environment attribute is absent and Must BePr esent is set to f al se, this element 2372
SHALL result in an empty bag. If the named environment attribute is absent and 2373
Must BePr esent is set to t r ue, this element SHALL result in indeterminate. If Must BePr esent 2374
is not supplied, its default value SHALL be f al se. 2375

5.30. Element <ResourceAttributeIsPresent> 2376

 2377

The <Resour ceAt t r i but eI sPr esent > element determines whether a named resource 2378
attribute is present. A resource attribute is an attribute that SHALL only be located within the 2379
<Resour ce> element of the <xacml - cont ext : Request > element. A named resource 2380
attribute is a named attribute that matches a resource attribute. A named resource attribute 2381
SHALL be considered present, i.e. not absent, if there is at least one resource attribute that 2382
matches the criteria described below. 2383

The <Resour ceAt t r i but eI sPr esent > element SHALL result in true if its named resource 2384
attribute is present. A result of true SHALL mean that a <Resour ceAt t r i but eDesi gnat or > 2385
element for this named resource attribute SHALL return a bag consisting of at least one attribute 2386
value. The Must BePr esent attribute governs whether this element returns false or indeterminate 2387
in the case of the absence of the named resource attribute. If the named resource attribute is 2388
not present and the Must BePr esent attribute is set to f al se (its default value) this element 2389
SHALL result in false. If the named resource attribute is not present and the Must BePr esent 2390
attribute is set to t r ue, this element SHALL result in indeterminate. Regardless of the 2391
Must BePr esent attribute, if it cannot be determined whether the named resource attribute is 2392
present or not present in the request context, or the value of the named resource attribute is 2393
unavailable, then the expression SHALL result in indeterminate. 2394

A named resource attribute SHALL be considered present if at least one resource attribute 2395
exists that matches the values of its corresponding At t r i but eI d, Dat aType, and I ssuer 2396
attributes as per the match semantics of the AttributeDesignatorType specification [Section 2397
Error! Reference source not found.]. 2398

The <Resour ceAt t r i but eI sPr esent > MAY be passed to the <Appl y> element as an 2399
argument. 2400

 2401

<xs: el ement name=" Resour ceAt t r i but eI sPr esent " 2402
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2403

 2404

The <Resour ceAt t r i but eI sPr esent > element is of the AttributeDesignatorType complex 2405
type. 2406

The <Resour ceAt t r i but eI sPr esent > element has the following attributes: 2407

At t r i but eI d [Required] 2408

This attribute SHALL specify the At t r i but eI d with which to match the resource 2409
attribute. 2410

cs-xacml-specification-1.0.doc 62

Dat aType [Required] 2411

This attribute SHALL specify the DataType with which to match the resource attribute. 2412

I ssuer [Optional] 2413

This attribute, if supplied, SHALL specify the I ssuer with which to match the resource 2414
attribute. 2415

Must BePr esent [Optional] 2416

This attribute governs the whether the <ResourceAttributeIsPresent> element returns false 2417
or indeterminate in the case of the absence of the named resource attribute. If the 2418
named resource attribute is absent and Must BePr esent is set to f al se, this element 2419
SHALL result in false. If the named resource attribute is absent and Must BePr esent is 2420
set to t r ue, this element SHALL result in indeterminate. If Must BePr esent is not 2421
supplied, its default value SHALL be f al se. 2422

5.31. Element <ActionAttributeIsPresent> 2423

 2424

The <Act i onAt t r i but eI sPr esent > element determines whether a named action attribute is 2425
present. An action attribute is an attribute that SHALL only be located within the <Act i on> 2426
element of the <xacml - cont ext : Request > element. A named action attribute is a named 2427
attribute that matches an action attribute. A named action attribute SHALL be considered 2428
present, i.e. not absent, if there is at least one action attribute that matches the criteria below 2429

The <Act i onAt t r i but eI sPr esent > element SHALL result in true if its named action attribute 2430
is present. A result of true SHALL mean that a <Act i onAt t r i but eDesi gnat or > element for 2431
this named action attribute SHALL return a bag consisting of at least one attribute value. The 2432
Must BePr esent attribute governs whether this element returns false or indeterminate in the case 2433
of the absence of the named action attribute. If the named action attribute is not present and the 2434
Must BePr esent attribute is set to f al se (its default value) this element SHALL result in false. If 2435
the named action attribute is not present and the Must BePr esent attribute is set to t r ue, this 2436
element SHALL result in indeterminate. Regardless of the Must BePr esent attribute, if it cannot 2437
be determined whether the named action attribute is present or not present in the request context, 2438
or the value of the named action attribute is unavailable, then the expression SHALL result in 2439
indeterminate. 2440

A named action attribute SHALL be considered present if at least one action attribute exists that 2441
matches the values of its corresponding At t r i but eI d, Dat aType, and I ssuer attributes as per 2442
the match semantics of the AttributeDesignatorType specification [Section 5.26]. 2443

The <Act i onAt t r i but eI sPr esent > MAY be passed to the <Appl y> element as an argument. 2444

 2445

<xs: el ement name=" Act i onAt t r i but eI sPr esent " 2446
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2447

 2448

The <Act i onAt t r i but eI sPr esent > element is of the AttributeDesignatorType complex type. 2449

The <Act i onAt t r i but eI sPr esent > element has the following attributes: 2450

At t r i but eI d [Required] 2451

cs-xacml-specification-1.0.doc 63

This attribute SHALL specify the At t r i but eI d with which to match the action attribute. 2452

Dat aType [Required] 2453

This attribute SHALL specify the DataType with which to match the action attribute. 2454

I ssuer [Optional] 2455

This attribute, if supplied, SHALL specify the I ssuer with which to match the action 2456
attribute. 2457

Must BePr esent [Optional] 2458

This attribute governs the whether the <ActionAttributeIsPresent> element returns false or 2459
indeterminate in the case of the absence of the named action attribute. If the named 2460
action attribute is absent and Must BePr esent is set to f al se, this element SHALL 2461
result in false. If the named action attribute is absent and Must BePr esent is set to 2462
t r ue, this element SHALL result in indeterminate. If Must BePr esent is not supplied, its 2463
default value SHALL be f al se. 2464

5.32. Element <EnvironmentAttributeIsPresent> 2465

 2466

The <Envi r onment At t r i but eI sPr esent > element determines whether a named environment 2467
attribute is present. An environment attribute is an attribute that SHALL only be located within 2468
the <Envi r onment > element of the <xacml - cont ext : Request > element. A named 2469
environment attribute is a named attribute that matches an environment attribute. A named 2470
environment attribute SHALL be considered present, i.e. not absent, if there is at least one 2471
environment attribute that matches the criteria below. 2472

The <Envi r onment At t r i but eI sPr esent > element SHALL result in true if its named 2473
environment attribute is present. A result of true SHALL mean that a 2474
<Envi r onment At t r i but eDesi gnat or > element for this named environment attribute SHALL 2475
return a bag consisting of at least one attribute value. The Must BePr esent attribute governs 2476
whether this element returns false or indeterminate in the case of the absence of the named 2477
environment attribute. If the named environment attribute is not present and the 2478
Must BePr esent attribute is set to f al se (its default value) this element SHALL result in false. If 2479
the named environment attribute is not present and the Must BePr esent attribute is set to t r ue, 2480
this element SHALL result in indeterminate. Regardless of the Must BePr esent attribute, if it 2481
cannot be determined whether the named environment attribute is present or not present in the 2482
request context, or the value of the named environment attribute is unavailable, then the 2483
expression SHALL result in indeterminate. 2484

A named environment attribute SHALL be considered present if at least one environment 2485
attribute exists that matches the values of its corresponding At t r i but eI d, Dat aType, and 2486
I ssuer attributes as per the match semantics of the AttributeDesignatorType specification 2487
[Section 5.26]. 2488

The <Envi r onment At t r i but eI sPr esent > MAY be passed to the <Appl y> element as an 2489
argument. 2490

 2491

<xs: el ement name=" Envi r onment At t r i but eI sPr esent " 2492
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2493

 2494

cs-xacml-specification-1.0.doc 64

The <Envi r onment At t r i but eI sPr esent > element is of the AttributeDesignatorType 2495
complex type. 2496

The <Envi r onment At t r i but eI sPr esent > element has the following attributes: 2497

At t r i but eI d [Required] 2498

This attribute SHALL specify the At t r i but eI d with which to match the environment 2499
attribute. 2500

Dat aType [Required] 2501

This attribute SHALL specify the DataType with which to match the environment attribute. 2502

I ssuer [Optional] 2503

This attribute, if supplied, SHALL specify the I ssuer with which to match the environment 2504
attribute. 2505

Must BePr esent [Optional] 2506

This attribute governs the whether the <EnvironmentAttributeIsPresent> element returns 2507
false or indeterminate in the case of the absence of the named environment attribute. If 2508
the named environment attribute is absent and Must BePr esent is set to f al se, this 2509
element SHALL result in false. If the named environment attribute is absent and 2510
Must BePr esent is set to t r ue, this element SHALL result in indeterminate. If 2511
Must BePr esent is not supplied, its default value SHALL be f al se. 2512

5.33. Complex type SubjectAttributeDesignatorType 2513

The SubjectAttributeDesignatorType complex type that extends the AttributeDesignatorType 2514
complex type. It is the base type for elements and extensions that refer to named categorized 2515
subject attributes. A named categorized subject attribute is defined as follows: 2516

A subject is represented by a <Subj ect > element of the <Subjects> element in the <xacml -2517
cont ext : Request > element. A categorized subject is a subject that contains a particular 2518
subject category attribute. A subject attribute is an attribute located in a particular subject. A 2519
named subject attribute is a named attribute for a subject. A subject category attribute is the 2520
subject attribute that matches the named subject attribute with the At t r i but eI d of 2521
“ur n: oasi s: t c: xacml : 1. 0: subj ect : subj ect - cat egor y” and the Dat aType of 2522
“ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance#st r i ng” . A named categorized 2523
subject attribute is a named subject attribute for a particular categorized subject. 2524

The SubjectAttributeDesignatorType complex type extends the AttributeDesignatorType with a 2525
Subj ect Cat egor y attribute. The SubjectAttributeDesignatorType extends the match semantics 2526
of the AttributeDesignatorType such that it narrows the attribute search space to the specific 2527
categorized subject such that the value of the Subj ect Cat egor y attribute matches by string 2528
equality the value of the subject’s subject category attribute. 2529

If there are multiple subjects with the same subject category attribute, then they SHALL be 2530
treated as if they were one categorized subject. 2531

Elements and extensions of the SubjectAttributeDesignatorType complex type determine the 2532
presence of select attribute values associated with named categorized subject attributes. 2533
Elements and extensions of the SubjectAttributeDesignatorType SHALL NOT alter the match 2534
semantics of named categorized subject attributes, but MAY narrow the search space. 2535

 2536

cs-xacml-specification-1.0.doc 65

<xs: compl exType name=" Subj ect At t r i but eDesi gnat or Type" > 2537
 <xs: compl exCont ent > 2538
 <xs: ext ensi on base=" xacml : At t r i but eDesi gnat or Type" > 2539
 <xs: at t r i but e name=" Subj ect Cat egor y" 2540
 t ype=" xs: anyURI " 2541
 use=" opt i onal " 2542
 def aul t = 2543
 " ur n: or g: oasi s: t c: xacml : 1. 0: subj ect - cat egor y: access- subj ect " / > 2544
 </ xs: ext ensi on> 2545
 </ xs: compl exCont ent > 2546
</ xs: compl exType> 2547

 2548

The <Subj ect At t r i but eDesi gnat or Type> complex type contains the following attribute in 2549
addition to the attributes of the AttributeDesignatorType complex type: 2550

Subj ect Cat egor y [Optional] 2551

This attribute SHALL specify the categorized subject from which to match named subject 2552
attributes. If Subj ect Cat egor y is not supplied, its default value SHALL 2553
ur n: or g: oasi s: t c: xacml : 1. 0: subj ect - cat egor y :access-subject. 2554

5.34. Element <SubjectAttributeIsPresent> 2555

The <SubjectAttributeIsPresent> element determines whether a named categorized subject 2556
attribute is present or not. Its match semantics are that of the SubjectAttributeDesignatorType. 2557

The <Subj ect At t r i but eI sPr esent > element SHALL result in true if its named categorized 2558
subject attribute is present. A result of true SHALL mean that a 2559
<Subj ect At t r i but eDes i gnat or > element for the same named categorized subject attribute 2560
SHALL return a bag consisting of at least one attribute value. The Must BePr esent attribute 2561
governs whether this element returns false or indeterminate in the case of the absence of the 2562
named categorized subject attribute. If the named categorized subject attribute is not present 2563
and the Must BePr esent attribute is set to f al se (its default value) this element SHALL result in 2564
false. If the named categorized subject attribute is not present and the Must BePr esent 2565
attribute is set to t r ue, this element SHALL result in indeterminate. Regardless of the 2566
Must BePr esent attribute, if it cannot be determined whether the named categorized subject 2567
attribute is present or not present in the request context, or the value of the named categorized 2568
subject attribute is unavailable, then the expression SHALL result in indeterminate. 2569

A named categorized subject attribute SHALL be considered present if at least one subject 2570
attribute exists that matches the values of its corresponding At t r i but eI d, Dat aType, and 2571
I ssuer attributes from the categorized subject as per the match semantics of the 2572
SubjectAttributeDesignatorType specification [Section 5.33] 2573

The <Subj ect At t r i but eI sPr esent > MAY be passed to the <Appl y> element as an argument. 2574

 2575

<xs: el ement name=" Subj ect At t r i but eI sPr esent " 2576
 t ype=" xacml : At t r i but eDesi gnat or Type" / > 2577

 2578

The <Cat egor i zedAt t r i but eI sPr esent > element has the following attributes: 2579

At t r i but eI d [Required] 2580

cs-xacml-specification-1.0.doc 66

This attribute SHALL specify the At t r i but eI d with which to match the subject attribute 2581
of the categorized subject. 2582

Dat aType [Required] 2583

This attribute SHALL specify the DataType with which to match the subject attribute of the 2584
categorized subject. 2585

I ssuer [Optional] 2586

This attribute, if supplied, SHALL specify the I ssuer with which to match the subject 2587
attribute of the categorized subject. 2588

Must BePr esent [Optional] 2589

This attribute governs the whether the <Subj ect At t r i but eI sPr esent > element returns 2590
false or indeterminate in the case of the absence of the named categorized subject 2591
attribute. If the named categorized subject attribute is absent and Must BePr esent is 2592
set to f al se, this element SHALL result in false. If the named categorized subject 2593
attribute is absent and Must BePr esent is set to t r ue, this element SHALL result in 2594
indeterminate. If Must BePr esent is not supplied, its default value SHALL be f al se. 2595

5.35. Element <AttributeSelector> 2596

The At t r i but eSel ect or 's Request Cont ext Pat h XML attribute SHALL contain a legal XPATH 2597
expression over the <xacml - cont ext : Request > element. The At t r i but eSel ect or element 2598
evaluates to a bag of values of a single primitive type that is specified by the selector’s Dat aType 2599
attribute. In the case where the XPath expression matches attributes in the request context by 2600
AttributeId, it must also match the attribute's DataType with the selector's Dat aType. In the case 2601
of using XPath 1.0, the value of the XPath expression is either a node-set, string value, numeric 2602
value, or boolean value. If the XPath 1.0 expression evaluates to a node-set, each node may 2603
consist of a string, numeric, boolean value, or a child node (i.e. structured node). In this case, each 2604
node is logically converted to string data by applying the "st r i ng" function defined in the XPath 2605
1.0 specification, resulting in a sequence of string data. In the single string, numeric, or boolean 2606
value case, the value is converted to string data by applying the "st r i ng" function defined in the 2607
XPath 1.0 specification, resulting in a sequence of one string data element. In XPath 2.0, the result 2608
of the XPath expression is a sequence of items (where an item is an atomic value or a node) or the 2609
error value. When the error value is returned, the PDP SHOULD return "I ndet er mi nat e". 2610
Otherwise, each node is logically converted to a string using the xf : st r i ng accessor function, 2611
resulting in a sequence of string data. The resulting sequence of string data is converted to a bag of 2612
primitive values that is implied by the type system. 2613

Support for the <At t r i but eSel ect or > element is OPTIONAL. 2614

<xs: el ement name=" At t r i but eSel ect or " t ype=" xacml : At t r i but eSel ect or Type" / > 2615
<xs: compl exType name=" At t r i but eSel ect or Type" > 2616
 <xs: at t r i but e name=" Request Cont ext Pat h" t ype=" xs: anyURI " use=" r equi r ed" / > 2617
 <xs: at t r i but e name=” Dat aType” t ype=” xs: anyURI ” use=” r equi r ed” / > 2618
 <xs: at t r i but e name=” Must BePr esent ” t ype=” xs: bool ean” use=” opt i onal ” 2619
def aul t =” f al se” 2620
</ xs: compl exType> 2621

The <At t r i but eSel ect or > element is of AttributeSelectorType complex type. 2622

The <At t r i but eSel ect or > element has the following attributes: 2623

Request Cont ext Pat h [Required] 2624

cs-xacml-specification-1.0.doc 67

An XPath expression into the request context. There SHALL be no restriction on the XPath 2625
syntax. 2626

Dat aType [Required] 2627

 The data type of the attribute. 2628

Must BePr esent [Optional] 2629

 Whether or not designated attribute must be present in the context. 2630

5.36. Element <AttributeValue> 2631

The <At t r i but eVal ue> element SHALL contain a literal attribute value. 2632

 <xs: el ement name=" At t r i but eVal ue" t ype=" xacml : At t r i but eVal ueType" / > 2633
 <xs: compl exType name=" At t r i but eVal ueType" mi xed=” t r ue” > 2634
 <xs: sequence> 2635
 <xs: any namespace=" ##any" pr ocessCont ent s=" l ax" mi nOccur s=" 0" 2636
maxOccur s=" unbounded" / > 2637
 </ xs: sequence> 2638
 <xs: at t r i but e name=" Dat aType" t ype=" xs: anyURI " use=" r equi r ed" / > 2639
 <xs: anyAt t r i but e namespace=" ##any" pr ocessCont ent s=" l ax" / > 2640
 </ xs: compl exType> 2641

The <At t r i but eVal ue> element is of AttributeValueType complex type. 2642

The <At t r i but eVal ue> element has following attributes: 2643

Dat aType [Required] 2644

 The data type of the attribute value. 2645

5.37. Element <Obligations> 2646

The <Obl i gat i ons> element SHALL contain a set of <Obl i gat i on> elements. 2647

<xs: el ement name=" Obl i gat i ons" t ype=" xacml : Obl i gat i onsType" / > 2648
<xs: compl exType name=" Obl i gat i onsType" > 2649
 <xs: sequence> 2650
 <xs: el ement r ef =" xacml : Obl i gat i on" maxOccur s=" unbounded" / > 2651
 </ xs: sequence> 2652
</ xs: compl exType> 2653

The <Obl i gat i ons> element is of ObligationsType complexType. 2654

<Obl i gat i on> [One to Many] 2655

A sequence of obligations 2656

5.38. Element <Obligation> 2657

The <Obl i gat i on> element SHALL contain an identifier for the obligation and a set of attributes 2658
that form arguments of the action defined by the obligation. The Ful f i l l On attribute SHALL 2659
indicate the effect for which this obligation applies. 2660

 <xs: el ement name=" Obl i gat i on" t ype=" xacml : Obl i gat i onType" / > 2661
 <xs: compl exType name=" Obl i gat i onType" > 2662
 <xs: sequence> 2663
 <xs: el ement r ef =" xacml : At t r i but eAssi gnment " maxOccur s=" unbounded" / > 2664

cs-xacml-specification-1.0.doc 68

 </ xs: sequence> 2665
 <xs: at t r i but e name=" Obl i gat i onI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2666
 <xs: at t r i but e name=" Ful f i l l On" t ype=" xacml : Ef f ect Type" use=" r equi r ed" / > 2667
 </ xs: compl exType> 2668

The <Obl i gat i on> element is of ObligationType complexType. See Section 7.11 for a 2669
description of how the set of obligations to be returned by the PDP is determined. 2670

The Obl i gat i onI d [required] 2671

Obligation identifier. The value of the obligation identifier SHALL be interpreted by the 2672
PEP. 2673

Ful f i l l On [required] 2674

 The effect for which this obligation applies. 2675

<At t r i but eAssi gnment > [required] 2676

Obligation arguments assignment. The values of the obligation arguments SHALL be 2677
interpreted by the PEP. 2678

5.39. Element <AttributeAssignment> 2679

The <At t r i but eAssi gnment > element SHALL contain an At t r i but eI d and the corresponding 2680
attribute value. The At t r i but eI d is part of attribute meta-data, and is used when the attribute 2681
cannot be referenced by its location in the <xacml - cont ext : Request >. This situation may arise 2682
in an <Obl i gat i on> element if the obligation includes parameters. 2683

 <xs: el ement name=" At t r i but eAssi gnment " t ype=" xacml : At t r i but eAssi gnment Type" / > 2684
 <xs: compl exType name=" At t r i but eAssi gnment Type" > 2685
 <xs: compl exCont ent > 2686
 <xs: ext ensi on base=" xacml : At t r i but eVal ueType" > 2687
 <xs: at t r i but e name=" At t r i but eI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2688
 </ xs: ext ensi on> 2689
 </ xs: compl exCont ent > 2690
 </ xs: compl exType> 2691

The <At t r i but eAssi gnment > element is of AttributeAssignmentType complex type. 2692

At t r i but eI d [Required] 2693

 The attribute Identifier 2694

Dat aType [Required] 2695

 The data type for the assigned value. 2696

cs-xacml-specification-1.0.doc 69

6. Context syntax (normative with the exception of 2697

the schema fragments) 2698

6.1. Element <Request> 2699

The <Request > element is a top-level element in the XACML context schema. The <Request> 2700
element is an abstraction layer used by the policy language. Any proprietary system using the 2701
XACML specification MUST transform its input into the form of an XACML context<Request >. 2702

The <Request > element consists of sections denoted by the <Subj ect >, <Resour ce>, 2703
<Act i on>, and <Envi r onment > elements. There may be multiple <Subj ect > elements. Each 2704
section contains a sequence of XACML context <At t r i but e> elements associated with the 2705
subject, resource, action, and environment respectively. 2706

 <xs: el ement name=" Request " t ype=" xacml - cont ext : Request Type" / > 2707
 <xs: compl exType name=" Request Type" > 2708
 <xs: sequence> 2709
 <xs: el ement r ef =" xacml - cont ext : Subj ect " maxOccur s=" unbounded" / > 2710
 <xs: el ement r ef =" xacml - cont ext : Resour ce" / > 2711
 <xs: el ement r ef =" xacml - cont ext : Act i on" / > 2712
 <xs: el ement r ef =" xacml - cont ext : Envi r onment " mi nOccur s=" 0" / > 2713
 </ xs: sequence> 2714
 </ xs: compl exType> 2715

The <Request > element is of RequestType complex type. 2716

The <Request > element contains the following elements: 2717

<Subj ect > [One to Many] 2718

Specifies information about a subject of the request context by listing a sequence of 2719
<At t r i but e> elements associated with the subject. One or more <Subj ect > elements 2720
are allowed. A subject is an entity associated with making the access request. One 2721
subject might be a human user that initiated the application from which the request is 2722
being issued. Another subject might be the application’s executable code that issued this 2723
request. Another subject might be the machine on which the application is executing. 2724
Another subject might be the target entity that is to be the recipient of the resource. 2725
Attributes of each of these entities MUST be enclosed in a separate <Subj ect > element. 2726

<Resour ce> [Required] 2727

Specifies information about the resource for which access is being requested by listing a 2728
sequence of <At t r i but e> elements associated with the resource. It MAY 2729

include a <Resour ceCont ent > element. 2730

<Act i on> [Required] 2731

Specifies the requested action to be performed on the resource by listing a set of 2732
<At t r i but e> elements associated with the action. 2733

<Envi r onment > [Optional] 2734

Contains a set of <At t r i but e> elements of the environment. These <At t r i but e> 2735
elements MAY form a part of policy evaluation. 2736

cs-xacml-specification-1.0.doc 70

6.2. Element <Subject> 2737

The <Subj ect > element specifies a subject of a decision request context by listing a sequence 2738
of <At t r i but e> elements associated with the subject. 2739

 <xs: el ement name=" Subj ect " t ype=" xacml - cont ext : Subj ect Type" / > 2740
 <xs: compl exType name=" Subj ect Type" > 2741
 <xs: sequence> 2742
 <xs: el ement r ef =" xacml - cont ext : At t r i but e" mi nOccur s=" 0" 2743
maxOccur s=" unbounded" / > 2744
 </ xs: sequence> 2745
 </ xs: compl exType> 2746

The <Subj ect > element is of SubjectType complex type. 2747

<At t r i but e> [Any Number] 2748

A sequence of attributes that apply to the subject. 2749

Every <Subj ect > element MUST contain one and only one <At t r i but e> with AttributeId 2750
“ ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y” . This attribute 2751
indicates a role that the parent <Subj ect > entity plays in making the access request. If this 2752
attribute is not present in a given <Subj ect > element, that <Subj ect > implicitly contains this 2753
attribute with the value of “ ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect -2754
cat egor y: access- subj ect ” , indicating that the subject is the entity ultimately associated 2755
with initiating the access request. Typically, a <Subj ect > element will also contain an 2756
<At t r i but e> with AttributeId “ ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect -2757
i d” , containing the identity of the subject entity. 2758

No more than one <Subj ect > element may contain an <At t r i but e> with the given value for 2759
AttributeId “ ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y” . 2760

A <Subj ect > element MAY contain additional <At t r i but e> elements. 2761

6.3. Element <Resource> 2762

The <Resour ce> element specifies information about the resource for which access is being 2763
requested by listing a sequence of <At t r i but e> elements associated with the r esour ce. It MAY 2764
include the resource content. 2765

 <xs: el ement name=" Resour ce" t ype=" xacml - cont ext : Resour ceType" / > 2766
 <xs: compl exType name=" Resour ceType" > 2767
 <xs: sequence> 2768
 <xs: el ement r ef =" xacml - cont ext : Resour ceCont ent " mi nOccur s=" 0" / > 2769
 <xs: el ement r ef =" xacml - cont ext : At t r i but e" mi nOccur s=" 0" 2770
maxOccur s=" unbounded" / > 2771
 </ xs: sequence> 2772
 </ xs: compl exType> 2773

The <Resour ce> element is of ResourceType complex type. 2774

The <Resour ce> element contains the following elements: 2775

<Resour ceCont ent > [Optional] 2776

 The resource content. 2777

<At t r i but e> [Any Number] 2778

cs-xacml-specification-1.0.doc 71

A sequence of resource attributes. The <Resour ce> element MUST contain one and 2779
only one <At t r i but e> with AttributeId 2780
“ ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- i d” . This attribute 2781
specifies the identity of the resource for which access is requested. The <Resour ce> 2782
element MAY contain additional <At t r i but e> elements. 2783

6.4. Element <ResourceContent> 2784

The <Resour ceCont ent > element is a notional placeholder for the resource content. If an 2785
XACML policy references the contents of the resource, then the <Resour ceCont ent > element 2786
is used as the reference point. 2787

 <xs: compl exType name=" Resour ceCont ent Type" mi xed=” t r ue” > 2788
 <xs: sequence> 2789
 <xs: any namespace=" ##any" pr ocessCont ent s=" l ax" mi nOccur s=" 0" 2790
maxOccur s=" unbounded" / > 2791
 </ xs: sequence> 2792
 <xs: anyAt t r i but e namespace=" ##any" pr ocessCont ent s=" l ax" / > 2793
 </ xs: compl exType> 2794

The <Resour ceCont ent > element is of ResourceContentType complex type. 2795

The <Resour ceCont ent > element allows arbitrary elements and attributes. 2796

6.5. Element <Action> 2797

The <Act i on> element specifies the requested action to be performed on the resource by listing 2798
a set of <At t r i but e> elements associated with the action. 2799

 <xs: el ement name=" Act i on" t ype=" xacml - cont ext : Act i onType" / > 2800
 <xs: compl exType name=" Act i onType" > 2801
 <xs: sequence> 2802
 <xs: el ement r ef =" xacml - cont ext : At t r i but e" mi nOccur s=" 0" 2803
maxOccur s=" unbounded" / > 2804
 </ xs: sequence> 2805
 </ xs: compl exType> 2806

The <Act i on> element is of ActionType complex type. 2807

The <At t r i but e> [Any Number] 2808

 List of attributes of the action to be performed on the resource. 2809

6.6. Element <Environment> 2810

The <Envi r onment > element contains a set of attributes of the environment. These attributes 2811
MAY form part of the policy evaluation. 2812

 <xs: el ement name=" Envi r onment " t ype=" xacml - cont ext : Envi r onment Type" / > 2813
 <xs: compl exType name=" Envi r onment Type" > 2814
 <xs: sequence> 2815
 <xs: el ement r ef =" xacml - cont ext : At t r i but e" mi nOccur s=" 0" 2816
maxOccur s=" unbounded" / > 2817
 </ xs: sequence> 2818
 </ xs: compl exType> 2819

The <Envi r onment > element is of EnvironmentType complex type. 2820

cs-xacml-specification-1.0.doc 72

The <Envi r onment > element contains the following elements: 2821

<At t r i but e> [Any Number] 2822

A list of environment attributes. Environment attributes are attributes that are not 2823
associated with the resource, the action, or with any of the subjects of the access 2824
request. 2825

6.7. Element <Attribute> 2826

The <At t r i but e> element is the central abstraction of the request context. It contains an 2827
attribute value and attribute meta-data. The attribute meta-data comprises the attribute 2828
identifier, the attribute issuer and the attribute issue instant. Attribute designators and attribute 2829
selectors in the policy refer to attributes by this meta-data. 2830

 <xs: el ement name=" At t r i but e" t ype=" xacml - cont ext : At t r i but eType" / > 2831
 <xs: compl exType name=" At t r i but eType" > 2832
 <xs: sequence> 2833
 <xs: el ement r ef =" xacml - cont ext : At t r i but eVal ue" mi nOccur s=" 0" / > 2834
 </ xs: sequence> 2835
 <xs: at t r i but e name=" At t r i but eI d" t ype=" xs: anyURI " use=" r equi r ed" / > 2836
 <xs: at t r i but e name=” Dat aType” t ype=” xs: anyURI ” use=” r equi r ed” / > 2837
 <xs: at t r i but e name=" I ssuer " t ype=" xs: st r i ng" use=" opt i onal " / > 2838
 <xs: at t r i but e name=" I ssueI nst ant " t ype=" xs: dat eTi me" use=" opt i onal " / > 2839
 </ xs: compl exType> 2840

The <At t r i but e> element is of AttributeType complex type. 2841

The <At t r i but e> element contains the following attributes and elements: 2842

At t r i but eI d [Required] 2843

Attribute identifier. A number of identifiers are reserved by XACML to denote commonly 2844
used attributes. 2845

Dat aType [Required] 2846

Attribute data type. 2847

I ssuer [Optional] 2848

Attribute issuer. This attribute value MAY be an x500Name that binds to a public key, or it 2849
may be some other identifier exchanged out-of-band by issuing and relying parties. 2850

I ssueI nst ant [Optional] 2851

 The date and time at which the attribute was issued. 2852

<At t r i but eVal ue> [Optional] 2853

 At most one attribute value. 2854

6.8. Element <AttributeValue> 2855

The <At t r i but eVal ue> element contains the value of an attribute. 2856

 <xs: el ement name=" At t r i but eVal ue" t ype=" xacml - cont ext : At t r i but eVal ueType" / > 2857
 <xs: compl exType name=" At t r i but eVal ueType" mi xed=” t r ue” > 2858
 <xs: sequence> 2859

cs-xacml-specification-1.0.doc 73

 <xs: any namespace=" ##any" pr ocessCont ent s=" l ax" mi nOccur s=" 0" 2860
maxOccur s=" unbounded" / > 2861
 </ xs: sequence> 2862
 <xs: anyAt t r i but e namespace=" ##any" pr ocessCont ent s=" l ax" / > 2863
 </ xs: compl exType> 2864

The <At t r i but eVal ue> element is of AttributeValueType type. 2865

The data type of the <At t r i but eVal ue> MAY be specified by using the DataType attribute of the 2866
parent <At t r i but e> element. 2867

6.9. Element <Response> 2868

The <Response> element encapsulates the authorization decision returned by the PDP. It 2869
includes a sequence of one or more results with one <Resul t > element per requested resource. 2870
Multiple results MAY be returned when the value of the “urn:oasis:xacml:1.0:resource:scope” 2871
resource attribute in the request context is “Descendants”. Support for multiple results is 2872
OPTIONAL. 2873

 <xs: el ement name=" Response" t ype=" xacml - cont ext : ResponseType" / > 2874
 <xs: compl exType name=" ResponseType" > 2875
 <xs: sequence> 2876
 <xs: el ement r ef =" xacml - cont ext : Resul t " maxOccur s=" unbounded" / > 2877
 </ xs: sequence> 2878
 </ xs: compl exType> 2879

The <Response> element is of ResponseType complex type. 2880

The <Response> element contains the following elements: 2881

<Resul t > [One to Many] 2882

An authorization decision result. 2883

6.10. Element <Result> 2884

The <Resul t > element represents an authorization decision result for the resource specified by 2885
the Resour ceI d attribute. It MAY include a set of obligations that MUST be fulfilled by the PEP. 2886
If the PEP does not understand an obligation, then it MUST act as if the PDP had denied access 2887
to the requested resource. 2888

 <xs: el ement name=" Resul t " t ype=" xacml - cont ext : Resul t Type" / > 2889
 <xs: compl exType name=" Resul t Type" > 2890
 <xs: sequence> 2891
 <xs: el ement r ef =" xacml - cont ext : Deci s i on" / > 2892
 <xs: el ement r ef =" xacml - cont ext : St at us" mi nOccur s=" 0" / > 2893
 <xs: el ement r ef =" xacml : Obl i gat i ons" mi nOccur s=" 0" / > 2894
 </ xs: sequence> 2895
 <xs: at t r i but e name=" Resour ceI d" t ype=" xs: anyURI " use=" opt i onal " / > 2896
 </ xs: compl exType> 2897

The <Resul t > element is of ResultType complex type. 2898

The <Resul t > element contains the following attributes and elements: 2899

Resour ceI d [Optional] 2900

cs-xacml-specification-1.0.doc 74

The identifier of the requested resource. If this attribute is omitted, then the resource 2901
identity is specified by the “ ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce-2902
i d” resource attribute in the <Request > element. 2903

<Deci s i on> [Required] 2904

 The authorization decision: “Permit”, “Deny”, “Indeterminate”, or “Not-applicable”. 2905

<St at us> [Optional] 2906

Indicates whether errors occurred during evaluation of the request, and optionally, 2907
information about those errors. 2908

<xacml : Obl i gat i ons> [Optional] 2909

A list of obligations that MUST be discharged by the PEP. If the PEP does not 2910
understand an obligation, then it MUST act as if the PDP had denied access to the 2911
requested resource. See Section 7.11 for a description of how the set of obligations to be 2912
returned by the PDP is determined. 2913

6.11. Element <Decision> 2914

The <Deci s i on> element contains the result of policy evaluation. 2915

 <xs: el ement name=" Deci s i on" t ype=" xacml - cont ext : Deci s i onType" / > 2916
 <xs: s i mpl eType name=" Deci s i onType" > 2917
 <xs: r est r i ct i on base=" xs: st r i ng" > 2918
 <xs: enumer at i on val ue=" Per mi t " / > 2919
 <xs: enumer at i on val ue=" Deny" / > 2920
 <xs: enumer at i on val ue=" I ndet er mi nat e" / > 2921
 <xs: enumer at i on val ue=" Not - appl i cabl e" / > 2922
 </ xs: r est r i ct i on> 2923
 </ xs: s i mpl eType> 2924

The <Deci s i on> element is of DecisionType simple type. 2925

The values of the <Deci s i on> element have the following meanings: 2926

 “Permit”: the requested resource access is permitted. 2927

 “Deny”: the requested resource access is denied. 2928

“Indeterminate”: the PDP is unable to evaluate the requested resource access. Reasons 2929
for such inability include: missing attributes, network errors while retrieving policies, 2930
division by zero during policy evaluation, syntax errors in the request or in the policy. 2931

“Not-applicable”: the PDP does not have any policy that applies to this request. 2932

6.12. Element <Status> 2933

The <St at us> element represents the status of the authorization decision result. 2934

 <xs: el ement name=" St at us" t ype=" xacml - cont ext : St at usType" / > 2935
 <xs: compl exType name=" St at usType" > 2936
 <xs: sequence> 2937
 <xs: el ement r ef =" xacml - cont ext : St at usCode" / > 2938
 <xs: el ement r ef =" xacml - cont ext : St at usMessage" mi nOccur s=" 0" / > 2939
 <xs: el ement r ef =" xacml - cont ext : St at usDet ai l " mi nOccur s=" 0" / > 2940
 </ xs: sequence> 2941
 </ xs: compl exType> 2942

cs-xacml-specification-1.0.doc 75

The <St at us> element is of StatusType complex type. 2943

The <St at us> element contains the following elements: 2944

<St at usCode> [Required] 2945

 Status code. 2946

<St at usMessage> [Optional] 2947

 A status message describing the status code. 2948

<St at usDet ai l > [Optional] 2949

 Additional status information. 2950

6.13. Element <StatusCode> 2951

The <St at usCode> element contains a major status code value and an optional sequence of 2952
minor status codes. 2953

 <xs: el ement name=" St at usCode" t ype=" xacml - cont ext : St at usCodeType" / > 2954
 <xs: compl exType name=" St at usCodeType" > 2955
 <xs: sequence> 2956
 <xs: el ement r ef =" xacml - cont ext : St at usCode" mi nOccur s=" 0" / > 2957
 </ xs: sequence> 2958
 <xs: at t r i but e name=" Val ue" t ype=" xs: QName" use=" r equi r ed" / > 2959
 </ xs: compl exType> 2960

The <St at usCode> element is of StatusCodeType complex type. 2961

The <St at usCode> element contains the following attributes and elements: 2962

Val ue [Required] 2963

See Section B.7 for a list of values. 2964

<St at usCode> [Any Number] 2965

 Minor status code. This status code qualifies its parent status code. 2966

6.14. Element <StatusMessage> 2967

The <St at usMessage> element is a free-form description of the status code. 2968

 <xs: el ement name=" St at usMessage" t ype=" xs: st r i ng" / > 2969

The <St at usMessage> element is of xs:string type. 2970

6.15. Element <StatusDetail> 2971

The <St at usDet ai l > element qualifies the <St at us> element with additional information. 2972

 <xs: el ement name=" St at usDet ai l " t ype=" xacml - cont ext : St at usDet ai l Type" / > 2973
 <xs: compl exType name=" St at usDet ai l Type" > 2974
 <xs: sequence> 2975
 <xs: any namespace=" ##any" pr ocessCont ent s=" l ax" mi nOccur s=" 0" 2976
maxOccur s=" unbounded" / > 2977
 </ xs: sequence> 2978
 </ xs: compl exType> 2979

cs-xacml-specification-1.0.doc 76

The <St at usDet ai l > element is of StatusDetailType complex type. 2980

The <St at usDet ai l > element allows arbitrary xml content. 2981

Inclusion of a <St at usDet ai l > element is optional. However, if a PDP returns one of the 2982
following XACML-defined <St at usCode> values and includes a <St at usDet ai l > element, then 2983
the following rules apply. 2984

 urn:oasis:names:tc:xacml:1.0:status:ok 2985

A PDP MUST NOT return a <St at usDet ai l > element in conjunction with the “ok” status value. 2986

 urn:oasis:names:tc:xacml:1.0:status:missing-attribute 2987

A PDP MAY choose not to return any <St at usDet ai l > information or MAY choose to return a 2988
<St at usDet ai l > element containing one or more <xacml - cont ext : At t r i but e> elements. If 2989
the PDP includes <At t r i but eVal ue> elements in the <At t r i but e> element, then this indicates 2990
the acceptable values for that attribute. If no <At t r i but eVal ue> elements are included, then 2991
this indicates the names of attributes that the PDP failed to resolve during its evaluation. The list 2992
of attributes may be partial or complete. There is no guarantee by the PDP that supplying the 2993
missing values or attributes will be sufficient to satisfy the policy. 2994

 urn:oasis:names:tc:xacml:1.0:status:syntax-error 2995

A PDP MUST NOT return a <St at usDet ai l > element in conjunction with the “syntax-error” status 2996
value. A syntax error may represent either a problem with the policy being used or with the 2997
request context. The PDP MAY return a <St at usMessage> describing the problem. 2998

 urn:oasis:names:tc:xacml:1.0:status:processing-error 2999

A PDP MUST NOT return <St at usDet ai l > element in conjunction with the “processing-error” 3000
status value. This status code indicates an internal problem in the PDP. For security reasons, the 3001
PDP MAY choose to return no further information to the PEP. In the case of a divide-by-zero error 3002
or other computational error, the PDP MAY return a <St at usMessage> describing the nature of 3003
the error. 3004

7. Functional requirements (normative) 3005

This section specifies certain functional requirements that are not directly associated with the 3006
production or consumption of a particular XACML element. 3007

7.1. Policy enforcement point 3008

This section describes the rquiremenst for the PEP. 3009

An application functions in the role of the PEP if it guards access to a set of resources and asks 3010
the PDP for an authorization decision. The PEP MUST abide by the authorization decision in 3011
the following way: 3012

A PEP SHALL allow access to the resource only if a valid XACML response of "Permit" is returned 3013
by the PDP. The PEP SHALL deny access to the resource in all other cases. An XACML 3014
response of "Permit" SHALL be considered valid only if the PEP understands all of the obligations 3015
contained in the response. 3016

cs-xacml-specification-1.0.doc 77

7.2. Base policy 3017

A PDP SHALL represent one policy or policy set, called its base policy. This base policy MAY be 3018
a <Pol i cy> element containing a <Tar get > element that matches every possible decision 3019
request, or (for instance) it MAY be a <Pol i cy> element containing a <Tar get > element that 3020
matches only a specific subject. In such cases, the base policy SHALL form the root-node of a 3021
tree of policies connected by <Pol i cyI dRef er ence> and <Pol i cySet I dRef er ence> 3022
elements to all the rules that may be applicable to any decision request that the PDP is capable 3023
of evaluating. 3024

In the case of a PDP that retrieves policies according to the decision request that it is processing, 3025
the base policy SHALL contain a <Pol i cy> element containing a <Tar get > element that matches 3026
every possible decision request and a Pol i cyCombi ni ngAl gI d attribute with the value “Only-3027
one-applicable". In other words, the PDP SHALL return an error if it retrieves policies that do not 3028
form a single tree. 3029

7.3. Target evaluation 3030

The target value SHALL be "Match" if the subjects, resource and action specified in the request 3031
context are all present in (i.e., within the scope of) the target. Its value SHALL be "No-match" if 3032
one or more of the subjects, resource or action specified in the request context is not present in 3033
the target. Its value SHALL be “Indeterminate” if any attribute value referenced in the target 3034
cannot be obtained. 3035

7.4. Condition evaluation 3036

The condition value SHALL be "True" if the <Condi t i on> element is absent, or if it evaluates to 3037
"True" for the attribute values supplied in the request context. Its value is "False" if the 3038
<Condi t i on> element evaluates to "False" for the attribute values supplied in the request 3039
context. If any attribute value referenced in the condition cannot be obtained, then the condition 3040
SHALL evaluate to "Indeterminate". 3041

7.5. Rule evaluation 3042

A rule has a value that can be calculated by evaluating its contents. Rule evaluation involves 3043
separate evaluation of the rule's target and condition. The rule truth table is shown in Table 1. 3044

Target Condition Rule Value

“Match” “True” Effect

“Match” “False” “Not-applicable”

“Match” “Indeterminate” “Indeterminate”

Not “Match” Don’t care “Not-applicable”

“Indeterminate” Don’t care “Indeterminate”

Table 1 - Rule truth table 3045

If the target value is "No-match" or “Indeterminate” then the rule value SHALL be “Not-applicable” 3046
or “Indeterminate”, respectively, regardless of the value of the condition. For these cases, 3047
therefore, the condition need not be evaluated in order to determine the rule value. 3048

cs-xacml-specification-1.0.doc 78

If the target value is “Match” and the condition value is “True”, then the effect specified in the rule 3049
SHALL determine the rule value. 3050

7.6. Policy evaluation 3051

A policy has a value that can be calculated by evaluating its contents. Policy evaluation involves 3052
separate evaluation of the policy's target and rules. The policy truth table is shown in Table 2. 3053

Target Rule values Policy Value

“Match” At least one rule
value is its Effect

Specified by the rule-
combining algorithm

“Match” All rule values
are “Not-
applicable”

“Not-applicable”

“Match” At least one rule
value is
“Indeterminate”

Specified by the rule-
combining algorithm

Not “Match” Don’t-care “Not-applicable”

“Indeterminate” Don’t-care “Indeterminate”

Table 2 - Rule truth table 3054

A Rules value of "At-least-one-applicable" SHALL be used if the <Rul e> element is absent, or if 3055
one or more of the rules contained in the policy is applicable to the decision request (i.e., returns 3056
a value of “Effect”; see Section 7.5). A value of “None-applicable” SHALL be used if no rule 3057
contained in the policy is applicable to the request and if no rule contained in the policy returns a 3058
value of “Indeterminate”. If no rule contained in the policy is applicable to the request but one or 3059
more rule returns a value of “Indeterminate”, then rules SHALL evaluate to "Indeterminate". 3060

If the target value is "No-match" or “Indeterminate” then the policy value SHALL be “Not-3061
applicable” or “Indeterminate”, respectively, regardless of the value of the rules. For these cases, 3062
therefore, the rules need not be evaluated in order to determine the policy value. 3063

If the target value is “Match” and the rules value is “At-least-one-applicable” or “Indeterminate”, 3064
then the rule-combining algorithm specified in the policy SHALL determine the policy value. 3065

7.7. Policy Set evaluation 3066

A policy set has a value that can be calculated by evaluating its contents. Policy set evaluation 3067
involves separate evaluation of the policy set's target and policies. The policy set truth table is 3068
shown in Table 3. 3069

Target Policy values Policy Set Value

Match At least one policy
value is its Effect

Specified by the policy-
combining algorithm

Match All policy values
are “Not-
applicable”

“Not-applicable”

Match At least one policy
value is

Specified by the policy-
combining algorithm

cs-xacml-specification-1.0.doc 79

“Indeterminate”

Not match Don’t-care “Not-applicable”

Indeterminate Don’t-care “Indeterminate”

Table 3 - Rule truth table 3070

A policies value of "At-least-one-applicable" SHALL be used if there are no contained or 3071
referenced policies or policy sets, or if one or more of the policies or policy sets contained in or 3072
referenced by the policy set is applicable to the decision request (i.e., returns a value determined 3073
by its rule-combining algorithm; see Section 7.6). A value of “None-applicable” SHALL be used if 3074
no policy or policy set contained in or referenced by the policy set is applicable to the request 3075
and if no policy or policy set contained in or referenced by the policy set returns a value of 3076
“Indeterminate”. If no policy or policy set contained in or referenced by the policy set is 3077
applicable to the request but one or more policy or policy set returns a value of “Indeterminate”, 3078
then policies SHALL evaluate to "Indeterminate". 3079

If the target value is "No-match" or “Indeterminate” then the policy set value SHALL be “Not-3080
applicable” or “Indeterminate”, respectively, regardless of the value of the policies. For these 3081
cases, therefore, the policies need not be evaluated in order to determine the policy set value. 3082

If the target value is “Match” and the policies value is “At-least-one-applicable” or “Indeterminate”, 3083
then the policy-combining algorithm specified in the policy set SHALL determine the policy set 3084
value. 3085

7.8. Hierarchical resources 3086

It is often the case that a resource is organized as a hierarchy (e.g. file system, XML document). 3087
Some access requesters may request access to an entire subtree of a resource specified by a 3088
node. XACML allows the PEP (or context handler) to specify whether the decision request is 3089
just for a single resource or for a subtree below the specified resource. The latter is equivalent to 3090
repeating a single request for each node in the entire subtree. When a request context contains a 3091
resource attribute of type 3092

"urn:oasis:names:tc:xacml:1.0:resource:scope" 3093

with a value of "Immediate", or if it does not contain that attribute, then the decision request 3094
SHALL be interpreted to apply to just the single resource specified by the Resour ceI d attribute. 3095

When the 3096

"urn:oasis:names:tc:xacml:1.0:resource:scope" 3097

attribute has the value "Children", the decision request SHALL be interpreted to apply to the 3098
specified resource and its immediate children resources. 3099

When the 3100

"urn:oasis:names:tc:xacml:1.0:resource:scope" 3101

attribute has the value "Descendants", the decision request SHALL be interpreted to apply to 3102
both the specified resource and all its descendant resources. 3103

In the case of "Children" and "Descendants", the authorization decision MAY include multiple 3104
results for the multiple sub-nodes in the resource sub-tree. 3105

cs-xacml-specification-1.0.doc 80

An XACML authorization response MAY contain multiple <Resul t > elements. In this case, the 3106
<St at us> element SHOULD be included only in the first <Resul t > element (the remaining 3107
<Resul t > elements SHOULD NOT include the <St at us> element). 3108

Note that the method by which the PDP discovers whether the resource is hierarchically organized 3109
or not is outside the scope of XACML. 3110

7.9. Attributes 3111

Attributes are specified in the request context and are referred to in the policy by subject, 3112
resource, action and environment attribute designators and attribute selectors. A named 3113
attribute is the term used for the criteria that the specific subject, resource, action and 3114
environment attribute designators and selectors use to refer to attributes in the subject, 3115
resource, action and environment elements of the request context, respectively. 3116

7.9.1. Attribute Matching 3117

A named attribute has specific criteria with which to match attributes within the context. An 3118
attribute specifies At t r i but eI d, Dat aType and I ssuer attributes, and each named attribute 3119
also specifies At t r i but eI d, Dat aType and I ssuer attributes. A named attribute SHALL match 3120
an attribute if the values of their respective At t r i but eI d, Dat aType and I ssuer attributes 3121
match within their particular element, e.g. subject, resource, action or environment, of the 3122
context. The At t r i but eI d attribute MUST match, by URI equality, that of the At t r i but eI d 3123
attribute of the attribute. The Dat aType attribute MUST match, by URI equality, that of the 3124
Dat aType attribute of the same attribute. If the I ssuer attribute is supplied, it MUST match, by 3125
URI equality, the I ssuer attribute of the same attribute. If the I ssuer attribute is not supplied in 3126
the named attribute, then the matching of the attribute to the named attribute SHALL be governed 3127
by At t r i but eI d and Dat aType attributes alone, regardless of the presence, absence, or actual 3128
value of the I ssuer attribute. In the case of the attribute selector, the matching of the attribute to 3129
the named attribute SHALL be governed by the XPath expression, Dat aType and I ssuer 3130
attributes. 3131

7.9.2. Attribute Retrieval 3132

The PDP SHALL request the values of attributes in the request context from the context handler. 3133
The PDP SHALL reference the attributes as if they were in a physical request context document, 3134
but the context handler is responsible for obtaining and supplying the requested values. The 3135
context handler SHALL return the values of attributes that match the attribute designator or 3136
attribute selector and form them into a bag of values with the specified Dat aType attribute. If no 3137
attributes from the request context match, then the attribute SHALL be considered missing. If 3138
the attribute is missing, the Must BePr esent at t r i but e governs whether the attribute 3139
designator or attribute selector returns an empty bag or an indeterminate result. If 3140
Must BePr esent is “False” (default value), then a missing attribute results in an empty bag. If 3141
Must BePr esent is “True”, then a missing attribute results in “Indeterminate”. This 3142
“Indeterminate” result SHALL be handled in accordance with the specification of the encompassing 3143
expressions, rules, policies, and policy sets. If the result is “Indeterminate”, then the 3144
At t r i but eI d, Dat aType and I ssuer of the attribute MAY be listed in the authorization 3145
decision as described in Section 7.10. However, a PDP MAY choose not to return such 3146
information for security reasons. 3147

cs-xacml-specification-1.0.doc 81

7.9.3. Environment Attributes 3148

Environment attributes are listed in Section B.8. If a value for one of these attributes is supplied 3149
in the decision request, then the context handler SHALL use that value. Otherwise, the context 3150
handler SHALL supply a value. For the date and time attributes, the supplied value SHALL have 3151
the semantics of "date and time that apply to the decision request". 3152

7.9.4. Subject Attributes 3153

The “subject-category” attribute is a named attribute with the criteria of an At t r i but eI d of 3154
“ ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y” and Dat aType attribute 3155
of “ ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” . For each <Subj ect > element in the 3156
decision request, if a value for the “subject-category” attribute is supplied, then the context 3157
handler SHALL use that value. Otherwise, the context handler SHALL supply the default value 3158
“ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: access- subj ect ” . If there is 3159
more than one “subject-category” attribute supplied in the decision request for any given 3160
<Subj ect > element, then the decision request is invalid. 3161

7.10. Authorization decision 3162

Given a valid XACML policy or policy set, a compliant XACML PDP MUST evaluate the policy as 3163
specified in Sections 5, 6 and 4.2. The PDP MUST return a response context, with one 3164
<Deci s i on> element of value "Permit", "Deny", "Indeterminate" or "Not-applicable". 3165

If the PDP cannot make a decision, then an "Indeterminate" <Deci s i on> element contents SHALL 3166
be returned. The PDP MAY return a <Deci s i on> element contents of "Indeterminate" with a 3167
status code of: 3168

"urn:oasis:names:tc:xacml:1.0:missing-attribute", 3169

signifying that more information is needed. In this case, the <St at us> element MAY list the 3170
names and data-types of any attributes of the subjects and the resource that are needed by the 3171
PDP to refine its decision. A PEP MAY resubmit a refined request context in response to a 3172
<Deci s i on> element contents of "Indeterminate" with a status code of 3173

"urn:oasis:names:tc:xacml:1.0:missing-attribute", 3174

by adding attribute values for the attribute names that were listed in the previous response. When 3175
the PDP returns a <Deci s i on> element contents of "Indeterminate", with a status code of 3176

"urn:oasis:names:tc:xacml:1.0:missing-attribute", 3177

it MUST NOT list the names and data-types of any attribute of the subject or the resource for 3178
which values were supplied in the original request. Note, this requirement forces the PDP to 3179
eventually return an authorization decision of "Permit", "Deny" or "Indeterminate" with some other 3180
status code, in response to successively-refined requests. 3181

7.11. Obligations 3182

A policy or policy set may contain one or more obligations. When such a policy or policy set is 3183
evaluated, an obligation SHALL be passed up to the next level of evaluation (the enclosing or 3184
referencing policy set or authorization decision) only if the effect of the policy or policy set 3185
being evaluated matches the value of the xacml : Ful f i l l On attribute of the obligation. 3186
 3187

cs-xacml-specification-1.0.doc 82

As a consequence of this procedure, no obligations SHALL be returned to the PEP if the policies 3188
or policy sets from which they are drawn are not evaluated, or if their evaluated result is 3189
"Indeterminate" or "Not-applicable", or if the decision resulting from evaluating the policy or policy 3190
set does not match the decision resulting from evaluating an enclosing policy set. 3191
 3192
If the PDP's evaluation is viewed as a tree of policy sets and policies, each of which returns 3193
"Permit" or "Deny", then the set of obligations returned by the PDP to the PEP will include only the 3194
obligations associated with those paths where the effect at each level of evaluation is the same as 3195
the effect being returned by the PDP. 3196

A PEP that receives a valid XACML response of "Permit" with obligations SHALL be responsible 3197
for fulfilling all of those obligations. A PEP that receives an XACML response of "Deny" with 3198
obligations SHALL be responsible for fulfilling all of the obligations that it understands. 3199

8. XACML extensibility points (non-normative) 3200

This section describes the points within the XACML model and schema where extensions can be 3201
added 3202

8.1. Extensible XML attribute types 3203

The following XML attributes have values that are URIs or QNames. These may be extended by 3204
the creation of new URIs or QNames associated with new semantics for these attributes. 3205

At t r i but eI d, 3206

At t r i but eVal ue, 3207

Dat aType, 3208

Funct i onI d, 3209

Mat chI d, 3210

Obl i gat i onI d, 3211

Pol i cyCombi ni ngAl gI d, 3212

Rul eCombi ni ngAl gI d, 3213

St at usCode. 3214

See Section 5 for definitions of these attribute types. 3215

8.2. Extensible XACML attribute types 3216

The following XACML standard At t r i but eI ds associated with the XACML standard element: 3217
<At t r i but e> have values that are URIs or QNames. These may be extended by the creation of 3218
new URIs or QNames associated with new semantics for these attributes. 3219

urn:oasis:names:tc:xacml:1.0:subject:subject-category. 3220

cs-xacml-specification-1.0.doc 83

8.3. Structured attributes 3221

An XACML <At t r i but eVal ue> element MAY contain an instance of a structured XML data-type. 3222
Section A.3 describes a number of standard techniques to identify data items within such a 3223
structured attribute. Listed here are some additional techniques that require XACML extensions. 3224

1. For a given structured data type, a community of XACML users MAY define new attribute 3225
identifiers for each leaf sub-element of the structured data type that has a type conformant 3226
with one of the XACML-defined primitive data-types. Using these new attribute identifiers, 3227
the PEPs or context handlers used by that community of users can flatten instances of 3228
the structured data-type into a sequence of individual <At t r i but e> elements. Each such 3229
<At t r i but e> element can be compared using the XACML-defined functions. Using this 3230
method, the structured data type itself never appears in an <At t r i but eVal ue> element. 3231

2. A community of XACML users MAY define a new function that can be used to compare a 3232
value of the structured data-type against some other value. This method may only be used 3233
by PDPs that support the new function. 3234

9. Security and privacy considerations (non-3235

normative) 3236

This section identifies possible security and privacy compromise scenarios that should be 3237
considered when implementing an XACML-based system. The section is informative only. It is left 3238
to the implementer to decide whether these compromise scenarios are practical in their 3239
environment and to select appropriate safeguards. 3240

9.1. Threat model 3241

We assume here that the adversary has access to the communication channel between the 3242
XACML actors and is able to interpret, insert, delete and modify messages or parts of messages. 3243

Additionally, an actor may use information from a former transaction maliciously in subsequent 3244
transactions. It is further assumed that rules and policies are only as reliable as the actors that 3245
create and use them. Thus it is incumbent on each actor to establish appropriate trust in the other 3246
actors upon which it relies. Mechanisms for trust establishment are outside the scope of this 3247
specification. 3248

The messages that are transmitted between the actors in the XACML model are susceptible to 3249
attack by malicious third parties. Other points of vulnerability include the PEP, the PDP and the 3250
PAP. While some of these entities are not strictly within the scope of this specification, their 3251
compromise could lead to the compromise of access control enforced by the PEP. 3252

It should be noted that there are other components of a distributed system that may be 3253
compromised, such as an operating system and the domain-name system (DNS) that are outside 3254
the scope of this discussion of threat models. Compromise in these components may also lead to a 3255
policy violation. 3256

The following sections detail specific compromise scenarios that may be relevant to an XACML 3257
system. 3258

cs-xacml-specification-1.0.doc 84

9.1.1. Unauthorized disclosure 3259

XACML does not specify any inherent mechanisms for confidentiality of the messages exchanged 3260
between actors. Therefore, an adversary could observe the messages in transit. Under certain 3261
security policies, disclosure of this information is a violation. Disclosure of attributes or the types 3262
of decision requests that a subject submits may be a breach of privacy policy. In the commercial 3263
sector, the consequences of unauthorized disclosure of personal data may range from 3264
embarrassment to the custodian to imprisonment and large fines in the case of medical or financial 3265
data. 3266

Unauthorized disclosure is addressed by confidentiality mechanisms. 3267

9.1.2. Message replay 3268

A message replay attack is one in which the adversary records and replays legitimate messages 3269
between XACML actors. This attack may lead to denial of service, the use of out-of-date 3270
information or impersonation. 3271

Prevention of replay attacks requires the use of message freshness mechanisms. 3272

Note that encryption of the message does not mitigate a replay attack since the message is just 3273
replayed and does not have to be understood by the adversary. 3274

9.1.3. Message insertion 3275

A message insertion attack is one in which the adversary inserts messages in the sequence of 3276
messages between XACML actors. 3277

The solution to a message insertion attack is to use mutual authentication and a message 3278
sequence integrity mechanism between the actors. It should be noted that just using SSL mutual 3279
authentication is not sufficient. This only proves that the other party is the one identified by the 3280
subject of the X.509 certificate. In order to be effective, it is necessary to confirm that the certificate 3281
subject is authorized to send the message. 3282

9.1.4. Message deletion 3283

A message deletion attack is one in which the adversary deletes messages in the sequence of 3284
messages between XACML actors. Message deletion may lead to denial of service. However, a 3285
properly designed XACML system should not render an incorrect authorization decision as a result 3286
of a message deletion attack. 3287

The solution to a message deletion attack is to use a message integrity mechanism between the 3288
actors. 3289

9.1.5. Message modification 3290

If an adversary can intercept a message and change its contents, then they may be able to alter an 3291
authorization decision. Message integrity mechanisms can prevent a successful message 3292
modification attack. 3293

9.1.6. Not-applicable results 3294

A result of "Not-applicable" means that the PDP did not have a policy whose target matched the 3295
information in the decision request. In general, we highly recommend using a "default-deny" 3296

cs-xacml-specification-1.0.doc 85

policy, so that when a PDP would have returned "Not-applicable", a result of "Deny" is returned 3297
instead. 3298

In some security models, however, such as is common in many Web Servers, a result of "Not-3299
applicable" is treated as equivalent to "Permit". There are particular security considerations that 3300
must be taken into account for this to be safe. These are explained in the following paragraphs. 3301

If "Not-applicable" is to be treated as "Permit", it is vital that the matching algorithms used by the 3302
policy to match elements in the decision request are closely aligned with the data syntax used by 3303
the applications that will be submitting the decision request. A failure to match will be treated as 3304
"Permit", so an unintended failure to match may allow unintended access. 3305

A common example of this is a Web Server. Commercial http responders allow a variety of 3306
syntaxes to be treated equivalently. The "%" can be used to represent characters by hex value. 3307
The URL path "/../" provides multiple ways of specifying the same value. Multiple character sets 3308
may be permitted and, in some cases, the same printed character can be represented by different 3309
binary values. Unless the matching algorithm used by the policy is sophisticated enough to catch 3310
these variations, unintended access may be permitted. 3311

It is safe to treat "Not-applicable" as "Permit" only in a closed environment where all applications 3312
that formulate a decision request can be guaranteed to use the exact syntax expected by the 3313
policies used by the PDP. In a more open environment, where decision requests may be received 3314
from applications that may use any legal syntax, it is strongly recommended that "Not-applicable" 3315
NOT be treated as "Permit" unless matching rules have been very carefully designed to match all 3316
possible applicable inputs, regardless of syntax or type variations. 3317

9.1.7. Negative rules 3318

A negative rule is one that is based on a predicate not being "True". If not used with care, 3319
negative rules can lead to policy violation, therefore some authorities recommend that they not be 3320
used. However, negative rules can be extremely efficient in certain cases, so XACML has chosen 3321
to include them. Nevertheless, it is recommended that they be used with care and avoided if 3322
possible. 3323

A common use for negative rules is to deny access to an individual or subgroup when their 3324
membership in a larger group would otherwise permit them access. For example, we might want to 3325
write a rule that allows all Vice Presidents to see the unpublished financial data, except for Joe, 3326
who is only a Ceremonial Vice President and can be indiscreet in his communications. If we have 3327
complete control of the administration of subject attributes, a superior approach would be to 3328
define “Vice President” and “Ceremonial Vice President” as distinct groups and then define rules 3329
accordingly. However, in some environments this approach may not be feasible. (It is worth noting 3330
in passing that, generally speaking, referring to individuals in rules does not scale well. Generally, 3331
shared attributes are preferred.) 3332

If not used with care, negative rules can lead to policy violation in two common cases. They are: 3333
when attributes are suppressed and when the base group changes. An example of suppressed 3334
attributes would be if we have a policy that access should be permitted, unless the subject is a 3335
credit risk. If it is possible that the attribute of being a credit risk may be unknown to the PDP for 3336
some reason, then unauthorized access may be permitted. In some environments, the subject 3337
may be able to suppress the publication of attributes by the application of privacy controls, or the 3338
server or repository that contains the information may be unavailable for accidental or intentional 3339
reasons. 3340

An example of a changing base group would be if there is a policy that everyone in the engineering 3341
department may change software source code, except for secretaries. Suppose now that the 3342
department was to merge with another engineering department and the intent is to maintain the 3343
same policy. However, the new department also includes individuals identified as administrative 3344

cs-xacml-specification-1.0.doc 86

assistants, who ought to be treated in the same way as secretaries. Unless the policy is altered, 3345
they will unintentionally be permitted to change software source code. Problems of this type are 3346
easy to avoid when one individual administers all policies, but when administration is distributed, 3347
as XACML allows, this type of situation must be explicitly guarded against. 3348

9.2. Safeguards 3349

9.2.1. Authentication 3350

Authentication provides the means for one party in a transaction to determine the identity of the 3351
other party in the transaction. Authentication may be in one direction, or it may be bilateral. 3352

Given the sensitive nature of access control systems, it is important for a PEP to authenticate the 3353
identity of the PDP to which it sends decision requests. Otherwise, there is a risk that an 3354
adversary could provide false or invalid authorization decisions, leading to a policy violation. 3355

It is equally important for a PDP to authenticate the identity of the PEP and assess the level of trust 3356
to determine what, if any, sensitive data should be passed. One should keep in mind that even 3357
simple "Permit" or "Deny" responses could be exploited if an adversary were allowed to make 3358
unlimited requests to a PDP. 3359

Many different techniques may be used to provide authentication, such as co-located code, a 3360
private network, a VPN or digital signatures. Authentication may also be performed as part of the 3361
communication protocol used to exchange the contexts. In this case, authentication may be 3362
performed at the message level or at the session level. 3363

9.2.2. Policy administration 3364

If the contents of policies are exposed outside of the access control system, potential subjects 3365
may use this information to determine how to gain unauthorized access. 3366

To prevent this threat, the repository used for the storage of policies may itself require access 3367
control. In addition, the <St at us> element should be used to return values of missing attributes 3368
only when exposure of the identities of those attributes will not compromise security. 3369

9.2.3. Confidentiality 3370

Confidentiality mechanisms ensure that the contents of a message can be read only by the desired 3371
recipients and not by anyone else who encounters the message while it is in transit. There are two 3372
areas in which confidentiality should be considered: one is confidentiality during transmission; the 3373
other is confidentiality within a <Pol i cy> element. 3374

9.2.3.1. Communication confidentiality 3375

In some environments it is deemed good practice to treat all data within an access control system 3376
as confidential. In other environments, policies may be made freely available for distribution, 3377
inspection and audit. The idea behind keeping policy information secret is to make it more difficult 3378
for an adversary to know what steps might be sufficient to obtain unauthorized access. Regardless 3379
of the approach chosen, the security of the access control system should not depend on the 3380
secrecy of the policy. 3381

Any security concerns or requirements related to transmitting or exchanging XACML <pol i cy> 3382
elements are outside the scope of the XACML standard. While it is often important to ensure that 3383
the integrity and confidentiality of <pol i cy> elements is maintained when they are exchanged 3384

cs-xacml-specification-1.0.doc 87

between two parties, it is left to the implementers to determine the appropriate mechanisms for their 3385
environment. 3386

Communications confidentiality can be provided by a confidentiality mechanism, such as SSL. 3387
Using a point-to-point scheme like SSL may lead to other vulnerabilities when one of the end-points 3388
is compromised. 3389

9.2.3.2. Statement level confidentiality 3390

In some cases, an implementation may want to encrypt only parts of an XACML <Pol i cy> 3391
element. 3392

The XML Encryption Syntax and Processing Candidate Recommendation from W3C can be used 3393
to encrypt all or parts of an XML document. This specification is recommended for use with 3394
XACML. 3395

It should go without saying that if a repository is used to facilitate the communication of cleartext 3396
(i.e., unencrypted) policy between the PAP and PDP, then a secure repository should be used to 3397
store this sensitive data. 3398

9.2.4. Policy integrity 3399

The XACML policy, used by the PDP to evaluate the request context, is the heart of the system. 3400
Therefore, maintaining its integrity is essential. There are two aspects to maintaining the integrity of 3401
the policy. One is to ensure that <Pol i cy> elements have not been altered since they were 3402
originally created by the PAP. The other is to ensure that <Pol i cy> elements have not been 3403
inserted or deleted from the set of policies. 3404

In many cases, both aspects can be achieved by ensuring the integrity of the actors and 3405
implementing session-level mechanisms to secure the communication between actors. The 3406
selection of the appropriate mechanisms is left to the implementers. However, when policy is 3407
distributed between organizations to be acted on at a later time, or when the policy travels with the 3408
protected resource, it would be useful to sign the policy. In these cases, the XML Signature 3409
Syntax and Processing standard from W3C is recommended to be used with XACML. 3410

Digital signatures should only be used to ensure the integrity of the statements. Digital signatures 3411
should not be used as a method of selecting or evaluating policy. That is, the PDP should not 3412
request a policy based on who signed it or whether or not it has been signed (as such a basis for 3413
selection would, itself, be a matter of policy). However, the PDP must verify that the key used to 3414
sign the policy is one controlled by the purported issuer of the policy. The means to do this are 3415
dependent on the specific signature technology chosen and are outside the scope of this document. 3416

9.2.5. Policy identifiers 3417

Since policies can be referenced by their identifiers, it is the responsibility of the PAP to ensure 3418
that these are unique. Confusion between identifiers could lead to misidentification of the 3419
applicable policy. This specification is silent on whether a PAP must generate a new identifier 3420
when a policy is modified or may use the same identifier in the modified policy. This is a matter of 3421
administrative practice. However, care must be taken in either case. If the identifier is reused, 3422
there is a danger that other policies or policy sets that reference it may be adversely affected. 3423
Conversely, if a new identifier is used, these other policies may continue to use the prior policy, 3424
unless it is deleted. In either case the results may not be what the policy administrator intends. 3425

cs-xacml-specification-1.0.doc 88

9.2.6. Trust model 3426

Discussions of authentication, integrity and confidentiality mechanisms necessarily assume an 3427
underlying trust model: how can one actor come to believe that a given key is uniquely associated 3428
with a specific, identified actor so that the key can be used to encrypt data for that actor or verify 3429
signatures (or other integrity structures) from that actor? Many different types of trust model exist, 3430
including strict hierarchies, distributed authorities, the Web, the bridge and so on. 3431

It is worth considering the relationships between the various actors of the access control system in 3432
terms of the interdependencies that do and do not exist. 3433

• None of the entities of the authorization system are dependent on the PEP. They may 3434
collect data from it, for example authentication, but are responsible for verifying it. 3435

• The correct operation of the system depends on the ability of the PEP to actually enforce 3436
policy decisions. 3437

• The PEP depends on the PDP to correctly evaluate policies. This in turn implies that the 3438
PDP is supplied with the correct inputs. Other than that, the PDP does not depend on the 3439
PEP. 3440

• The PDP depends on the PAP to supply appropriate policies. The PAP is not dependent 3441
on other components. 3442

9.2.7. Privacy 3443

It is important to be aware that any transactions that occur with respect to access control may 3444
reveal private information about the actors. For example, if an XACML policy states that certain 3445
data may only be read by subjects with “Gold Card Member” status, then any transaction in which 3446
a subject is permitted access to that data leaks information to an adversary about the subject's 3447
status. Privacy considerations may therefore lead to encryption and/or to access control policies 3448
surrounding the enforcement of XACML policy instances themselves: confidentiality-protected 3449
channels for the request/response protocol messages, protection of subject attributes in storage 3450
and in transit, and so on. 3451

Selection and use of privacy mechanisms appropriate to a given environment are outside the scope 3452
of XACML. The decision regarding whether, how and when to deploy such mechanisms is left to 3453
the implementers associated with the environment. 3454

10. Conformance (normative) 3455

10.1. Introduction 3456

The XACML specification addresses two aspects of conformance: 3457

1.The OASIS procedure for ratification of a committee specification as an OASIS standard requires 3458
that three independent implementers attest that they are "successfully using" the committee 3459
specification, and 3460

2. The XACML specification defines a number of functions, etc. that have somewhat specialist 3461
application, therefore they are not required to be implemented in an implementation that claims to 3462
conform with the OASIS standard. 3463

cs-xacml-specification-1.0.doc 89

10.2. Attestation 3464

An implementer MAY attest to be "successfully using" the XACML committee specification provided 3465
the implementation successfully executes a set of test-cases. The test cases are hosted by Sun 3466
Microsystems and can be located from the XACML web page. The site hosting the test cases 3467
contains a full description of the test cases and how to execute them. 3468

10.3. Conformance tables 3469

This section lists those portions of the specification that MUST be included in an implementation of 3470
a PDP that claims to conform with XACML v1.0. 3471

Note: "M" means mandatory-to-implement. "O" means optional. 3472

10.3.1. Schema elements 3473

The implementation MUST support those schema elements that are marked “M”. 3474

Namespace El ement M/ O
xacml : Pol i cy Act i on M
xacml : Pol i cy Act i onAt t r i but eDesi gnat or M
xacml : Pol i cy Act i onMat ch M
xacml : Pol i cy Act i ons M
xacml : Pol i cy AnyAct i on M
xacml : Pol i cy AnyResour ce M
xacml : Pol i cy AnySubj ect M
xacml : Pol i cy Appl y M
xacml : Pol i cy At t r i but eAssi gnment O
xacml : Pol i cy At t r i but eSel ect or O
xacml : Pol i cy At t r i but eVal ue M
xacml : Pol i cy Condi t i on M
xacml : Pol i cy Descr i pt i on M
xacml : Pol i cy Envi r onment At t r i but eDesi gnat or M
Xacml : Pol i cy Funct i on M
xacml : Pol i cy Obl i gat i on O
xacml : Pol i cy Obl i gat i ons O
xacml : Pol i cy Pol i cy M
xacml : Pol i cy Pol i cyDef aul t s O
xacml : Pol i cy Pol i cyI dRef er ence M
xacml : Pol i cy Pol i cySet M
xacml : Pol i cy Pol i cySet Def aul t s O
xacml : Pol i cy Pol i cySet I dRef er ence M
xacml : Pol i cy Resour ce M
xacml : Pol i cy Resour ceAt t r i but eDesi gnat or M
xacml : Pol i cy Resour ceMat ch M
xacml : Pol i cy Resour ces M
xacml : Pol i cy Rul e M
xacml : Pol i cy Subj ect M
xacml : Pol i cy Subj ect At t r i but eDesi gnat or M
xacml : Pol i cy Qual i f i edSubj ect At t r i but eDesi gn

at or
M

xacml : Pol i cy Subj ect Mat ch M
xacml : Pol i cy Subj ect s M
xacml : Pol i cy Tar get M
xacml : Pol i cy XPat hVer si on O
xacml : Cont ext Act i on M

cs-xacml-specification-1.0.doc 90

xacml : Cont ext At t r i but e M
xacml : Cont ext At t r i but eVal ue M
xacml : Cont ext Deci s i on M
xacml : Cont ext Envi r onment M
xacml : Cont ext Obl i gat i ons O
xacml : Cont ext Request M
xacml : Cont ext Resour ce M
xacml : Cont ext Resour ceCont ent O
xacml : Cont ext Response M
xacml : Cont ext Resul t M
xacml : Cont ext St at us O
xacml : Cont ext St at usCode O
xacml : Cont ext St at usDet ai l O
xacml : Cont ext St at usMessage O
xacml : Cont ext Subj ect M

10.3.2. Identifier Prefixes 3475

The following identifier prefixes are reserved by XACML. 3476

I dent i f i er
ur n: oasi s: names: t c: xacml : 1. 0
ur n: oasi s: names: t c: xacml : 1. 0: conf or mance- t est
ur n: oasi s: names: t c: xacml : 1. 0: cont ext
ur n: oasi s: names: t c: xacml : 1. 0: exampl e
ur n: oasi s: names: t c: xacml : 1. 0: f unct i on
ur n: oasi s: names: t c: xacml : 1. 0: pol i cy
ur n: oasi s: names: t c: xacml : 1. 0: subj ect
ur n: oasi s: names: t c: xacml : 1. 0: r esour ce
ur n: oasi s: names: t c: xacml : 1. 0: act i on

10.3.3. Algorithms 3477

The implementation MUST include the rule- and policy-combining algorithms associated with the 3478
following identifiers that are marked "M". 3479

Al gor i t hm M/ O
ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng-
al gor i t hm: deny- over r i des

M

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng-
al gor i t hm: deny- over r i des

M

ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng-
al gor i t hm: per mi t - over r i des

M

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng-
al gor i t hm: per mi t - over r i des

M

ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng-
al gor i t hm: f i r st - appl i cabl e

M

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng-
al gor i t hm: f i r st - appl i cabl e

M

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng-
al gor i t hm: onl y- one- appl i cabl e

M

10.3.4. Status Codes 3480

Implementation support for the urn:oasis:names:tc:xacml:1.0:context:status element is optional, but 3481
if the element is supported, then the following status codes must be supported and must be used in 3482
the way XACML has specified. 3483

cs-xacml-specification-1.0.doc 91

I dent i f i er M/ O
ur n: oasi s: names: t c: xacml : 1. 0: st at us: mi ssi ng- at t r i but e M
ur n: oasi s: names: t c: xacml : 1. 0: st at us: ok M
ur n: oasi s: names: t c: xacml : 1. 0: st at us: pr ocessi ng- er r or M
ur n: oasi s: names: t c: xacml : 1. 0: st at us: synt ax- er r or M

10.3.5. Attributes 3484

The implementation MUST support the attributes associated with the following attribute identifiers 3485
as specified by XACML. The value for these attributes MUST be provided by the PDP, so, unlike 3486
most other attributes, their semantics are not transparent to the PDP implementation. 3487

I dent i f i er M/ O
ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - t i me M
ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat e M
ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat eTi me M
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y M

10.3.6. Identifiers 3488

The implementation MUST use the attributes associated with the following identifiers in the way 3489
XACML has defined. This requirement pertains primarily to implementations of a PAP or PEP that 3490
use XACML, since the semantics of the attributes are transparent to the PDP. 3491

I dent i f i er M/ O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hn- l ocal i t y : dns- name O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hn- l ocal i t y : i p- addr ess O
ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- l ocat i on O
ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- i d O
ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: scope O
ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: s i mpl e- f i l e- name O
ur n: oasi s: names: t c: xacml : 1. 0: : act i on: act i on- i d M
ur n: oasi s: names: t c: xacml : 1. 0: : act i on: i mpl i ed- act i on M
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hent i cat i on- met hod O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hent i cat i on- t i me O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : key- i nf o O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : r equest - t i me O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : sessi on- st ar t - t i me O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d- qual i f i er O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: access- subj ect M
ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: codebase O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: i nt er medi ar y- subj ect O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: r eci pi ent - subj ect O
ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: r equest i ng- machi ne O

10.3.7. Data Types 3492

The implementation MUST support the data types associated with the following identifiers marked 3493
"M". 3494

Dat a- t ype M/ O
ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#bool ean M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#doubl e M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat e M

cs-xacml-specification-1.0.doc 92

ht t p: / / www. w3. or g/ 2001/ XMLSchema#dat eTi me M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#anyURI M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#hexBi nar y M
ht t p: / / www. w3. or g/ 2001/ XMLSchema#base64Bi nar y M
ht t p: / / www. w3. or g/ TR/ xquey- oper aqt or s: dayTi meDur at i on M
ht t p: / / www. w3. or g/ TR/ xquey- oper aqt or s: year Mont hDur at i on M
ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype: r f c822Name M
ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype: x500Name M

10.3.8. Functions 3495

The implementation MUST properly process those functions associated with the identifiers marked 3496
with an "M". 3497

xmlns:function=”urn:oasis:names:tc:xacml:1.0:function” 3498

Funct i on M/ O
f unct i on: st r i ng- equal M
f unct i on: bool ean- equal M
f unct i on: i nt eger - equal M
f unct i on: doubl e- equal M
f unct i on: dat e- equal M
f unct i on: t i me- equal M
f unct i on: dat eTi me- equal M
f unct i on: anyURI - equal M
f unct i on: x500Name- equal M
f unct i on: r f c822name- equal M
f unct i on: hexBi nar y- equal M
f unct i on: base64Bi nar y- equal M
f unct i on: i nt eger - add M
f unct i on: doubl e- add M
f unct i on: i nt eger - subt r act M
f unct i on: doubl e- subt r act M
f unct i on: i nt eger - mul t i pl y M
f unct i on: doubl e- mul t i pl y M
f unct i on: i nt eger - di v i de M
f unct i on: doubl e- di v i de M
f unct i on: i nt eger - mod M
f unct i on: i nt eger - abs M
f unct i on: doubl e- abs M
f unct i on: r ound M
f unct i on: f l oor M
f unct i on: st r i ng- nor mal i ze- space M
f unct i on: st r i ng- nor mal i ze- t o- l ower - case M
f unct i on: doubl e- t o- i nt eger M
f unct i on: i nt eger - t o- doubl e M
f unct i on: or M
f unct i on: and M
f unct i on: n- of M
f unct i on: not M
f unct i on: pr esent M
f unct i on: i nt eger - gr eat er - t han M
f unct i on: i nt eger - gr eat er - t han- or - equal M
f unct i on: i nt eger - l ess- t han M
f unct i on: i nt eger - l ess- t han- or - equal M
f unct i on: doubl e- gr eat er - t han M
f unct i on: doubl e- gr eat er - t han- or - equal M

cs-xacml-specification-1.0.doc 93

f unct i on: doubl e- l ess- t han M
f unct i on: doubl e- l ess- t han- or - equal M
f unct i on: dat eTi me- add- dayTi meDur at i on M
f unct i on: dat eTi me- add- year Mont hDur at i on M
f unct i on: dat eTi me- subt r act - dayTi meDur at i on M
f unct i on: dat eTi me- subt r act - year Mont hDur at i on M
f unct i on: dat e- add- year Mont hDur at i on M
f unct i on: dat e- subt r act - year Mont hDur at i on M
f unct i on: st r i ng- gr eat er - t han M
f unct i on: st r i ng- gr eat er - t han- or - equal M
f unct i on: st r i ng- l ess- t han M
f unct i on: st r i ng- l ess- t han- or - equal M
f unct i on: t i me- gr eat er - t han M
f unct i on: t i me- gr eat er - t han- or - equal M
f unct i on: t i me- l ess- t han M
f unct i on: t i me- l ess- t han- or - equal M
f unct i on: dat eTi me- gr eat er - t han M
f unct i on: dat eTi me- gr eat er - t han- or - equal M
f unct i on: dat eTi me- l ess- t han M
f unct i on: dat eTi me- l ess- t han- or - equal M
f unct i on: dat e- gr eat er - t han M
f unct i on: dat e- gr eat er - t han- or - equal M
f unct i on: dat e- l ess- t han M
f unct i on: dat e- l ess- t han- or - equal M
f unct i on: st r i ng- one- and- onl y M
f unct i on: st r i ng- bag- si ze M
f unct i on: st r i ng- i s- i n M
f unct i on: st r i ng- bag M
f unct i on: bool ean- one- and- onl y M
f unct i on: bool ean- bag- si ze M
f unct i on: bool ean- i s- i n M
f unct i on: bool ean- bag M
f unct i on: i nt eger - one- and- onl y M
f unct i on: i nt eger - bag- si ze M
f unct i on: i nt eger - i s- i n M
f unct i on: i nt eger - bag M
f unct i on: doubl e- one- and- onl y M
f unct i on: doubl e- bag- si ze M
f unct i on: doubl e- i s- i n M
f unct i on: doubl e- bag M
f unct i on: dat e- one- and- onl y M
f unct i on: dat e- bag- si ze M
f unct i on: dat e- i s- i n M
f unct i on: dat e- bag M
f unct i on: dat eTi me- one- and- onl y M
f unct i on: dat eTi me- bag- si ze M
f unct i on: dat eTi me- i s- i n M
f unct i on: dat eTi me- bag M
f unct i on: anyURI - one- and- onl y M
f unct i on: anyURI - bag- si ze M
f unct i on: anyURI - i s- i n M
f unct i on: anyURI - bag M
f unct i on: hexBi nar y- one- and- onl y M
f unct i on: hexBi nar y- bag- si ze M
f unct i on: hexBi nar y- i s- i n M
f unct i on: hexBi nar y- bag M
f unct i on: base64Bi nar y- one- and- onl y M

cs-xacml-specification-1.0.doc 94

f unct i on: base64Bi nar y- bag- si ze M
f unct i on: base64Bi nar y- i s- i n M
f unct i on: base64Bi nar y- bag M
f unct i on: dayTi meDur at i on- one- and- onl y M
f unct i on: dayTi meDur at i on- bag- si ze M
f unct i on: dayTi meDur at i on- i s- i n M
f unct i on: dayTi meDur at i on- bag M
f unct i on: year Mont hDur at i on- one- and- onl y M
f unct i on: year Mont hDur at i on- bag- si ze M
f unct i on: year Mont hDur at i on- i s- i n M
f unct i on: year Mont hDur at i on- bag M
f unct i on: x500Name- one- and- onl y M
f unct i on: x500Name- bag- si ze M
f unct i on: x500Name- i s- i n M
f unct i on: x500Name- bag M
f unct i on: r f c822Name- one- and- onl y M
f unct i on: r f c822Name- bag- si ze M
f unct i on: r f c822Name- i s- i n M
f unct i on: r f c822Name- bag M
f unct i on: any- of M
f unct i on: al l - of M
f unct i on: any- of - any M
f unct i on: al l - of - any M
f unct i on: any- of - al l M
f unct i on: al l - of - al l M
f unct i on: map M
f unct i on: x500Name- mat ch M
f unct i on: r f c822Name- mat ch M
f unct i on: xpat h- node- count O
f unct i on: xpat h- node- equal O
f unct i on: xpat h- node- mat ch O

11. References 3499

[DS] D. Eastlake et al., XML-Signature Syntax and Processing, 3500
http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium. 3501

[Haskell] Haskell, a purely functional language. Available at 3502
http://www.haskell.org/ 3503

[Hinton94] Hinton, H, M, Lee,, E, S, The Compatibility of Policies, Proceedings 2nd 3504
ACM Conference on Computer and Communications Security, Nov 1994, 3505
Fairfax, Virginia, USA. 3506

[IEEE754] IEEE Standard for Binary Floating-Point Arithmetic 1985, ISBN 1-5593-3507
7653-8, IEEE Product No. SH10116-TBR 3508

[Kudo00] Kudo M and Hada S, XML document security based on provisional 3509
authorization, Proceedings of the Seventh ACM Conference on Computer 3510
and Communications Security, Nov 2000, Athens, Greece, pp 87-96. 3511

[LDAP-1] RFC2256, A summary of the X500(96) User Schema for use with LDAPv3, 3512
section 5, M Wahl, December 1997 http://www.ietf.org/rfc/rfc2798.txt 3513

[LDAP-2] RFC2798, Definition of the inetOrgPerson, M. Smith, April 2000 3514
http://www.ietf.org/rfc/rfc2798.txt 3515

[MathML] Mathematical Markup Language (MathML), Version 2.0, W3C 3516
Recommendation, 21 February 2001. Available at: 3517
http://www.w3.org/TR/MathML2/ 3518

cs-xacml-specification-1.0.doc 95

[Perritt93] Perritt, H. Knowbots, Permissions Headers and Contract Law, Conference 3519
on Technological Strategies for Protecting Intellectual Property in the 3520
Networked Multimedia Environment, April 1993. Available at: 3521
http://www.ifla.org/documents/infopol/copyright/perh2.txt 3522

[RBAC] Role-Based Access Controls, David Ferraiolo and Richard Kuhn, 15th 3523
National Computer Security Conference, 1992. Available at: 3524
http://csrc.nist.gov/rbac 3525

[RegEx] XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001, 3526
Appendix D. Available at: http://www.w3.org/TR/xmlschema-0/ 3527

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 3528
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997 3529

[SAML] Security Assertion Markup Language available from http://www.oasis-3530
open.org/committees/security/#documents 3531

[Sloman94] Sloman, M. Policy Driven Management for Distributed Systems. Journal 3532
of Network and Systems Management, Volume 2, part 4. Plenum Press. 3533
1994. 3534

[XF] XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft 3535
16 August 2002. Available at: http://www.w3.org/TR/xquery-operators 3536

[XS] XML Schema. Available at: http:/www.w3.org/TR/2001/REC-3537
xmlschema-2-20010502/ 3538

[XPath] XML Path Language (XPath), Version 1.0, W3C Recommendation 16 3539
November 1999. Available at: http://www.w3.org/TR/xpath 3540

[XSLT] XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 3541
November 1999. Available at: http://www.w3.org/TR/xslt 3542

 3543

cs-xacml-specification-1.0.doc 96

Appendix A. Standard data types, functions and 3544

their semantics (normative) 3545

A.1. Introduction 3546

This section contains a specification of the data-types and functions used in XACML to create 3547
predicates for a rule’s condition and target matches. 3548

This specification combines the various standards set forth by IEEE and ANSI for string 3549
representation of numeric values, as well as the evaluation of arithmetic functions. 3550

This section describes the primitive data-types, bags and construction of expressions using 3551
XACML constructs. Finally, each standard function is named and its operational semantics are 3552
described. 3553

A.2. Primitive types 3554

Although XML instances represent all data-types as strings, an XACML PDP must reason about 3555
types of data that, while they have string representations, are not just strings. Types such as 3556
boolean, integer and double MUST be converted from their XML string representations to values 3557
that can be compared with values in their domain of discourse, such as numbers. The following 3558
primitive data-types are specified for use with XACML and have explicit data representations: 3559

• http://www.w3.org/2001/XMLSchema#string 3560

• http://www.w3.org/2001/XMLSchema#boolean 3561

• http://www.w3.org/2001/XMLSchema#integer 3562

• http://www.w3.org/2001/XMLSchema#double 3563

• http://www.w3.org/2001/XMLSchema#date 3564

• http://www.w3.org/2001/XMLSchema#dateTime 3565

• http://www.w3.org/2001/XMLSchema#anyURI 3566

• http://www.w3.org/2001/XMLSchema#hexBinary 3567

• http://www.w3.org/2001/XMLSchema#base64Binary 3568

• http://www.w3.org/TR/xquery-operators#dayTimeDuration 3569

• http://www.w3.org/TR/xquery-operators#yearMonthDuration 3570

• urn:oasis:names:tc:xacml:1.0:data-type:x500Name 3571

• urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name 3572

cs-xacml-specification-1.0.doc 97

A.3. Structured types 3573

An XACML <At t r i but eVal ue> element MAY contain an instance of a structured XML data-type, 3574
for example <ds: KeyI nf o>. XACML 1.0 supports several ways for comparing such 3575
<At t r i but eVal ue> elements. 3576

1. In some cases, such an <At t r i but eVal ue> element MAY be compared using one of the 3577
XACML string functions, such as “regexp-string-match”, described below. This requires 3578
that the structured data <AttributeValue> to be given the DataType="xsi:string". For 3579
example, a structured data type that is actually a ds:KeyInfo/KeyName would appear in the 3580
Context as: 3581

<AttributeValue
 DataType="DataType="http://www.w3.org/2001/XMLSchema-
instance#string"><ds:KeyName>jhibbert-
key</ds:KeyName>
</AttributeValue>

In general, this method will not be adequate unless the structured data type is quite simple. 3582

2. An <At t r i but eSel ect or > element MAY be used to select the value of a leaf sub-3583
element of the structured data-type by means of an XPath expression. That value MAY 3584
then be compared using one of the supported XACML functions appropriate for its primitive 3585
data-type. This method requires support by the PDP for the optional XPath expressions 3586
feature. 3587

3. An <At t r i but eSel ect or > element MAY be used to select the value of any node in the 3588
structured type by means of an XPath expression. This node MAY then be compared 3589
using one of the XPath-based functions described in Section A14.13. This method requires 3590
support by the PDP for the optional XPath expressions and XPath functions features. 3591

A.4. Representations 3592

An XACML PDP SHALL be capable of converting string representations into various primitive data 3593
types. For integers and doubles, XACML SHALL use the conversions described in IBM Standard 3594
Decimal Arithmetic [IBMDSA]. 3595

This document combines the various standards set forth by IEEE and ANSI for string 3596
representation of numeric values. 3597

XACML defines two additional data-types; these are “urn:oasis:names:tc:xacml:1.0:data-3598
type:x500Name” and “urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name”. These types 3599
represent identifiers for subjects and appear in several standard applications, such as TLS/SSL 3600
and electronic mail. 3601

The “urn:oasis:names:tc:xacml:1.0:data-type:x500Name” primitive type represents an X.500 3602
Distinguished Name. The string representation of an X.500 distinguished name is specified in IETF 3603
RFC 2253 "Lightweight Directory Access Protocol (v3): UTF-8 String Representation of 3604
Distinguished Names".1 3605

1 An earlier RFC, RFC 1779 "A String Representation of Distinguished Names", is less
restrictive, so xacml:x500Name uses the syntax in RFC 2253 for better interoperability.

cs-xacml-specification-1.0.doc 98

The “urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name” primitive type represents electronic mail 3606
addresses, and its string representation is specified by RFC 822. 3607

An RFC822 name consists of a local-part followed by "@" followed by a domain-part. The local-3608
part is case-sensitive, while the domain-part (which is usually a DNS host name) is not case-3609
sensitive.2 3610

A.5. Bags 3611

XACML defines implicit collections of its primitive types. XACML refers to a collection of values that 3612
are of a single primitive type as a bag. Bags of primitive types are needed because selections of 3613
nodes from an XML resource or XACML request context may return more than one value. 3614

The <At t r i but eSel ect or > element uses an XPath expression to specify the selection of data 3615
from an XML resource. The result of an XPath expression is termed a node-set, which contains all 3616
the leaf nodes from the XML resource that match the predicate in the XPath expression. Based on 3617
the various indexing functions provided in the XPath specification, it SHALL be implied that a 3618
resultant node-set is the collection of the matching nodes. XACML also defines the 3619
<At t r i but eDesi gnat or > element to have the same matching methodology for attributes in the 3620
XACML request context. 3621

The values in a bag are not ordered, and some of the values may be duplicates. There SHALL be 3622
no notion of a bag containing bags, or a bag containing values of differing types. I.e. a bag in 3623
XACML SHALL contain only values that are of the same primitive type. 3624

A.6. Expressions 3625

XACML specifies expressions in terms of the following elements. Each expression evaluates to 3626
one of the primitive types, or a bag of one of the primitive types. In addition, XACML defines an 3627
evaluation result of "Indeterminate", which is said to be the result of an invalid expression, or an 3628
operational error occurring during the evaluation of the expression. 3629

XACML defines the following elements to be legal XACML expressions: 3630

• <At t r i but eVal ue> 3631

• <Subj ect At t r i but eDesi gnat or > 3632

• <Subj ect At t r i but eSel ect or > 3633

• <Qual i f i edSubj ect At t r i but eDesi gnat or > 3634

• <Resour ceAt t r i but eDesi gnat or > 3635

• <Act i onAt t r i but eDesi gnat or > 3636

• <Envi r onment At t r i but eDesi gnat or > 3637

2 According to IETF RFC822 and its successor specifications [RFC2821], case is significant
in the local-part. However, many mail systems, as well as the IETF PKIX specification, treat the
local-part as case-insensitive. This is considered an error by mail-system designers and is not
encouraged.

cs-xacml-specification-1.0.doc 99

• <At t r i but eSel ect or > 3638

• <Appl y> 3639

• <Condi t i on> 3640

• <Funct i on> 3641

A.7. Element <AttributeValue> 3642

The <At t r i but eVal ue> element SHALL represent an explicit value of a primitive type. For 3643
example: 3644

<Appl y Funct i onI d=” f unct i on: i nt eger - equal ” > 3645
 <At t r i but eVal ue 3646
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >123</ At t r i but eVal ue> 3647
 <At t r i but eVal ue 3648
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >123</ At t r i but eVal ue> 3649
</ Appl y> 3650

A.8. Elements <AttributeDesignator> and 3651

<AttributeSelector> 3652

The <At t r i but eDesi gnat or > and <At t r i but eSel ect or > elements SHALL evaluate to a bag 3653
of a specific primitive type. The type SHALL be inferred from the function in which it appears. Each 3654
element SHALL contain a URI or XPath expression, respectively, to identify the required attribute 3655
values. If an operational error were to occur while finding the values, the value of the element 3656
SHALL be set to "Indeterminate". If the required attribute cannot be located, then the value of the 3657
element SHALL be set to an empty bag of the inferred primitive type. 3658

In the special case of the <Qual i f i edSubj ect At t r i but eDesi gnat or > element, the sequence 3659
of <Subj ect Mat ch> elements SHALL be evaluated as if each <Subj ect Mat ch> element, while 3660
applied only to one particular subject, appeared in a conjunctive sequence. 3661

A.9. Element <Apply> 3662

XACML function calls are represented by the <Appl y> element. The function to be applied is 3663
named in the Funct i onI d attribute of this element. The value of the <Appl y> element SHALL be 3664
set to either a primitive type or a bag of a primitive type, whose type SHALL be inferred from the 3665
f unct i onI d. The arguments of a function SHALL be the values of the XACML expressions that 3666
are contained as ordered elements in an <Appl y> element. The legal number of arguments within 3667
an <Appl y> element SHALL depend upon the f unct i onI d. 3668

A.10. Element <Condition> 3669

The <Condi t i on> element MAY appear in the <Rul e> element as the premise for emitting the 3670
corresponding effect of the rule. The <Condi t i on> element has the same structure as the 3671

cs-xacml-specification-1.0.doc 100

<Appl y> element, with the restriction that its result SHALL be of type 3672
“http://www.w3.org/2001/XMLSchema#boolean”. The evaluation of the <Condi t i on> element 3673
SHALL follow the same evaluation semantics as those of the <Appl y> element. 3674

A.11. Element <Function> 3675

The <Funct i on> element names a standard XACML function or an extension function in its 3676
Funct i onI d attribute. The <Funct i on> element MAY be used as an argument in functions that 3677
take a function as an argument. 3678

A.12. Matching elements 3679

Matching elements appear in the <Tar get > element of rules, policies and policy sets. They are 3680
the following: 3681

• <Subj ect Mat ch> 3682

• <Resour ceMat ch> 3683

• <Act i onMat ch> 3684

• <Envi r onment Mat ch> 3685

These elements represent boolean expressions over attributes of the subject, resource, action 3686
and environment, respectively. 3687

The match elements: <Subj ect Mat ch>, <Resour ceMat ch>, <Act i onMat ch> and 3688
<Envi r onment Mat ch> SHALL use functions that match two arguments, returning a result type of 3689
"xs:boolean", to perform the match evaluation. The function used for determining a match is named 3690
in the Mat chI d attribute of these elements. Each argument to the named function MUST match 3691
the appropriate primitive types for the <At t r i but eDesi gnat or > or <At t r i but eSel ect or > 3692
element and the following explicit attribute value, such that the explicit attribute value is placed as 3693
the first argument to the function, while an element of the bag returned by the 3694
<At t r i but eDesi gnat or > or <At t r i but eSel ect or > element is placed as the second 3695
argument to the function. 3696

The XACML standard functions that may be used as a Mat chI d attribute value are: 3697

 function:type-equal 3698

 function: type-greater-than 3699

 function: type-greater-than-or-equal 3700

 function: type-less-than 3701

 function: type-less-than-or-equal 3702

 function: type-match 3703

The evaluation semantics for a match is as follows. If an operational error were to occur while 3704
evaluating the <At t r i but eDesi gnat or > or <At t r i but eSel ect or > element, then the result of 3705
the entire expression SHALL be "Indeterminate". If the <At t r i but eDesi gnat or > or 3706
<At t r i but eSel ect or > element were to evaluate to an empty bag, then the result of the 3707

cs-xacml-specification-1.0.doc 101

expression SHALL be "False". Otherwise, the match function SHALL be applied between the 3708
explicit attribute value and each element of the bag returned from the <At t r i but eDesi gnat or > 3709
or <At t r i but eSel ect or > element. If at least one of those function applications were to evaluate 3710
to "True", then the result of the entire expression SHALL be "True". Otherwise, if at least one of the 3711
function applications results in "Indeterminate", then the result SHALL be "Indeterminate". Finally, 3712
only if all function applications evaluate to "False", SHALL the result of the entire expression be 3713
"False". 3714

A match can equivlently be expressed in a target or a condition. For instance, the match 3715
expression that compares a “subject-name” starting with the name “John” can be expressed as 3716
follows: 3717

<Subj ect Mat ch Mat chI d=” f unct i on: r egexp- st r i ng- mat ch” > 3718
 <Subj ect At t r i but eDesi gnat or At t r i but eI d=” subj ect - name” / > 3719
 <At t r i but eVal ue 3720
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >John. * </ At t r i but eVal ue> 3721
</ Subj ect Mat ch> 3722

Alternatively, it can be expressed as an <Appl y> element in the condition by using the 3723
“function:any-of” function, as follows: 3724

<Appl y Funct i onI d=” f unct i on: any- of ” > 3725
 <Funct i on Funct i onI d=” f unct i on: r egexp- st r i ng- mat ch” / > 3726
 <At t r i but eVal ue 3727
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >John. * </ At t r i but eVal ue> 3728
 <Subj ect At t r i but eDesi gnat or At t r i but eI d=” subj ect - name” / > 3729
</ Appl y> 3730

For the match elements: <Subj ect Mat ch>, <Resour ceMat ch>, <Act i onMat ch> and 3731
<Envi r onment Mat ch> that appear in the <Tar get > element of a <Rul e>, <Pol i cy> or 3732
<Pol i cySet > the value specified by the Mat chI d attribute SHALL be restricted to the following 3733
functions: 3734

• “function:type-equal” (for each primitive type), 3735

• “function:regexp-string-match”, 3736

• “function:rfc822Name-match” and 3737

• “function:x500Name-match”, 3738

and only those functions. Functions that are strictly within an extension to XACML should not 3739
appear as a value to the Mat chI d attribute in this case. Restricting the Mat chI d attribute to these 3740
functions facilitates the use of indexing to find the applicable policy for a particular authorization 3741
request. 3742

A.13. Arithmetic evaluation 3743

IEEE 754 [IEEE 754] specifies how to evaluate arithmetic functions in a context, which specifies 3744
defaults for precision, rounding, etc. XACML SHALL use this specification for the evaluation of all 3745
integer and double functions relying on the Extended Default Context, enhanced with double 3746
precision: 3747

 flags - all set to 0 3748

 trap-enablers - all set to 0 (IEEE 854 §7) with the exception of the “division-by-zero” trap 3749
enabler, which SHALL be set to 1 3750

cs-xacml-specification-1.0.doc 102

 precision - is set to the designated double precision 3751

 rounding - is set to round-half-even (IEEE 854 §4.1) 3752

A.14. XACML standard functions 3753

XACML specifies the following functions that are prefixed with the “function:” relative name space 3754
identifier. 3755

A14.1 Equality predicates 3756

The following functions are the equality functions for the various primitive types. Each function for a 3757
particular type follows a specified standard convention for that type. If an argument of one of these 3758
functions were to evaluate to "Indeterminate", then the function SHALL be set to "Indeterminate". 3759

• string-equal 3760

This function SHALL take two arguments of “http://www.w3.org/2001/XMLSchema#string” 3761
and SHALL return an “http://www.w3.org/2001/XMLSchema#boolean”. The function 3762
SHALL return "True" if and only if the value of both of its arguments are of equal length and 3763
each string is determined to be equal byte-by-byte according to the function “integer-equal”. 3764

• boolean-equal 3765

This function SHALL take two arguments of 3766
“http://www.w3.org/2001/XMLSchema#boolean” and SHALL return "True" if and only if both 3767
values are equal. 3768

• integer-equal 3769

This function SHALL take two arguments of type 3770
“http://www.w3.org/2001/XMLSchema#integer” and SHALL return an 3771
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation on 3772
integers according to IEEE 754 [IEEE 754]. 3773

• double-equal 3774

This function SHALL take two arguments of type 3775
“http://www.w3.org/2001/XMLSchema#double” and SHALL return an 3776
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation on 3777
doubles according to IEEE 754 [IEEE 754]. 3778

• date-equal 3779

This function SHALL take two arguments of type 3780
“http://www.w3.org/2001/XMLSchema#date” and SHALL return an 3781
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation 3782
according to the “op:date-equal” function [XQO Section 8.3.11]. 3783

• time-equal 3784

This function SHALL take two arguments of type 3785
“http://www.w3.org/2001/XMLSchema#time” and SHALL return an 3786
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation according 3787
to the “op:time-equal” function [XQO Section 8.3.14]. 3788

• dateTime-equal 3789

cs-xacml-specification-1.0.doc 103

This function SHALL take two arguments of type 3790
“http://www.w3.org/2001/XMLSchema#dateTime” and SHALL return an 3791
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation 3792
according to the “op:dateTime-equal” function [XQO Section 8.3.8]. 3793

• anyURI-equal 3794

This function SHALL take two arguments of type 3795
“http://www.w3.org/2001/XMLSchema#anyURI” and SHALL return an 3796
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL perform its evaluation 3797
according to the “op:anyURI-equal” function [XQO Section 10.2.1]. 3798

• x500Name-equal 3799

This function shall take two arguments of "urn:oasis:names:tc:xacml:1.0:data-3800
type:x500Name" and shall return an "http://www.w3.org/2001/XMLSchema#boolean". It 3801
shall return “True” if and only if each Relative Distinguished Name (RDN) in the two 3802
arguments matches. Two RDNs shall be said to match if and only if the result of the 3803
following operations is “True”3. 3804

1. Normalize the two arguments according to IETF RFC 2253 "Lightweight Directory 3805
Access Protocol (v3): UTF-8 String Representation of Distinguished Names". 3806

2. If any RDN contains multiple attributeTypeAndValue pairs, re-order the Attribute 3807
ValuePairs in that RDN in ascending order when compared as octet strings 3808
(described in ITU-T Rec. X.690 (1997 E) Section 11.6 "Set-of components"). 3809

3. Compare RDNs using the rules in IETF RFC 3280 "Internet X.509 Public Key 3810
Infrastructure Certificate and Certificate Revocation List (CRL) Profile", Section 3811
4.1.2.4 "Issuer". 3812

• rfc822Name-equal 3813

This function SHALL take two arguments of type “urn:oasis:names:tc:xacml:1.0:data-3814
type:rfc822Name” and SHALL return an “http://www.w3.org/2001/XMLSchema#boolean”. 3815
This function SHALL determine whether two “urn:oasis:names:tc:xacml:1.0:data-3816
type:rfc822Name” arguments are equal. An RFC822 name consists of a local-part followed 3817
by "@" followed by a domain-part. The local-part is case-sensitive, while the domain-part 3818
(which is usually a DNS host name) is not case-sensitive. Perform the following 3819
operations: 3820

1. Normalize the domain-part of each argument to lower case 3821

2. Compare the expressions by applying the function “function:string-equal” to the 3822
normalized arguments. 3823

• hexBinary-equal 3824

This function SHALL take two arguments of type 3825
“http://www.w3.org/2001/XMLSchema#hexBinary” and SHALL return an 3826
“http://www.w3.org/2001/XMLSchema#boolean”. This function SHALL return "True" if the 3827
octet sequences represented by the value of both arguments have equal length and are 3828
equal in a conjunctive, point-wise, comparison using the “function:integer-equal”. The 3829

3 ITU-T Rec. X.520 contains rules for matching X500 names, but these are very complex and
require knowledge of the syntax of various AttributeTypes. IETF RFC 3280 contains simplified
matching rules that the XACML x500Name-equal function uses.

cs-xacml-specification-1.0.doc 104

conversion from the string representation to an octet sequence SHALL be as specified in 3830
[XS Section 8.2.15] 3831

• base64Binary-equal 3832

This function SHALL take two arguments of type 3833
“http://www.w3.org/2001/XMLSchema#base64Binary” and SHALL return an 3834
“http://www.w3.org/2001/XMLSchema#boolean”. This function SHALL return "True" if the 3835
octet sequences represented by the value of both arguments have equal length and are 3836
equal in a conjunctive, point-wise, comparison using the “function:integer-equal”. The 3837
conversion from the string representation to an octet sequence SHALL be as specified in 3838
[XS Section 8.2.16] 3839

A14.2 Arithmetic functions 3840

All of the following functions SHALL take two arguments of the specified type, integer or double, 3841
and SHALL return an element of integer or double type, respectively. However, the “add” functions 3842
MAY take more than two arguments. Each function evaluation SHALL proceed as specified by 3843
their logical counterparts in IEEE 754 [IEEE 754]. In an expression that contains any of these 3844
functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3845
"Indeterminate". In the case of the divide functions, if the divisor is zero, then the function SHALL 3846
evaluate to “Indeterminate”. 3847

• integer-add 3848

This function MAY have two or more arguments. 3849

• double-add 3850

This function MAY have two or more arguments. 3851

• integer-subtract 3852

• double-subtract 3853

• integer-multiply 3854

• double-multiply 3855

• integer-divide 3856

• double-divide 3857

• integer-mod 3858

The following functions SHALL take a single argument of the specified type. The round and floor 3859
functions SHALL take a single argument of type “http://www.w3.org/2001/XMLSchema#double” and 3860
return type “http://www.w3.org/2001/XMLSchema#double”. In an expression that contains any of 3861
these functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3862
"Indeterminate". 3863

• integer-abs 3864

• double-abs 3865

• round 3866

• floor 3867

cs-xacml-specification-1.0.doc 105

A14.3 String conversion functions 3868

The following functions convert between values of the XACML 3869
“http://www.w3.org/2001/XMLSchema#string” primitive types. In an expression that contains any of 3870
these functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3871
"Indeterminate". 3872

• string-normalize-space 3873

This function SHALL take one argument of type 3874
“http://www.w3.org/2001/XMLSchema#string” and SHALL normalize the value by stripping 3875
off all leading and trailing whitespace characters. 3876

• string-normalize-to-lower-case 3877

This function SHALL take one argument of “http://www.w3.org/2001/XMLSchema#string” 3878
and SHALL normalize the value by converting each upper case character to its lower case 3879
equivalent. 3880

A14.4 Numeric type conversion functions 3881

The following functions convert between the XACML 3882
“http://www.w3.org/2001/XMLSchema#integer” and” http://www.w3.org/2001/XMLSchema#double” 3883
primitive types. In any expression in which the functions defined below are applied, if any argument 3884
while being evaluated results in "Indeterminate", the expression SHALL return "Indeterminate". 3885

• double-to-integer 3886

This function SHALL take one argument of type 3887
“http://www.w3.org/2001/XMLSchema#double” and SHALL truncate its numeric value to a 3888
whole number and return an element of type 3889
“http://www.w3.org/2001/XMLSchema#integer”. 3890

• integer-to-double 3891

This function SHALL take one argument of type 3892
“http://www.w3.org/2001/XMLSchema#integer” and SHALL promote its value to an element 3893
of type “http://www.w3.org/2001/XMLSchema#double” of the same numeric value. 3894

A14.5 Logical functions 3895

This section contains the specification for logical functions that operate on arguments of the 3896
“http://www.w3.org/2001/XMLSchema#boolean” type. 3897

• or 3898

This function SHALL return "False" if it has no arguments and SHALL return "True" if one of 3899
its arguments evaluates to "True". The order of evaluation SHALL be from first argument to 3900
last. The evaluation SHALL stop with a result of "True" if any argument evaluates to "True", 3901
leaving the rest of the arguments unevaluated. In an expression that contains any of these 3902
functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3903
"Indeterminate". 3904

• and 3905

This function SHALL return "True" if it has no arguments and SHALL return "False" if one of 3906
its arguments evaluates to "False". The order of evaluation SHALL be from first argument 3907
to last. The evaluation SHALL stop with a result of "False" if any argument evaluates to 3908

cs-xacml-specification-1.0.doc 106

"False", leaving the rest of the arguments unevaluated. In an expression that contains any 3909
of these functions, if any argument is "Indeterminate", then the expression SHALL evaluate 3910
to "Indeterminate". 3911

• n-of 3912

The first argument to this function SHALL be of type 3913
“http://www.w3.org/2001/XMLSchema#integer”, specifying the number of the remaining 3914
arguments that MUST evaluate to "True" for the expression to be considered "True". If the 3915
first argument is 0, the result SHALL be "True". If the number of arguments after the first 3916
one is less than the value of the first argument, then the expression SHALL result in 3917
"Indeterminate". The order of evaluation SHALL be: first evaluate the integer value, then 3918
evaluate each subsequent argument. The evaluation SHALL stop and return "True" if the 3919
specified number of arguments evaluate to "True". The evaluation of arguments SHALL 3920
stop if it is determined that evaluating the remaining arguments will not satisfy the 3921
requirement. In an expression that contains any of these functions, if any argument is 3922
"Indeterminate", then the expression SHALL evaluate to "Indeterminate". 3923

• not 3924

This function SHALL take one logical argument. If the argument evaluates to "True", then 3925
the result of the expression SHALL be "False". If the argument evaluates to "False", then 3926
the result of the expression SHALL be "True". In an expression that contains any of these 3927
functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3928
"Indeterminate". 3929

• present 3930

This function SHALL take an attribute value of type 3931
“http://www.w3.org/2001/XMLSchema#anyURI” as used as the At t r i but eI d in an 3932
<At t r i but eDesi gnat or > element. This expression SHALL return "True" if the named 3933
attribute can be located in the request context, which means that an 3934
<At t r i but eDesi gnat or > or <At t r i but eSel ect or > element for this named attribute 3935
will return a bag containing at least one value. If it cannot be determined that the attribute 3936
is present in the request context, or the attribute cannot be evaluated, then the expression 3937
SHALL result in "Indeterminate". 3938

A14.6 Arithmetic comparison functions 3939

These functions form a minimal set for comparing two numbers, yielding a boolean result. They 3940
SHALL comply with the rules governed by IEEE 754 [IEEE 754]. In an expression that contains 3941
any of these functions, if any argument is "Indeterminate", then the expression SHALL evaluate to 3942
"Indeterminate". 3943

• integer-greater-than 3944

• integer-greater-than-or-equal 3945

• integer-less-than 3946

• integer-less-than-or-equal 3947

• double-greater-than 3948

• double-greater-than-or-equal 3949

• double-less-than 3950

• double-less-than-or-equal 3951

cs-xacml-specification-1.0.doc 107

A14.7 Date and time arithmetic functions 3952

These functions perform arithmetic operations with the date and time. In an expression that 3953
contains any of these functions, if any argument is "Indeterminate", then the expression SHALL 3954
evaluate to "Indeterminate". 3955

• dateTime-add-dayTimeDuration 3956

This function SHALL take two arguments, the first is of type 3957
“http://www.w3.org/2001/XMLSchema#dateTime” and the second is of type 3958
“xf:dayTimeDuration”. It SHALL return a result of 3959
“http://www.w3.org/2001/XMLSchema#dateTime”. This function SHALL return the value by 3960
adding the second argument to the first argument according to the specification of adding 3961
durations to date and time [XS Appendix E]. 3962

• dateTime-add-yearMonthDuration 3963

This function SHALL take two arguments, the first is a 3964
“http://www.w3.org/2001/XMLSchema#dateTime” and the second is a 3965
“xf:yearMonthDuration”. It SHALL return a result of 3966
“http://www.w3.org/2001/XMLSchema#dateTime”. This function SHALL return the value by 3967
adding the second argument to the first argument according to the specification of adding 3968
durations to date and time [XS Appendix E]. 3969

• dateTime-subtract-dayTimeDuration 3970

This function SHALL take two arguments, the first is a 3971
“http://www.w3.org/2001/XMLSchema#dateTime” and the second is a 3972
“xf:dayTimeDuration”. It SHALL return a result of 3973
“http://www.w3.org/2001/XMLSchema#dateTime”. If the second argument is a positive 3974
duration, then this function SHALL return the value by adding the corresponding negative 3975
duration, as per the specification [XS Appendix E]. If the second argument is a negative 3976
duration, then the result SHALL be as if the function “function:dateTime-add-3977
dayTimeDuration” had been applied to the corresponding positive duration. 3978

• dateTime-subtract-yearMonthDuration 3979

This function SHALL take two arguments, the first is a 3980
“http://www.w3.org/2001/XMLSchema#dateTime” and the second is a 3981
“xf:yearMonthDuration”. It SHALL return a result of 3982
“http://www.w3.org/2001/XMLSchema#dateTime”. If the second argument is a positive 3983
duration, then this function SHALL return the value by adding the corresponding negative 3984
duration, as per the specification [XS Appendix E]. If the second argument is a negative 3985
duration, then the result SHALL be as if the function “function:dateTime-add-3986
yearMonthDuration” had been applied to the corresponding positive duration. 3987

• date-add-yearMonthDuration 3988

This function SHALL take two arguments, the first is a 3989
“http://www.w3.org/2001/XMLSchema#date” and the second is a “xf:yearMonthDuration”. It 3990
return a result of “http://www.w3.org/2001/XMLSchema#date”. This function SHALL return 3991
the value by adding the second argument to the first argument according to the 3992
specification of adding durations to date [XS Appendix E]. 3993

• date-subtract-yearMonthDuration 3994

This function SHALL take two arguments, the first is a 3995
“http://www.w3.org/2001/XMLSchema#date” and the second is a “xf:yearMonthDuration”. It 3996
SHALL return a result of “http://www.w3.org/2001/XMLSchema#date”. If the second 3997

cs-xacml-specification-1.0.doc 108

argument is a positive duration, then this function SHALL return the value by adding the 3998
corresponding negative duration, as per the specification [XS Appendix E]. If the second 3999
argument is a negative duration, then the result SHALL be as if the function “function:date-4000
add-yearMonthDuration” had been applied to the corresponding positive duration. 4001

A14.8 Non-numeric comparison functions 4002

These functions perform comparison operations on two arguments of non-numerical types. In an 4003
expression that contains any of these functions, if any argument is "Indeterminate", then the 4004
expression SHALL evaluate to "Indeterminate". 4005

• string-greater-than 4006

This function SHALL take two arguments of type 4007
“http://www.w3.org/2001/XMLSchema#string” and SHALL return an 4008
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the 4009
arguments are compared byte by byte and, after an initial prefix of corresponding bytes 4010
from both arguments that are considered equal by “function:integer-equal”, the next byte by 4011
byte comparison is such that the byte from the first argument is greater than the byte from 4012
the second argument by the use of the function “function:integer-equal”. 4013

• string-greater-than-or-equal 4014

This function SHALL take two arguments of type 4015
“http://www.w3.org/2001/XMLSchema#string” and SHALL return an 4016
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return a result as if evaluated 4017
with the logical function “function:or” with two arguments containing the functions 4018
“function:string-greater-than” and “function:string-equal” containing the original arguments 4019

• string-less-than 4020

This function SHALL take two arguments of type 4021
“http://www.w3.org/2001/XMLSchema#string” and SHALL return an 4022
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the 4023
arguments are compared byte by byte and, after an initial prefix of corresponding bytes 4024
from both arguments are considered equal by “function:integer-equal”, the next byte by 4025
byte comparison is such that the byte from the first argument is less than the byte from the 4026
second argument by the use of the function “function:integer-less-than”. 4027

• string-less-than-or-equal 4028

This function SHALL take two arguments of type 4029
“http://www.w3.org/2001/XMLSchema#string” and SHALL return an 4030
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return a result as if evaluated 4031
with the function “function:or” with two arguments containing the functions “function:string-4032
less-than” and “function:string-equal” containing the original arguments. 4033

• time-greater-than 4034

This function SHALL take two arguments of type 4035
“http://www.w3.org/2001/XMLSchema#time” and SHALL return an 4036
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4037
argument is greater than the second argument according to the order relation specified for 4038
“http://www.w3.org/2001/XMLSchema#time” [XS Section 3.2.8]. 4039

• time-greater-than-or-equal 4040

This function SHALL take two arguments of type 4041
“http://www.w3.org/2001/XMLSchema#time” and SHALL return an 4042

cs-xacml-specification-1.0.doc 109

“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4043
argument is greater than or equal to the second argument according to the order relation 4044
specified for “http://www.w3.org/2001/XMLSchema#time” [XS Section 3.2.8]. 4045

• time-less-than 4046

This function SHALL take two arguments of type 4047
“http://www.w3.org/2001/XMLSchema#time” and SHALL return an 4048
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4049
argument is less than the second argument according to the order relation specified for 4050
“http://www.w3.org/2001/XMLSchema#time” [XS Section 3.2.8]. 4051

• time-less-than-or-equal 4052

This function SHALL take two arguments of type 4053
“http://www.w3.org/2001/XMLSchema#time” and SHALL return an 4054
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4055
argument is less than or equal to the second argument according to the order relation 4056
specified for “http://www.w3.org/2001/XMLSchema#time” [XS Section 3.2.8]. 4057

• dateTime-greater-than 4058

This function SHALL take two arguments of type 4059
“http://www.w3.org/2001/XMLSchema#dateTime” and SHALL return an 4060
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4061
argument is greater than the second argument according to the order relation specified for 4062
“http://www.w3.org/2001/XMLSchema#dateTime” [XS Section 3.2.7]. 4063

• dateTime-greater-than-or-equal 4064

This function SHALL take two arguments of type 4065
“http://www.w3.org/2001/XMLSchema#dateTime” and SHALL return an 4066
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4067
argument is greater than or equal to the second argument according to the order relation 4068
specified for “http://www.w3.org/2001/XMLSchema#dateTime” [XS Section 3.2.7]. 4069

• dateTime-less-than 4070

This function SHALL take two arguments of type 4071
“http://www.w3.org/2001/XMLSchema#dateTime” and SHALL return an 4072
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4073
argument is less than the second argument according to the order relation specified for 4074
“http://www.w3.org/2001/XMLSchema#dateTime” [XS Section 3.2.7]. 4075

• dateTime-less-than-or-equal 4076

This function SHALL take two arguments of type “http://www.w3.org/2001/XMLSchema# 4077
dateTime” and SHALL return an “http://www.w3.org/2001/XMLSchema#boolean”. It 4078
SHALL return "True" if the first argument is less than or equal to the second argument 4079
according to the order relation specified for 4080
“http://www.w3.org/2001/XMLSchema#dateTime” [XS Section 3.2.7]. 4081

• date-greater-than 4082

This function SHALL take two arguments of type 4083
“http://www.w3.org/2001/XMLSchema#date” and SHALL return an 4084
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4085
argument is greater than the second argument according to the order relation specified for 4086
“http://www.w3.org/2001/XMLSchema#date” [XS Section 3.2.9]. 4087

cs-xacml-specification-1.0.doc 110

• date-greater-than-or-equal 4088

This function SHALL take two arguments of type 4089
“http://www.w3.org/2001/XMLSchema#date” and SHALL return an 4090
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4091
argument is greater than or equal to the second argument according to the order relation 4092
specified for “http://www.w3.org/2001/XMLSchema#date” [XS Section 3.2.9]. 4093

• date-less-than 4094

This function SHALL take two arguments of type 4095
“http://www.w3.org/2001/XMLSchema#date” and SHALL return an 4096
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4097
argument is less than the second argument according to the order relation specified for 4098
“http://www.w3.org/2001/XMLSchema#date” [XS Section 3.2.9]. 4099

• date-less-than-or-equal 4100

This function SHALL take two arguments of type 4101
“http://www.w3.org/2001/XMLSchema#date” and SHALL return an 4102
“http://www.w3.org/2001/XMLSchema#boolean”. It SHALL return "True" if the first 4103
argument is less than or equal to the second argument according to the order relation 4104
specified for “http://www.w3.org/2001/XMLSchema#date” [XS Section 3.2.9]. 4105

A14.9 Bag functions 4106

These functions operate on a bag of type values, where type is one of the primitive types. In an 4107
expression that contains any of these functions, if any argument is "Indeterminate", then the 4108
expression SHALL evaluate to "Indeterminate". Some additional conditions defined for each 4109
function below SHALL cause the expression to evaluate to "Indeterminate". 4110

• type-one-and-only 4111

This function SHALL take an argument of a bag of type values and SHALL return a value 4112
of type. It SHALL return the only value in the bag. If the bag does not have one and only 4113
one value, then the expression SHALL evaluate to "Indeterminate". 4114

• type-bag-size 4115

This function SHALL take a bag of type values as an argument and SHALL return an 4116
“http://www.w3.org/2001/XMLSchema#integer” indicating the number of values in the bag. 4117

• type-is-in 4118

This function SHALL take an argument of type type as the first argument and a bag of type 4119
values as the second argument. The expression SHALL evaluate to "True" if the first 4120
argument matches by the "function:type-equal" to any value in the bag. 4121

• type-bag 4122

This function SHALL take any number of arguments of a single type and return a bag of 4123
type values containing the values of the arguments. An application of this function to zero 4124
arguments SHALL produce an empty bag of the specified type. 4125

cs-xacml-specification-1.0.doc 111

A14.10 Set functions 4126

These functions operate on bags mimicking sets by eliminating duplicate elements from a bag. In 4127
an expression that contains any of these functions, if any argument is "Indeterminate", then the 4128
expression SHALL evaluate to "Indeterminate". 4129

• type-intersection 4130

This function SHALL take two arguments that are both a bag of type values. The 4131
expression SHALL return a bag of type values such that it contains only elements that are 4132
common between the two bags, which is determined by "function:type-equal". No 4133
duplicates as determined by "function:type-equal" SHALL exist in the result. 4134

• type-at-least-one-member-of 4135

This function SHALL take two arguments that are both a bag of type values. The 4136
expression SHALL evaluate to "True" if at least one element of the first argument is 4137
contained in the second argument as determined by "function:type-is-in". 4138

• type-union 4139

This function SHALL take two arguments that are both a bag of type values. The 4140
expression SHALL return a bag of type such that it contains all elements of both bags. No 4141
duplicates as determined by "function:type-equal" SHALL exist in the result. 4142

• type-subset 4143

This function SHALL take two arguments that are both a bag of type values. It SHALL 4144
return "True" if the first argument is a subset of the second argument. Each argument is 4145
considered to have its duplicates removed as determined by "function:type-equal" before 4146
subset calculation. 4147

• type-set-equals 4148

This function SHALL take two arguments that are both a bag of type values and SHALL 4149
return the result of applying "function:and" to the application of "function:type-subset" to the 4150
first and second arguments and the application of "function:type-subset" to the second and 4151
first arguments. 4152

A14.11 Higher-order bag functions 4153

This section describes functions in XACML that perform operations on bags such that functions 4154
may be applied to the bags in general. 4155

In this section, a general-purpose functional language called Haskell [Haskell] is used to formally 4156
specify the semantics of these functions. Although the English description is adequate, a formal 4157
specification of the semantics is helpful. 4158

For a quick summary, in the following Haskell notation, a function definition takes the form of 4159
clauses that are applied to patterns of structures, namely lists. The symbol “[]” denotes the empty 4160
list, whereas the expression “(x:xs)” matches against an argument of a non-empty list of which “x” 4161
represents the first element of the list, and “xs” is the rest of the list, which may be an empty list. We 4162
use the Haskell notion of a list, which is an ordered collection of elements, to model the XACML 4163
bags of values. 4164

A simple Haskell definition of a familiar function “function:and” that takes a list of booleans is 4165
defined as follows: 4166

and:: [Bool] -> Bool 4167

cs-xacml-specification-1.0.doc 112

and [] = "True" 4168

and (x:xs) = x && (and xs) 4169

The first definition line denoted by a “::” formally describes the type of the function, which takes a 4170
list of booleans, denoted by “[Bool]”, and returns a boolean, denoted by “Bool”. The second 4171
definition line is a clause that states that the function “and” applied to the empty list is "True". The 4172
second definition line is a clause that states that for a non-empty list, such that the first element is 4173
“x”, which is a value of type Bool, the function “and” applied to x SHALL be combined with, using 4174
the logical conjunction function, which is denoted by the infix symbol “&&”, the result of recursively 4175
applying the function “and” to the rest of the list. Of course, an application of the “and” function is 4176
"True" if and only if the list to which it is applied is empty or every element of the list is "True". For 4177
example, the evaluation of the following Haskell expressions, 4178

 (and []), (and ["True"]), (and ["True","True"]), (and ["True","True","False"]) 4179

evaluate to "True", "True", "True", and "False", respectively. 4180

In an expression that contains any of these functions, if any argument is "Indeterminate", then the 4181
expression SHALL evaluate to "Indeterminate". 4182

• any-of 4183

This function applies a boolean function between a specific primitive value and a bag of 4184
values, and SHALL return "True" if and only if the predicate is "True" for at least one 4185
element of the bag. 4186

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4187
element that names a boolean function that takes two arguments of primitive types. The 4188
second argument SHALL be a value of a primitive type. The third argument SHALL be a 4189
bag of a primitive type. The expression SHALL be evaluated as if the function named in 4190
the <Funct i on> element is applied to the second argument and each element of the third 4191
argumane (the bag) and the results are combined with “function:or”. 4192

 In Haskell, the semantics of this operation are as follows: 4193

any_of :: (a -> b -> Bool) -> a -> [b] -> Bool 4194
any_of f a [] = "False" 4195
any_of f a (x:xs) = (f a x) || (any_of f a xs) 4196

In the above notation, “f” is the function name to be applied, “a” is the primitive value, and 4197
“(x:xs)” represents the first element of the list as “x” and the rest of the list as “xs”. 4198

For example, the following expression SHALL return "True": 4199

<Appl y Funct i onI d=” f unct i on: any- of ” > 4200
 <Funct i on Funct i onI d=” f unct i on: st r i ng- equal ” / > 4201
 <At t r i but eVal ue 4202
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Paul </ At t r i but eVal ue> 4203
 <Appl y Funct i onI d=” f unct i on: st r i ng- bag” > 4204
 <At t r i but eVal ue 4205
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >John</ At t r i but eVal ue> 4206
 <At t r i but eVal ue 4207
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Paul </ At t r i but eVal ue> 4208
 <At t r i but eVal ue 4209
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Geor ge</ At t r i but eVal ue> 4210
 <At t r i but eVal ue 4211
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Ri ngo</ At t r i but eVal ue> 4212
 </ Appl y> 4213
</ Appl y> 4214

cs-xacml-specification-1.0.doc 113

This expression is "True" because the first argument is equal to at least one of the 4215
elements of the bag. 4216

• all-of 4217

This function applies a boolean function between a specific primitive value and a bag of 4218
values, and returns "True" if and only if the predicate is "True" for every element of the bag. 4219

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4220
element that names a boolean function that takes two arguments of primitive types. The 4221
second argument SHALL be a value of a primitive type. The third argument SHALL be a 4222
bag of a primitive type. The expression SHALL be evaluated as if the function named in 4223
the <Funct i on> element were applied to the second argument and each element of the 4224
third argument (the bag) and the results were combined using “function:and”. 4225

In Haskell, the semantics of this operation are as follows: 4226

all_of :: (a -> b -> Bool) -> a -> [b] -> Bool 4227
all_of f a [] = "False" 4228
all_of f a (x:xs) = (f a x) && (all_of f a xs) 4229

In the above notation, “f” is the function name to be applied, “a” is the primitive value, and 4230
“(x:xs)” represents the first element of the list as “x” and the rest of the list as “xs”. 4231

For example, the following expression SHALL evaluate to "True": 4232

<Appl y Funct i onI d=” f unct i on: al l - of ” > 4233
 <Funct i on Funct i onI d=” f unct i on: i nt eger - gr eat er ” / > 4234
 <At t r i but eVal ue 4235
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >10</ At t r i but eVal ue> 4236
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4237
 <At t r i but eVal ue 4238
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >9</ At t r i but eVal ue> 4239
 <At t r i but eVal ue 4240
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >3</ At t r i but eVal ue> 4241
 <At t r i but eVal ue 4242
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >4</ At t r i but eVal ue> 4243
 <At t r i but eVal ue 4244
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >2</ At t r i but eVal ue> 4245
 </ Appl y> 4246
</ Appl y> 4247

This expression is "True" because the first argument is greater than all of the elements of 4248
the bag. 4249

• any-of-any 4250

This function applies a boolean function between each element of a bag of values and 4251
each element of another bag of values, and returns "True" if and only if the predicate is 4252
"True" for at least one comparison. 4253

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4254
element that names a boolean function that takes two arguments of primitive types. The 4255
second argument SHALL be a bag of a primitive type. The third argument SHALL be a 4256
bag of a primitive type. The expression SHALL be evaluated as if the function named in 4257
the <Funct i on> element were applied between every element in the second argument 4258
and every element of the third argument (the bag) and the results were combined using 4259
“function:or”. The semantics are that the result of the expression SHALL be "True" if and 4260
only if the applied predicate is "True" for any comparison of elements from the two bags. 4261

cs-xacml-specification-1.0.doc 114

In Haskell, taking advantage of the “any_of” function defined above, the semantics of the 4262
“any_of_any” function are as follows: 4263

any_of_any :: (a -> b -> Bool) -> [a]-> [b] -> Bool 4264
any_of_any f [] ys = "False" 4265
any_of_any f (x:xs) ys = (any_of f x ys) || (any_of_any f xs ys) 4266

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first 4267
element of the list as “x” and the rest of the list as “xs”. 4268

For example, the following expression SHALL evaluate to "True": 4269

<Appl y Funct i onI d=” f unct i on: any- of - any” > 4270
 <Funct i on Funct i onI d=” f unct i on: st r i ng- equal ” / > 4271
 <Appl y Funct i onI d=” f unct i on: st r i ng- bag” > 4272
 <At t r i but eVal ue 4273
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Ri ngo</ At t r i but eVal ue> 4274
 <At t r i but eVal ue 4275
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Mar y</ At t r i but eVal ue> 4276
 </ Appl y> 4277
 <Appl y Funct i onI d=” f unct i on: st r i ng- bag” > 4278
 <At t r i but eVal ue 4279
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >John</ At t r i but eVal ue> 4280
 <At t r i but eVal ue 4281
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Paul </ At t r i but eVal ue> 4282
 <At t r i but eVal ue 4283
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Geor ge</ At t r i but eVal ue> 4284
 <At t r i but eVal ue 4285
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Ri ngo</ At t r i but eVal ue> 4286
 </ Appl y> 4287
</ Appl y> 4288

This expression is "True" because at least one of the elements of the first bag, namely 4289
“Ringo”, is equal to at least one of the string values of the second bag. 4290

• all-of-any 4291

This function applies a boolean function between the elements of two bags. The 4292
expression is "True" if and only if the predicate is "True" between each and all of the 4293
elements of the first bag collectively against at least one element of the second bag. 4294

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4295
element that names a boolean function that takes two arguments of primitive types. The 4296
second argument SHALL be a bag of a primitive type. The third argument SHALL be a 4297
bag of a primitive type. The expression SHALL be evaluated as if function named in the 4298
<Funct i on> element were applied between every element in the second argument and 4299
every element of the third argument (the bag) using “function:and”. The semantics are that 4300
the result of the expression SHALL be "True" if and only if the applied predicate is "True" 4301
for each element of the first bag and any element of the second bag. 4302

In Haskell, taking advantage of the “any_of” function defined in Haskell above, the 4303
semantics of the “all_of_any” function are as follows: 4304

all_of_any :: (a -> b -> Bool) -> [a]-> [b] -> Bool 4305
all_of_any f [] ys = "False" 4306
all_of_any f (x:xs) ys = (any_of f x ys) && (all_of_any f xs ys) 4307

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first 4308
element of the list as “x” and the rest of the list as “xs”. 4309

For example, the following expression SHALL evaluate to "True": 4310

cs-xacml-specification-1.0.doc 115

<Appl y Funct i onI d=” f unct i on: al l - of - any” > 4311
 <Funct i on Funct i onI d=” f unct i on: i nt eger - gr eat er ” / > 4312
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4313
 <At t r i but eVal ue 4314
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >10</ At t r i but eVal ue> 4315
 <At t r i but eVal ue 4316
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >20</ At t r i but eVal ue> 4317
 </ Appl y> 4318
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4319
 <At t r i but eVal ue 4320
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >1</ At t r i but eVal ue> 4321
 <At t r i but eVal ue 4322
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >3</ At t r i but eVal ue> 4323
 <At t r i but eVal ue 4324
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >5</ At t r i but eVal ue> 4325
 <At t r i but eVal ue 4326
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >21</ At t r i but eVal ue> 4327
 </ Appl y> 4328
</ Appl y> 4329

This expression is "True" because all of the elements of the first bag, each “10” and “20”, 4330
are greater than at least one of the integer values “1”, ”3”, ”5”, ”21” of the second bag. 4331

• any-of-all 4332

This function applies a boolean function between the elements of two bags. The 4333
expression SHALL be "True" if and only if the predicate is "True" between at least one of 4334
the elements of the first bag collectively against all the elements of the second bag. 4335

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4336
element that names a boolean function that takes two arguments of primitive types. The 4337
second argument SHALL be a bag of a primitive type. The third argument SHALL be a 4338
bag of a primitive type. The expression SHALL be evaluated as if the function named in 4339
the <Funct i on> element were applied between every element in the second argument 4340
and every element of the third argument (the bag) and the results were combined using 4341
“function:or”. The semantics are that the result of the expression SHALL be "True" if and 4342
only if the applied predicate is "True" for any element of the first bag compared to all the 4343
elements of the second bag. 4344

In Haskell, taking advantage of the “all_of” function defined in Haskell above, the semantics 4345
of the “any_of_all” function are as follows: 4346

any_of_all :: (a -> b -> Bool) -> [a]-> [b] -> Bool 4347
any_of_all f [] ys = "False" 4348
any_of_all f (x:xs) ys = (all_of f x ys) || (any_of_all f xs ys) 4349

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first 4350
element of the list as “x” and the rest of the list as “xs”. 4351

For example, the following expression SHALL evaluate to "True": 4352

cs-xacml-specification-1.0.doc 116

<Appl y Funct i onI d=” f unct i on: any- of - al l ” > 4353
 <Funct i on Funct i onI d=” f unct i on: i nt eger - gr eat er ” / > 4354
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4355
 <At t r i but eVal ue 4356
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >3</ At t r i but eVal ue> 4357
 <At t r i but eVal ue 4358
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >5</ At t r i but eVal ue> 4359
 </ Appl y> 4360
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4361
 <At t r i but eVal ue 4362
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >1</ At t r i but eVal ue> 4363
 <At t r i but eVal ue 4364
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >2</ At t r i but eVal ue> 4365
 <At t r i but eVal ue 4366
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >3</ At t r i but eVal ue> 4367
 <At t r i but eVal ue 4368
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >4</ At t r i but eVal ue> 4369
 </ Appl y> 4370
</ Appl y> 4371

This expression is "True" because at least one element of the first bag, namely “5”, is 4372
greater than all of the integer values “1”, ”2”, ”3”, ”4” of the second bag. 4373

• all-of-all 4374

This function applies a boolean function between the elements of two bags. The 4375
expression SHALL be "True" if and only if the predicate is "True" between each and all of 4376
the elements of the first bag collectively against all the elements of the second bag. 4377

This function SHALL take three arguments. The first argument SHALL be a <Funct i on> 4378
element that names a boolean function that takes two arguments of primitive types. The 4379
second argument SHALL be a bag of a primitive type. The third argument SHALL be a 4380
bag of a primitive type. The expression is evaluated as if the function named in the 4381
<Funct i on> element were applied between every element in the second argument and 4382
every element of the third argument (the bag) and the results were combined using 4383
“function:and”. The semantics are that the result of the expression is "True" if and only if 4384
the applied predicate is "True" for all elements of the first bag compared to all the elements 4385
of the second bag. 4386

In Haskell, taking advantage of the “all_of” function defined in Haskell above, the semantics 4387
of the “all_of_all” function is as follows: 4388

all_of_all :: (a -> b -> Bool) -> [a]-> [b] -> Bool 4389
all_of_all f [] ys = "False" 4390
all_of_all f (x:xs) ys = (all_of f x ys) && (all_of_all f xs ys) 4391

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first 4392
element of the list as “x” and the rest of the list as “xs”. 4393

For example, the following expression SHALL evaluate to "True": 4394

cs-xacml-specification-1.0.doc 117

<Appl y Funct i onI d=” f unct i on: al l - of - al l ” > 4395
 <Funct i on Funct i onI d=” f unct i on: i nt eger - gr eat er ” / > 4396
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4397
 <At t r i but eVal ue 4398
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >6</ At t r i but eVal ue> 4399
 <At t r i but eVal ue 4400
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >5</ At t r i but eVal ue> 4401
 </ Appl y> 4402
 <Appl y Funct i onI d=” f unct i on: i nt eger - bag” > 4403
 <At t r i but eVal ue 4404
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >1</ At t r i but eVal ue> 4405
 <At t r i but eVal ue 4406
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >2</ At t r i but eVal ue> 4407
 <At t r i but eVal ue 4408
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >3</ At t r i but eVal ue> 4409
 <At t r i but eVal ue 4410
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#i nt eger ” >4</ At t r i but eVal ue> 4411
 </ Appl y> 4412
</ Appl y> 4413

This expression is "True" because all elements of the first bag, “5” and “6”, are each 4414
greater than all of the integer values “1”, ”2”, ”3”, ”4” of the second bag. 4415

• map 4416

This function converts a bag of values to another bag of values. 4417

This function SHALL take two arguments. The first function SHALL be a <Funct i on> 4418
element naming a function that takes a single argument of a primitive type and returns a 4419
value of a primitive type. The second argument SHALL be a bag of a primitive type. The 4420
expression SHALL be evaluated as if the function named in the <Funct i on> element were 4421
applied to each element in the bag resulting in a bag of the converted value. The result 4422
SHALL be a bag of the primitive type that is the same type that is returned by the function 4423
named in the <Funct i on> element. 4424

In Haskell, this function is defined as follows: 4425

map:: (a -> b) -> [a] -> [b] 4426

map f [] = [] 4427

map f (x:xs) = (f x) : (map f xs) 4428

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first 4429
element of the list as “x” and the rest of the list as “xs”. 4430

For example, the following expression, 4431

<Appl y Funct i onI d=” f unct i on: map” > 4432
 <Funct i on Funct i onI d=” f unct i on: st r i ng- nor mal i ze- t o- l ower - case” > 4433
 <Appl y Funct i onI d=” f unct i on: st r i ng- bag” > 4434
 <At t r i but eVal ue 4435
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Hel l o</ At t r i but eVal ue> 4436
 <At t r i but eVal ue 4437
Dat aType=” ht t p: / / www. w3. or g/ 2001/ XMLSchema#st r i ng” >Wor l d! </ At t r i but eVal ue> 4438
 </ Appl y> 4439
</ Appl y> 4440

evaluates to a bag containing “hello” and “world!”. 4441

cs-xacml-specification-1.0.doc 118

A14.12 Special match functions 4442

These functions operate on various types and evaluate to 4443
“http://www.w3.org/2001/XMLSchema#boolean” based on the specified standard matching 4444
algorithm. In an expression that contains any of these functions, if any argument is "Indeterminate", 4445
then the expression SHALL evaluate to "Indeterminate". 4446

• regexp-string-match 4447

This function decides a regular expression match. It SHALL take two arguments of 4448
“http://www.w3.org/2001/XMLSchema#string” and SHALL return an 4449
“http://www.w3.org/2001/XMLSchema#boolean”. The first argument SHALL be a regular 4450
expression and the second argument SHALL be a general string. The function 4451
specification SHALL be that of the “xf:match” function with the arguments reversed [XF 4452
Section 6.3.15.1]. 4453

• x500Name-match 4454

This function shall take two arguments of "urn:oasis:names:tc:xacml:1.0:data-4455
type:x500Name" and shall return an "http://www.w3.org/2001/XMLSchema#boolean". It 4456
shall return “True” if and only if the first argument matches some terminal sequence of 4457
RDNs from the second argument when compared using x500Name-equal. 4458

• rfc822Name-match 4459

This function SHALL take two arguments, the first is of type 4460
“http://www.w3.org/2001/XMLSchema#string” and the second is of type 4461
“urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name” and SHALL return an 4462
“http://www.w3.org/2001/XMLSchema#boolean”. This function SHALL evaluate to "True" if 4463
the first argument matches the second argument according to the following specification. 4464

An RFC822 name consists of a local-part followed by "@" followed by domain-part. The 4465
local-part is case-sensitive, while the domain-part (which is usually a DNS name) is not 4466
case-sensitive.4 4467

The second argument contains a complete rfc822Name. The first argument is a complete 4468
or partial rfc822Name used to select appropriate values in the second argument as follows. 4469

In order to match a particular mailbox in the second argument, the first argument must 4470
specify the complete mail address to be matched. For example, if the first argument is 4471
“Anderson@sun.com”, this matches a value in the second argument of 4472
“Anderson@sun.com” and “Anderson@SUN.COM”, but not “Anne.Anderson@sun.com”, 4473
“anderson@sun.com” or “Anderson@east.sun.com”. 4474

In order to match any mail address at a particular domain in the second argument, the first 4475
argument must specify only a domain name (usually a DNS name). For example, if the first 4476
argument is “sun.com”, this matches a value in the first argument of “Anderson@sun.com? 4477
or “Baxter@SUN.COM”, but not “Anderson@east.sun.com”. 4478

In order to match any mail address in a particular domain in the second argument, the first 4479
argument must specify the desired domain-part with a leading ".". For example, if the first 4480
argument is “.east.sun.com”, this matches a value in the second argument of 4481

4 According to IETF RFC822 and its successor specifications [RFC2821], case is significant
in the local-part. Many mail systems, as well as the IETF PKIX specification, treat the local-part as
case-insensitive. This anomaly is considered an error by mail-system designers and is not
encouraged. For this reason, rfc822Name-match treats local-part as case sensitive.

cs-xacml-specification-1.0.doc 119

"Anderson@east.sun.com" and "anne.anderson@ISRG.EAST.SUN.COM" but not 4482
"Anderson@sun.com". 4483

A14.13 XPath-based functions 4484

This section specifies functions that take XPath expressions for arguments. An XPath expression 4485
evaluates to a node-set, which is a set of XML nodes that match the expression. A node or node-4486
set is not in the formal type system of XACML. All comparison or other operations on node-sets are 4487
performed in the isolation of the particular function specified. The XPath expressions in these 4488
functions are restricted to the XACML request context. The following functions are defined: 4489

• xpath-node-count 4490

This function SHALL take an “http://www.w3.org/2001/XMLSchema#string” as an 4491
argument, which SHALL be interpreted as an XPath expression, and evaluates to an 4492
“http://www.w3.org/2001/XMLSchema#integer”. The value returned from the function 4493
SHALL be the count of the nodes within the node-set that matches the given XPath 4494
expression. 4495

• xpath-node-equal 4496

This function SHALL take two “http://www.w3.org/2001/XMLSchema#string” arguments, 4497
which SHALL be interpreted as XPath expressions, and SHALL return an 4498
“http://www.w3.org/2001/XMLSchema#boolean”. The function SHALL return "True" if any 4499
XML node from the node-set matched by the first argument equals according to the 4500
“op:node-equal” function [XQO] any XML node from the node-set matched by the second 4501
argument. 4502

• xpath-node-match 4503

This function SHALL take two “http://www.w3.org/2001/XMLSchema#string” arguments, 4504
which SHALL be interpreted as XPath expressions and SHALL return an 4505
“http://www.w3.org/2001/XMLSchema#boolean”. This function SHALL first extend the first 4506
argument to match an XML document in a hierarchical fashion. If a is an XPath expression 4507
and it is specified as the first argument, it SHALL be interpreted to mean match the set of 4508
nodes specified by the enhanced XPath expression "a | a//* | a//@*". In other words, the 4509
expression a SHALL match all elements and attributes below the element specified by a. 4510
This function SHALL evaluate to "True" if any XML node that matches the enhanced XPath 4511
expression is equal according to “op:node-equal” [XQO] to any XML node from the node-4512
set matched by the second argument. 4513

A14.14 Extension functions and primitive types 4514

Functions and primitive types are specified by string identifiers allowing for the introduction of 4515
functions in addition to those specified by XACML. This approach allows one to extend the XACML 4516
module with special functions and special primitive data types. 4517

In order to preserve some integrity to the XACML evaluation strategy, the result of all function 4518
applications SHALL depend only on the values of its arguments. Global and hidden parameters 4519
SHALL NOT affect the evaluation of an expression. Functions SHALL NOT have side effects, as 4520
evaluation order cannot be guaranteed in a standard way. 4521

cs-xacml-specification-1.0.doc 120

Appendix B. XACML identifiers (normative) 4522

This section defines standard identifiers for commonly used entities. All XACML-defined identifiers 4523
have the common base: 4524

ur n: oasi s: names: t c: xacml : 1. 0 4525

B.1. XACML namespaces 4526

There are currently two defined XACML namespaces. 4527

Policies are defined using this identifier. 4528

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy 4529

Request and response contexts are defined using this identifier. 4530

ur n: oasi s: names: t c: xacml : 1. 0: cont ext 4531

XACML data-types are defined using this identifier. 4532

ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype 4533

B.2. Access subject categories 4534

This identifier indicates the system entity that is directly requesting access. That is, the final entity 4535
in a request chain. If subject category is not specified, this is the default value. 4536

ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: access- subj ect 4537

This identifier indicates the system entity that will receive the results of the request. Used when it is 4538
distinct from the access-subject. 4539

ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: r eci pi ent - subj ect 4540

This identifier indicates a system entity through which the access request was passed. There may 4541
be more than one. No means is provided to specify the order in which they passed the message. 4542

ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: i nt er medi ar y- subj ect 4543

This identifier indicates a system entity associated with a local or remote codebase that generated 4544
the request. Corresponding subject attributes might include the URL from which it was loaded 4545
and/or the identity of the code-signer. There may be more than one. No means is provided to 4546
specify the order they processed the request. 4547

ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: codebase 4548

This identifier indicates a system entity associated with the computer that initiated the access 4549
request. An example would be an IPsec identity. 4550

ur n: oasi s: names: t c: xacml : 1. 0: subj ect - cat egor y: r equest i ng- machi ne 4551

B.3. XACML functions 4552

This identifier is the base for all the identifiers in the table of functions. See Section A.1. 4553

cs-xacml-specification-1.0.doc 121

ur n: oasi s: names: t c: xacml : 1. 0: f unct i on 4554

B.4. Data types 4555

The following identifiers indicate useful data-types. 4556

X.500 distinguished name 4557

ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype: x500Name 4558

An x500Name contains an ITU-T Rec. X.520 Distinguished Name. The valid syntax for such a 4559
name is described in IETF RFC 2253 "Lightweight Directory Access Protocol (v3): UTF-8 String 4560
Representation of Distinguished Names". 4561

RFC822 Name 4562

ur n: oasi s: names: t c: xacml : 1. 0: dat a- t ype: r f c822Name 4563

An rfc822Name contains an "e-mail name". The valid syntax for such a name is described in IETF 4564
RFC 2821, Section 4.1.2, Command Argument Syntax, under the term "Mailbox". 4565

The following data type identifiers are defined by XML Schema and XQuery. 4566

ht t p: / / www. w3. or g/ 2001/ XMLSchema: st r i ng 4567
ht t p: / / www. w3. or g/ 2001/ XMLSchema: bool ean 4568
ht t p: / / www. w3. or g/ 2001/ XMLSchema: i nt eger 4569
ht t p: / / www. w3. or g/ 2001/ XMLSchema: doubl e 4570
ht t p: / / www. w3. or g/ 2001/ XMLSchema: dat e 4571
ht t p: / / www. w3. or g/ 2001/ XMLSchema: dat eTi me 4572
ht t p: / / www. w3. or g/ 2001/ XMLSchema: anyURI 4573
ht t p: / / www. w3. or g/ 2001/ XMLSchema: hexBi nar y 4574
ht t p: / / www. w3. or g/ 2001/ XMLSchema: base64Bi nar y 4575
ht t p: / / www. w3. or g/ 2002/ 08/ xquer y- f unct i ons: dayTi meDur at i on 4576
ht t p: / / www. w3. or g/ 2002/ 08/ xquer y- f unct i ons: year Mont hDur at i on 4577

B.5. Subject attributes 4578

These identifiers indicate attributes of a subject. When used, they SHALL appear within a 4579
<Subj ect > element of the request context. They SHALL be accessed via a 4580
<Subj ect At t r i but eDesi gnat or >, a <Qual i f i edSubj ect At t r i but eDesi gnat or > or an 4581
<At t r i but eSel ect or > element pointing into a <Subj ect > element of the request context. 4582

At most one of each of these attributes is associated with each subject. Each attribute associated 4583
with authentication included within a single <Subject> element relates to the same authentication 4584
event. 4585

This identifier indicates the name of the subject. The default format is 4586
http://www.w3.org/2001/XMLSchema#string. To indicate other formats, use Dat aType attributes 4587
listed in B.4 4588

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d 4589

This identifier indicates the subject category. “access-subject” is the default. 4590

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - cat egor y 4591

This identifier indicates the security domain of the subject. It identifies the administrator and policy 4592
that manages the name-space in which the subject id is administered. 4593

cs-xacml-specification-1.0.doc 122

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : subj ect - i d- qual i f i er 4594

This identifier indicates a public key used to confirm the subject’s identity. 4595

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : key- i nf o 4596

This identifier indicates the time at which the subject was authenticated. 4597

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hent i cat i on- t i me 4598

This identifier indicates the method used to authenticate the subject. 4599

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hent i cat i on- met hod 4600

This identifier indicates the time at which the subject initiated the access request, according to the 4601
PEP. 4602

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : r equest - t i me 4603

This identifier indicates the time at which the subject’s current session began, according to the 4604
PEP. 4605

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : sessi on- st ar t - t i me 4606

The following identifiers indicate the location where authentication credentials were activated. They 4607
are intended to support the corresponding entities from the SAML authentication statement. 4608

This identifier indicates that the location is expressed as an IP address. 4609

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hn- l ocal i t y: i p- addr ess 4610

This identifier indicates that the location is expressed as a DNS name. 4611

ur n: oasi s: names: t c: xacml : 1. 0: subj ect : aut hn- l ocal i t y: dns- name 4612

Where a suitable attribute is already defined in LDAP [LDAP-1, LDAP-2], the XACML identifier 4613
SHALL be formed by adding the attribute name to the URI of the LDAP specification. For 4614
example, the attribute name for the userPassword defined in the rfc2256 SHALL be: 4615

ht t p: / / www. i et f . or g/ r f c/ r f c2256. t xt #user Passwor d 4616

B.6. Resource attributes 4617

These identifiers indicate attributes of the resource. When used, they SHALL appear within the 4618
<Resour ce> element of the request context. They SHALL be accessed via a 4619
<Resour ceAt t r i but eDesi gnat or > or an <At t r i but eSel ect or > element pointing into the 4620
<Resour ce> element of the request context. 4621

This identifier indicates the entire URI of the resource. 4622

ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- i d 4623

A resource attribute used to indicate values extracted from the resource. 4624

ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: r esour ce- cont ent 4625

This identifier indicates the last (rightmost) component of the file name. For example, if the URI is: 4626
“file://home/my/status#pointer”, the simple-file-name is "status". 4627

ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: si mpl e- f i l e- name 4628

This identifier indicates that the resource is specified by an XPath expression. 4629

ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: xpat h 4630

cs-xacml-specification-1.0.doc 123

This identifier indicates a UNIX file-system path. 4631

ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: uf s- pat h 4632

This identifier indicates the scope of the resource, as described in Section 7.8. 4633

 ur n: oasi s: names: t c: xacml : 1. 0: r esour ce: scope 4634

The allowed value for this attribute is of type http://www.w3.org/2001/XMLSchema#string, and is 4635
either "Immediate", "Children" or "Descendants". 4636

B.7. Action attributes 4637

These identifiers indicate attributes of the action being rquested. When used, they SHALL appear 4638
within the <Act i on> element of the request context. They SHALL be accessed via an 4639
<Act i onAt t r i but eDesi gnat or > or an <At t r i but eSel ect or > element pointing into the 4640
<Act i on> element of the request context. 4641

ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- i d 4642

Action namespace 4643

ur n: oasi s: names: t c: xacml : 1. 0: act i on: act i on- namespace 4644

Implied action. This is the value for action-id attribute when action is implied. 4645

ur n: oasi s: names: t c: xacml : 1. 0: act i on: i mpl i ed- act i on 4646

B.8. Environment attributes 4647

These identifiers indicate attributes of the environment within which the decision request is to be 4648
evaluated. When used, they SHALL appear within the <Resour ce> element of the request 4649
context. They SHALL be accessed via an <Envi r onment At t r i but eDesi gnat or > or an 4650
<At t r i but eSel ect or > element pointing into the <Envi r onment > element of the request 4651
context. 4652

This identifier indicates the current time at the PDP. In practice it is the time at which the request 4653
context was created. 4654

ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - t i me 4655
ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat e 4656
ur n: oasi s: names: t c: xacml : 1. 0: envi r onment : cur r ent - dat eTi me 4657

B.9. Status codes 4658

The following status code identifiers are defined. 4659

This identifier indicates success. 4660

ur n: oasi s: names: t c: xacml : 1. 0: st at us: ok 4661

This identifier indicates that attributes necessary to make a policy decision were not available. 4662

ur n: oasi s: names: t c: xacml : 1. 0: st at us: mi ssi ng- at t r i but e 4663

This identifier indicates that some attribute value contained a syntax error, such as a letter in a 4664
numeric field. 4665

cs-xacml-specification-1.0.doc 124

ur n: oasi s: names: t c: xacml : 1. 0: st at us: synt ax- er r or 4666

This identifier indicates that an error occurred during policy evaluation. An example would be 4667
division by zero. 4668

ur n: oasi s: names: t c: xacml : 1. 0: st at us: pr ocessi ng- er r or 4669

B.10. Combining algorithms 4670

The deny-overrides rule-combining algorithm has the following value for r ul eCombi ni ngAl gI d: 4671

ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng- al gor i t hm: deny- over r i des 4672

The deny-overrides policy-combining algorithm has the following value for 4673
pol i cyCombi ni ngAl gI d: 4674

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng- al gor i t hm: deny- over r i des 4675

The permit-overrides rule-combining algorithm has the following value for r ul eCombi ni ngAl gI d: 4676

ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng- al gor i t hm: per mi t - over r i des 4677

The permit-overrides policy-combining algorithm has the following value for 4678
pol i cyCombi ni ngAl gI d: 4679

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng- al gor i t hm: per mi t - over r i des 4680

The first-applicable rule-combining algorithm has the following value for r ul eCombi ni ngAl gI d: 4681

ur n: oasi s: names: t c: xacml : 1. 0: r ul e- combi ni ng- al gor i t hm: f i r st - appl i cabl e 4682

The first-applicable policy-combining algorithm has the following value for 4683
pol i cyCombi ni ngAl gI d: 4684

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng- al gor i t hm: f i r st - appl i cabl e 4685

The only-one-applicable-policy policy-combining algorithm has the following value for 4686
pol i cyCombi ni ngAl gI d: 4687

ur n: oasi s: names: t c: xacml : 1. 0: pol i cy- combi ni ng- al gor i t hm: onl y- one- appl i cabl e- pol i cy 4688

cs-xacml-specification-1.0.doc 125

Appendix C. Combining algorithms (normative) 4689

This section contains a description of the rule-combining and policy-combining algorithms specified 4690
by XACML. 4691

C.1. Deny-overrides 4692

The following specification defines the “Deny-overrides” rule-combining algorithm of a policy. 4693

In the entire set of rules in the policy, if any rule evaluates to "Deny", then the result of the 4694
rule combination SHALL be "Deny". If any rule evaluates to "Permit" and all other rules 4695
evaluate to "Not-applicable", then the result of the rule combination SHALL be "Permit". In 4696
other words, "Deny" takes precedence, regardless of the result of evaluating any of the 4697
other rules in the combination. If all rules are found to be "Not-applicable" to the decision 4698
request, then the rule combination SHALL evaluate to "Not-applicable". 4699

If an error occurs while evaluating the target or condition of a rule that contains an effect 4700
value of "Deny" then the evaluation SHALL continue to evaluate subsequent rules, looking 4701
for a result of "Deny". If no other rule evaluates to "Deny", then the combination SHALL 4702
evaluate to "Indeterminate". 4703

If at least one rule evaluates to "Permit", all other rules that do not have evaluation errors 4704
evaluate to "Permit" or "Not-applicable" and all rules that do have evaluation errors contain 4705
effects of "Permit", then the result of the combination SHALL be "Permit". 4706

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm. 4707

Deci si on denyOver r i desRul eCombi ni ngAl gor i t hm(Rul e r ul e[]) 4708
{ 4709
 Bool ean at Least OneEr r or = f al se; 4710
 Bool ean pot ent i al Deny = f al se; 4711
 Bool ean at Least OnePer mi t = f al se; 4712
 f or (i =0 ; i < l engt hOf (r ul es) ; i ++) 4713
 { 4714
 Deci s i on deci s i on = eval uat e(r ul e[i]) ; 4715
 i f (deci s i on == Deny) 4716
 { 4717
 r et ur n Deny; 4718
 } 4719
 i f (deci s i on == Per mi t) 4720
 { 4721
 at Least OnePer mi t = t r ue; 4722
 cont i nue; 4723
 } 4724
 i f (deci s i on == Not - appl i cabl e) 4725
 { 4726
 cont i nue; 4727
 } 4728
 i f (deci s i on == I ndet er mi nat e) 4729
 { 4730
 at Least OneEr r or = t r ue; 4731
 4732
 i f (ef f ect (r ul e[i]) == Deny) 4733
 { 4734
 pot ent i al Deny = t r ue; 4735
 } 4736
 cont i nue; 4737

cs-xacml-specification-1.0.doc 126

 } 4738
 } 4739
 i f (pot ent i al Deny) 4740
 { 4741
 r et ur n I ndet er mi nat e; 4742
 } 4743
 i f (at Least OnePer mi t) 4744
 { 4745
 r et ur n Per mi t ; 4746
 } 4747
 i f (at Least OneEr r or) 4748
 { 4749
 r et ur n I ndet er mi nat e; 4750
 } 4751
 r et ur n Not - appl i cabl e; 4752
} 4753

The following specification defines the “Deny-overrides” policy-combining algorithm of a policy 4754
set. 4755

In the entire set of policies in the policy set, if any policy evaluates to "Deny", then the 4756
result of the policy combination SHALL be "Deny". In other words, "Deny" takes 4757
precedence, regardless of the result of evaluating any of the other policies in the policy 4758
set. If all policies are found to be "Not-applicable" to the decision request, then the 4759
policy set SHALL evaluate to "Not-applicable". 4760

If an error occurs while evaluating the target of a policy, or a reference to a policy is 4761
considered invalid or the policy evaluation results in "Indeterminate", then the policy set 4762
SHALL evaluate to "Deny". 4763

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm. 4764

Deci si on denyOver r i desPol i cyCombi ni ngAl gor i t hm(Pol i cy pol i cy[]) 4765
{ 4766
 Bool ean at Least OnePer mi t = f al se; 4767
 f or (i =0 ; i < l engt hOf (pol i cy) ; i ++) 4768
 { 4769
 Deci s i on deci s i on = eval uat e(pol i cy[i]) ; 4770
 i f (deci s i on == Deny) 4771
 { 4772
 r et ur n Deny; 4773
 } 4774
 i f (deci s i on == Per mi t) 4775
 { 4776
 at Least OnePer mi t = t r ue; 4777
 cont i nue; 4778
 } 4779
 i f (deci s i on == Not - appl i cabl e) 4780
 { 4781
 cont i nue; 4782
 } 4783
 i f (deci s i on == I ndet er mi nat e) 4784
 { 4785
 r et ur n Deny; 4786
 } 4787
 } 4788
 i f (at Least OnePer mi t) 4789
 { 4790
 r et ur n Per mi t ; 4791
 } 4792
 r et ur n Not - appl i cabl e; 4793
} 4794

cs-xacml-specification-1.0.doc 127

Obligations of the individual policies shall be combined as described in Section 3.3.2.3. 4795

C.2. Permit-overrides 4796

The following specification defines the “Permit-overrides” rule-combining algorithm of a policy. 4797

In the entire set of rules in the policy, if any rule evaluates to "Permit", then the result of 4798
the rule combination SHALL be "Permit". If any rule evaluates to "Deny" and all other 4799
rules evaluate to "Not-applicable", then the policy SHALL evaluate to "Deny". In other 4800
words, "Permit" takes precedence, regardless of the result of evaluating any of the other 4801
rules in the policy. If all rules are found to be "Not-applicable" to the decision request, 4802
then the policy SHALL evaluate to "Not-applicable". 4803

If an error occurs while evaluating the target or condition of a rule that contains an effect 4804
of "Permit" then the evaluation SHALL continue looking for a result of "Permit". If no other 4805
rule evaluates to "Permit", then the policy SHALL evaluate to "Indeterminate". 4806

If at least one rule evaluates to "Deny", all other rules that do not have evaluation errors 4807
evaluate to "Deny" or "Not-applicable" and all rules that do have evaluation errors contain 4808
an effect value of "Deny", then the policy SHALL evaluate to "Deny". 4809

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm. 4810

Deci si on per mi t Over r i desRul eCombi ni ngAl gor i t hm(Rul e r ul e[]) 4811
{ 4812
 Bool ean at Least OneEr r or = f al se; 4813
 Bool ean pot ent i al Per mi t = f al se; 4814
 Bool ean at Least OneDeny = f al se; 4815
 f or (i =0 ; i < l engt hOf (r ul e) ; i ++) 4816
 { 4817
 Deci s i on deci s i on = eval uat e(r ul e[i]) ; 4818
 i f (deci s i on == Deny) 4819
 { 4820
 at Least OneDeny = t r ue; 4821
 cont i nue; 4822
 } 4823
 i f (deci s i on == Per mi t) 4824
 { 4825
 r et ur n Per mi t ; 4826
 } 4827
 i f (deci s i on == Not - appl i cabl e) 4828
 { 4829
 cont i nue; 4830
 } 4831
 i f (deci s i on == I ndet er mi nat e) 4832
 { 4833
 at Least OneEr r or = t r ue; 4834
 4835
 i f (ef f ect (r ul e[i]) == Per mi t) 4836
 { 4837
 pot ent i al Per mi t = t r ue; 4838
 } 4839
 cont i nue; 4840
 } 4841
 } 4842
 i f (pot ent i al Per mi t) 4843
 { 4844
 r et ur n I ndet er mi nat e; 4845
 } 4846

cs-xacml-specification-1.0.doc 128

 i f (at Least OneDeny) 4847
 { 4848
 r et ur n Deny; 4849
 } 4850
 i f (at Least OneEr r or) 4851
 { 4852
 r et ur n I ndet er mi nat e; 4853
 } 4854
 r et ur n Not - appl i cabl e; 4855
} 4856

The following specification defines the “Permit-overrides” policy-combining algorithm of a policy 4857
set. 4858

In the entire set of policies in the policy set, if any policy evaluates to "Permit", then the 4859
result of the policy combination SHALL be "Permit". In other words, "Permit" takes 4860
precedence, regardless of the result of evaluating any of the other policies in the policy 4861
set. If all policies are found to be "Not-applicable" to the decision request, then the 4862
policy set SHALL evaluate to "Not-applicable". 4863

If an error occurs while evaluating the target of a policy, a reference to a policy is 4864
considered invalid or the policy evaluation results in "Indeterminate", then the policy set 4865
SHALL evaluate to "Indeterminate" provided no other policies evaluate to "Permit" or 4866
"Deny". 4867

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm. 4868

Deci si on per mi t Over r i desPol i cyCombi ni ngAl gor i t hm(Pol i cy pol i cy[]) 4869
{ 4870
 Bool ean at Least OneEr r or = f al se; 4871
 Bool ean at Least OneDeny = f al se; 4872
 f or (i =0 ; i < l engt hOf (pol i cy) ; i ++) 4873
 { 4874
 Deci s i on deci s i on = eval uat e(pol i cy[i]) ; 4875
 i f (deci s i on == Deny) 4876
 { 4877
 at Least OneDeny = t r ue; 4878
 cont i nue; 4879
 } 4880
 i f (deci s i on == Per mi t) 4881
 { 4882
 r et ur n Per mi t ; 4883
 } 4884
 i f (deci s i on == Not - appl i cabl e) 4885
 { 4886
 cont i nue; 4887
 } 4888
 i f (deci s i on == I ndet er mi nat e) 4889
 { 4890
 at Least OneEr r or = t r ue; 4891
 cont i nue; 4892
 } 4893
 } 4894
 i f (at Least OneDeny) 4895
 { 4896
 r et ur n Deny; 4897
 } 4898
 i f (at Least OneEr r or) 4899
 { 4900
 r et ur n I ndet er mi nat e; 4901
 } 4902
 r et ur n Not - appl i cabl e; 4903

cs-xacml-specification-1.0.doc 129

} 4904

Obligations of the individual policies shall be combined as described in Section 3.3.2.3. 4905

C.3. First-applicable 4906

The following specification defines the "First-Applicable " rule-combining algorithm of a policy. 4907

Each rule SHALL be evaluated in the order in which it is listed in the policy. For a 4908
particular rule, if the target matches and the condition evaluates to "True", then the 4909
evaluation of the policy SHALL halt and the corresponding effect of the rule SHALL be the 4910
result of the evaluation of the policy (i.e. "Permit" or "Deny"). For a particular rule selected 4911
in the evaluation, if the target evaluates to "False" or the condition evaluates to "False", 4912
then the next rule in the order SHALL be evaluated. If no further rule in the order exists, 4913
then the policy SHALL evaluate to "Not-applicable". 4914

If an error occurs while evaluating the target or condition of a rule, then the evaluation 4915
SHALL halt, and the policy shall evaluate to "Indeterminate", with the appropriate error 4916
status. 4917

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm. 4918

Deci si on f i r st Appl i cabl eEf f ect Rul eCombi ni ngAl gor i t hm(Rul e r ul e[]) 4919
{ 4920
 f or (i = 0 ; i < l engt hOf (r ul e) ; i ++) 4921
 { 4922
 Deci s i on deci s i on = eval uat e(r ul e[i]) ; 4923
 i f (deci s i on == Deny) 4924
 { 4925
 r et ur n Deny; 4926
 } 4927
 i f (deci s i on == Per mi t) 4928
 { 4929
 r et ur n Per mi t ; 4930
 } 4931
 i f (deci s i on == Not - appl i cabl e) 4932
 { 4933
 cont i nue; 4934
 } 4935
 i f (deci s i on == I ndet er mi nat e) 4936
 { 4937
 r et ur n I ndet er mi nat e; 4938
 } 4939
 } 4940
 r et ur n Not - appl i cabl e; 4941
} 4942

The following specification defines the “First-applicable” policy-combining algorithm of a policy 4943
set. 4944

Each policy is evaluated in the order that it appears in the policy set. For a particular 4945
policy, if the target evaluates to "True" and the policy evaluates to a determinate value of 4946
"Permit" or "Deny", then the evaluation SHALL halt and the policy set SHALL evaluate to 4947
the effect value of that policy. For a particular policy, if the target evaluate to "False", or 4948
the policy evaluates to "Not-applicable", then the next policy in the order SHALL be 4949
evaluated. If no further policy exists in the order, then the policy set SHALL evaluate to 4950
"Not-applicable". 4951

cs-xacml-specification-1.0.doc 130

If an error occurs while evaluating the target or the policy, or a reference to a policy is 4952
considered invalid, then the evaluation SHALL continue looking for an applicable policy, if 4953
no applicable policy is found, then the policy set SHALL evaluate to "Indeterminate". 4954

If an error were to occur when evaluating the target, or when evaluating a specific policy, 4955
the reference to the policy is considered invalid, or the policy itself evaluates to 4956
"Indeterminate", then the evaluation of the policy-combining algorithm shall halt, and the 4957
policy set shall evaluate to "Indeterminate" with an appropriate error status. 4958

The following pseudo-code represents the evaluation strategy of this policy-combination 4959
algorithm. 4960

Deci si on f i r st Appl i cabl eEf f ect Pol i cyCombi ni ngAl gor i t hm(Pol i cy pol i cy[]) 4961
{ 4962
 f or (i = 0 ; i < l engt hOf (pol i cy) ; i ++) 4963
 { 4964
 Deci s i on deci s i on = eval uat e(pol i cy[i]) ; 4965
 i f (deci s i on == Deny) 4966
 { 4967
 r et ur n Deny; 4968
 } 4969
 i f (deci s i on == Per mi t) 4970
 { 4971
 r et ur n Per mi t ; 4972
 } 4973
 i f (deci s i on == Not - appl i cabl e) 4974
 { 4975
 cont i nue; 4976
 } 4977
 i f (deci s i on == I ndet er mi nat e) 4978
 { 4979
 r et ur n I ndet er mi nat e; 4980
 } 4981
 } 4982
 r et ur n Not - appl i cabl e; 4983
} 4984

Obligations of the individual policies shall be combined as described in Section 3.3.2.3 4985

C.4. Only-one-applicable 4986

The following specification defines the “Only-one-applicable" policy-combining algorithm of a 4987
policy set. 4988

In the entire set of policies in the policy set, if no policy is considered applicable by virtue of their 4989
targets, then the result of the policy combination algorithm SHALL be "Not-applicable". If more than 4990
one policy is considered applicable by virtue of their targets, then the result of the policy 4991
combination algorithm SHALL be "Indeterminate". 4992

If only one policy is considered applicable by evaluation of the policy targets, then the result of 4993
the policy-combining algorithm SHALL be the result of evaluating the policy. 4994

If an error occurs while evaluating the target of a policy, or a reference to a policy is considered 4995
invalid or the policy evaluation results in "Indeterminate, then the policy set SHALL evaluate to 4996
"Indeterminate". 4997

The following pseudo-code represents the evaluation strategy of this policy combining algorithm. 4998

Deci si on onl yOneAppl i cabl ePol i cyPol i cyCombi ni ngAl ogr i t hm(Pol i cy pol i cy[]) 4999

cs-xacml-specification-1.0.doc 131

{ 5000
 Bool ean at Least One = f al se; 5001
 Pol i cy sel ect edPol i cy = nul l ; 5002
 Appl i cabl eResul t appResul t ; 5003
 5004
 f or (i = 0; i < l engt hOf (pol i cy) ; i ++) 5005
 { 5006
 appResul t = i sAppl i cabl e(pol i cy[I]) ; 5007
 5008
 i f (appResul t == I ndet er mi nat e) 5009
 { 5010
 r et ur n I ndet er mi nat e; 5011
 } 5012
 i f (appResul t == Appl i cabl e) 5013
 { 5014
 i f (at Least One) 5015
 { 5016
 r et ur n I ndet er mi nat e; 5017
 } 5018
 el se 5019
 { 5020
 at Least One = t r ue; 5021
 sel ect edPol i cy = pol i cy[i] ; 5022
 } 5023
 } 5024
 i f (appResul t == Not Appl i cabl e) 5025
 { 5026
 cont i nue; 5027
 } 5028
 } 5029
 i f (at Least One) 5030
 { 5031
 r et ur n eval uat e(sel ect edPol i cy) ; 5032
 } 5033
 el se 5034
 { 5035
 r et ur n Not Appl i cabl e; 5036
 } 5037
} 5038

 5039

cs-xacml-specification-1.0.doc 132

Appendix D. Acknowledgments 5040

The following individuals were voting members of the XACML committee at the time that this 5041
version of the specification was issued: 5042

Affinitex James MacLean JMaclean@affinitex.com 5043
CrossLogix Ken Yagen kyagen@crosslogix.com 5044
CrossLogix Daniel Engovatov dengovatov@crosslogix.com 5045
Entegrity Hal Lockhart hal.lockhart@entegrity.com 5046
Entrust Carlisle Adams carlisle.adams@entrust.com 5047
Entrust Tim Moses tim.moses@entrust.com 5048
Quadrasis Don Flinn Don.Flinn@hitachisoftware.com 5049
Quadrasis Konstantin Beznosov konstantin.beznosov@quadrasis.com 5050
OpenNetwork Steve Andersen sanderson@opennetwork.com 5051
Overxeer Bill Parducci bill.parducci@overxeer.com 5052
Overxeer Simon Godik simon.godik@overxeer.com 5053
IBM Michiharu Kudo kudo@jp.ibm.com 5054
Self Polar Humenn polar@syr.edu 5055
Sterling Commerce Suresh Damodaran Suresh_Damodaran@stercomm.com 5056
Sun Microsystems Anne Anderson Anne.Anderson@Sun.com 5057
Sun Microsystems Pirasenna Velandai Thiyagarajan Pirasenna.Thiyagarajan@Sun.com 5058
Xtradyne Gerald Brose Gerald.Brose@xtradyne.com 5059

cs-xacml-specification-1.0.doc 133

Appendix E. Revision history 5060

Rev Date By whom What

V1.0 6 Nov 2002 XACML
Technical
Committee

First committee specification.

 5061

cs-xacml-specification-1.0.doc 134

Appendix F. Notices 5062

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 5063
that might be claimed to pertain to the implementation or use of the technology described in this 5064
document or the extent to which any license under such rights might or might not be available; 5065
neither does it represent that it has made any effort to identify any such rights. Information on 5066
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 5067
website. Copies of claims of rights made available for publication and any assurances of licenses to 5068
be made available, or the result of an attempt made to obtain a general license or permission for 5069
the use of such proprietary rights by implementors or users of this specification, can be obtained 5070
from the OASIS Executive Director. 5071

OASIS has been notified of intellectual property rights claimed in regard to some or all of the 5072
contents of this specification. For more information consult the online list of claimed rights. 5073

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 5074
applications, or other proprietary rights which may cover technology that may be required to 5075
implement this specification. Please address the information to the OASIS Executive Director. 5076

Copyright (C) OASIS Open 2002. All Rights Reserved. 5077

This document and translations of it may be copied and furnished to others, and derivative works 5078
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 5079
published and distributed, in whole or in part, without restriction of any kind, provided that the above 5080
copyright notice and this paragraph are included on all such copies and derivative works. However, 5081
this document itself may not be modified in any way, such as by removing the copyright notice or 5082
references to OASIS, except as needed for the purpose of developing OASIS specifications, in 5083
which case the procedures for copyrights defined in the OASIS Intellectual Property Rights 5084
document must be followed, or as required to translate it into languages other than English. 5085

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 5086
successors or assigns. 5087

This document and the information contained herein is provided on an “AS IS” basis and OASIS 5088
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 5089
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 5090
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 5091
PARTICULAR PURPOSE. 5092

