Policy meeting 21 February 2003

Attending:
Burlington:
Dave Chappell, Sonic Software
Bob DeWolfe, Tarari
Yassir Elley, Sun
Don Flinn, individual
Frederick Hirsch
Ron Monzillo, Sun
Eve Maler, Sun
Prateek Mishra, Netegrity
Tim Moses, Entrust
Andrew Nash, RSA Security
Rob Philpott, RSA Security
Rich Salz, DataPower
Santa Clara:
Doug Bunting, Sun
Gary Ellison, Sun
Jeff Hodges, Sun
Sandeep Kumar, Cisco
Shivaram Mysore, Sun
Jerry Schwarz, Oracle
Frank Siebenlist, Argonne National Labs (later in SCA)
Phone:
T.J. Pannu, ContentGuard
Zahid Ahmed, Commerce One
Steve Anderson, OpenNetwork
Ugo Corda, SeeBeyond
Zulah Eckert, Hewlett-Packard
Komal Lahiri, Sun
Dale Moberg, Cyclone Commerce
Gene Thurston, AmberPoint

Agenda:
10:00-10:15 (7:00-7:15 PST) Welcome and Introductions
Ron presented a purpose statement for the meeting.

This meeting will focus on the characterization of the policy related
functionality required to support the interoperable use of mechanisms,
including, but not limited to, the SOAP message security mechanisms
being defined by the Web Services Security TC. The purpose of the
meeting will be to capture these requirements in proposed charters for
one or more open forums that will serve the industry by providing
solutions to these important problems.

This is not a meeting about technical solutions or IP; there should be
no expectation of confidentiality. We're trying to stick to problem
descriptions. In the event that we subsequently learn that a problem
description is encumbered by IP that is not available under RF terms,
would expect any resulting standards activity to adjust its scope as
appropriate to preserve the ability of the activity to make its work
available under RF terms. We will advocate that the charter of any
standards activity resulting from this meeting include in it a clear
statement that it shall not produce any specification that it believes
would require the use of IP which has not been made available by its
owner under appropriate RF terms.

10:15-10:30 (7:15-7:30 PST) Agenda Review and Refinement

we

The agenda is focused on getting through to the end; it's important to
drive towards chartering.

10:30-12:15 (7:30-9:15 PST) Use Cases and Example Scenarios

Ron presented an informal definition of "policy": "The requirements
and capabilities that affect the nature of the interactions entities
will participate in with other systems." Requirements means '"behaviors
that an entity demands of its peers'". Capabilities means '"behaviors
that an entity offers to support the requirements of a peer". He also
indicated that although the informal definition may be a good match for
what we see as the problem space; the use of the word policy tends to
complicate agreement on the suggested focus.

Prateek had collected some standard definitions. Informational RFC

3198 on "Terminology for Policy-Based Management'" has a more generic
definition: "a definite goal, method, or course of action to guide and
determine future decisions" and one that is more specific: "~policies

as a set of rules to manage, administer, and control access". The focus
of this document is network resource management.

Tim: The XACML spec has a definition. Also, Maryann Hondo sent out a
paper on the XACML list that said, in part: "WS-Policy is a language
that can be used to describe properties and capabilities of many
different types of resources. This language is used for
communicating such information as security requirements, supported
features, prefered ways of invoking the service, etc. among Web
services." She noted that her definition was broader than is usually
used. Her comparison paper is a response to a suggestion from Tim
that an authorization style of policy has some of the characteristics
that are interesting and important for web services policy.

Ron: AuthZ policy usually require a yes-no answer, and that is what
XACML focuses on; but it's use of predicate calculus could be extended
to produce more than yes/no answers (as Tim has suggested).

All: Using the word '"policy" for this instance may be overloading it.
If we could find a synonym, that would be helpful. Let's suspend our
preconceptions about '"policy" for the time being, and work on getting
the right definition.

Ugo: Should we restrict our understanding of this concept to just
security policy, or policy in general?

Zula: She represents the needs of web services management here, so
doing just security won't be as interesting to her.

Ugo: He points to WS-Reliability as an example. Would reliable
conversations be part of handling policy? Dave: It should be.
Prateek: Is all of WSDL policy? Ugo: SOAP has a general notion of
"features" or "properties"; a W3C task force of WSDL and WSA people is
working on how to specify SOAP features in WSDL.

Ron: A differentiator might be that we want to express policies that
are generic in their expression. When you talk about WSDL, you imply
those policies' interpretataion. Tim: The relation between service
features and policy might not be very remote. Specifying that the
language "English" is supported could be seen as either, depending on
whether you declare it first or are asked about it. Zahid: He listed
several SOAP feature extensions: header extensions for choreography,

reliability, security, routing, and SOAP manifests.

Don: Whether the policies are runtime vs. static makes a difference.
Ron: Are any policies static? Dale: An example from CPPA is "How
often should the CRL list be checked?" 1It's a feature of the PKI
administration, but doesn't manifest itself on the wire. Ron: You are
advertising obligations that you're imposing. Don: The difference
manifests itself in terms of how you store it (e.g., in LDAP or
whatever). During runtime, you may not send it anywhere.

Dave: Should we stick to the scope of a conversation between two
endpoints? Andrew: There would be a need for policy management. If
there is a set of selections you can make within a generic
implementation, then there's a need for a policy sense in which you
set the expectations for a particular instance. Tim: One aspect is
how a client and service can produce messages that the other will
expect; the other aspect is administration and management. The
latter shouldn't be in scope.

Sandeep: If you want to enforce a privacy policy, that seems mostly
static. Non-repudiation is another static kind of policy. Ron: When
you invoke the service, you want it to support your reasonable
expectations; a service can have the capability of "keeping a secret".
It's a necessary part of the structure of policy to designate that
certain rules are intended for a level of negotiation.

Ron: If we only talk about interactions between systems, is there more
to the problem than that?

Andrew: How do I set enterprise policy, Tim recommends out of scope,
as mgmt interfaces will be a point of differentiation among vendors.

Don: Static policies are ones that I can declare independent of any
interaction that I have with others; dynamic (runtime) policies are
those that need to interact in order to have an outcome. Jerry:
Static policies don't affect the nature of the interaction. Ron: The
static ones represent a pre-calculation of a solution. Dave: You
still need to have the assertions, in the end, to verify that you're
doing what you and a peer had a pre-agreement about.

Eve: Ron's "definition" (which is undergoing some revision now) is
better as a scope statement, so that we don't have to worry about what
"it" is called until later.

What types of policy negotiation problems do we seek
solutions for?

What is the nature of the interactions whose properties
are being negotiated?

What is the relationship of the negotiation to
the interaction whose properties are being negotiated?

Where in the interactions is there a need to apply
the policies of the various actors in an interaction?

We agreed to keep these four questions in mind as Tim makes his
presentation: "Requirements for policy-management in distributed
systems":

This comes out of his QOP work and the XACML work he's been doing over

the last 18-24 months. The XACML examples here are purely just to
address objections that it's far too complicated and can't happen.

Examples of types of policy: authorization (is this request properly
authorized?), cryptographic security (does this request have the
required security attributes?), privacy (is the requested disclosure
properly authorized?), trust (is the key acceptable for this purpose?
also CRL issues), others (reliable messaging, transactions, etc.). He
has reconciled himself to the use of the word "policy".

Don: Notices that all these questions are boolean. Tim: They are
deliberately so. But this question needs to come up later. Ron:
Another example, in the area of privacy, is about representations
being made as opposed to authorizations being decided.

XACML uses SAML-style namespace URIs to indicate different testing
functions (e.g., testing that key sizes are greater than or equal to
the required size), as well as to indicate the meanings of the
attributes themselves (e.g., AttributeId="wssqgop:key-size").

An alternative view (Tim is trying to represent Maryann as best hs can
here) might be that policy doesn't have to be executable; it's just a
data container. But he believes that even "just data" will tend to
have semantics that can be seen as '"executable".

Jerry: He doesn't like anything that isn't statically interpretable.
He's concerned that the list of attributes and functions is
extensible. Eve: Even though the URIs are extensible, you can profile
the technology to support only some subset.

There is no single point at which all the aspects of policy get
implemented or acted on. Cryptographic security policy might apply at
the "receive" stage, authorization policy at the '"process" stage, and
privacy policy at the "forward" stage.

A service consumer might have these questions:

- Does my request satisfy the provider's requirements?

- How can I form a request that satisfies the provider's requirements?

- How can I find out what the provider's requirements are?

- Are the provider's requirements compatible with my requirements?

- How can I form a request that satisfies both the provider's
requirements and my requirements?

You need to take a policy, turn it into execution instructions, and
interpret them to produce a message that conforms to the policy.
(Prateek, Jerry, Prateek, and others had questions and concerns about
the notion of execution instructions.) BPEL4WS has constructs like
<sequence> and <switch>, which are similar to XACML's <apply and>
/<apply or> and WS-PolicyFramework's <All> and <OneOrMore>.

Provider policies and consumer policies may both place constraints on
a message. So they need to be combined and renormalized to produce an
"applied policy". Sandeep: Combination is a very large problem.
Shivaram: In addition, a policy might request that it not be combined
with other policies. Ron: We may just be talking about set
arithmetic, ORs and ANDs, which is doable. Don: There may also be a
negotiation phase in which the number of combinations can be reduced.
Gary: If the set arithmetic has negation, the negotiation may have to
be iterative to avoid the empty set of applied policies.

Ron: Perhaps "negotiation" should be reserved for cases where policies
have to be changed because there's a non-intersecting set of policies.
Once each sides requirements and capabilities have been exchanged, if
there is a non-null set of possible applied policies, it's not so much
negotiation as unilateral selection of options. Tim: There's an

analogy to cases where the trust list is empty. You either decide to

go ahead anyway (default policy), or get someone on the phone, or
something else more closely resembling true negotiation. Ron and Rob:
Negotiation should be in scope, or at last what you do to get an updated
representation of the requirements and capabilities of your peer.

The semantics of <or>, as we're discussing them here, mean "one or
both" (not XOR). Renormalization would involve things like collapse
identical adjacent operators, combining identical set operators, and
reordering sequences.

A service consumer receiving a response might need to test it to see
that it conforms to its policy, just as much as a service provider
might want to do the same for a request. Both of these cases presume
that each side has been given access to the other's policies. This
also applies to delegation, when the provider goes off and gets some
other service on behalf of the consumer.

Policy distribution might need to be accomplished by several means:
WSDL (provider policy, through the <wsdl:operation> element), SOAP
(consumer policy, though the <wsse:security> element), LDAP, HTTP,
etc.

If there's a requirement that a patient number in a request NOT be
encrypted, then any request without a patient number in the clear
would be rejected. TIf it's acceptable but not required to encrypt a
field, the XACML "anyURI-superset" function could be used. Then
there's the notion of preferences, e.g. to indicate which options are
less costly. They can guide the selection/negotiation. For example,
this could be expressed numerically as WS-PolicyFramework does it, or
policies could be listed in order of preference as CPP/A does it.

Dale: Where preferences are mismatched, it may require negotiation in
order to get an optimized solution, as opposed to mere unilateral
selection from the options at hand.

Some miscellaneous issues here: sequential application of requirements
("pipelining" of encryption and signing), whether attributes are
identified by name or location, policies that specify behavior in the
event of unavailable attributes (defaults), and mechanisms for
locating and retrieving policies.

Tim summarized these candidate requirements for consideration (edited
to reflect the discussion around these points):

[

Publish provider policies for requests

Transfer or publish (e.g. through an identity service)
consumer policies for responses

Combine provider and consumer policies

Translate to execution instructions

Express capabilities as well as requirements

Express preferences

Identify result of an execution step so it can be
referenced in later ones

Use single formal logic system

No oW \V)

[o0]

12:15-12:45 (9:15-9:45 PST) Lunch/Break (was taken 12:30-1:00)

12:45-2:15 (9:45-11:15 PST) Detailed Problem Characterization and
Decomposition

First, Ron presented some slides:

In CORBA (CSIv2) today, an IOR (interoperable object reference) is
sent from the EJB container to the client container if the client has
somehow misapplied the provider's policies. Bitmasks for '"required"
and "supported" policies are exactly aligned at all the different
levels of policy to allow for semantics such as EXACTLY ONE, ALL, ANY
OR NONE, etc. at each bit position (where a position represents a
behavior, such as that the client must authenticate). The bitmask
mechanism is extremely simple and compact, but Ron is hoping for a big
improvement in this next generation. (Others commented that this
basic mechanism has been independently invented in many systems.)

Prateek: Interface and policy versioning is something that needs to be
handled. Tim: Also, in the WSS-QOP discussions, the question of a
"naked WSDL" that gets augmented by someone else came up.

A top-level scenario contributed originally by Yassir: Alice wants to
have a secure exchange with Bob:

1. Bob associates Bob's policy with Bob's service description. (One
way to do this is to embed the policies in the stub, a la Jini.)

2. Alice combines her policy with Bob's in preparation for interacting
with Bob.

3. Alice selects a solution if there's a non-empty intersection of
Bob's requirements and Alice's capabilities and of Alice's
requirements and Bob's capabilities.

There may also be a need not to compute the intersection because of
dependent constraints or other computational reasons, so instead what
you do is query (on your own side) whether message configuration X
would be acceptable; with a Yes response, you go ahead and send it.
This is Jini's approach. Tim: It would be a mistake to define a
language that was locked into a particular combination approach.

4. Alice prepares and sends a request, along with Alice's policy.

5. Bob enforces and satisfies Bob's policy and the portions of Alice's
policy that were sent.

6. Bob responds to Alice or invokes on Alice's behalf. The potential
need for delegation came up in EJB/IIOP. Don: This is pretty
important in the case of web services, rather than traditional
client/server.

Consideration of the following aspects and others
as appropriate.

The distribution or other communication of
policy between interacting entities

Ron: This seems to have been covered by Tim's and Ron's presentations.

The grouping of related policy statements or the

composition of policy from smaller perhaps reusable
statment groups.

Ron: The CSIv2 example showed this with its different layers and
bitmasks. Tim's slides also showed cases where different policies get
applied at different stages. Eve: Can it be determined a priori, and
thus be made a requirement, that policies be grouped by which stage
they apply to? Ron: An enforcement point needs to be allowed to find
the policies that apply to it. For example, you might have transport-
layer vs. messaging-layer signing policies or you might have a generic
policy that can be satisfied in either of the two ways; he believes
you should be specific as to the layer the policy applies to. Jerry:
In language design, you need to be able to identify each policy in
such a way that it can be referred to from multiple places (i.e a
reference must be properly scoped to a context).

Do we need a requirement to identify the specific layer to which each
policy applies? Jerry: Does Alice need to be able to say that an
intermediary must talk to the ultimate recipient using SSL?

Ron: Yes, that's what the slides are showing in the delegation case.

There remains a concern about "policy forwarding" among us; who does
Alice allow to be delegated to (directly by her or indirectly by other
intermediaries)?

The reconciliation of policy negotiation with
a layered processing model

(Here, "policy negotiation" means just the combination (intersection
calculation) step.) This means that only policies that apply to the
respective layer need to be combined; you don't take a big bag of
policies and combine them. You don't have a complete semantic model
until you have a clear understanding of the layers.

Frederick: Uncomfortable with explicit layering in the semantic model,
because you can express layer-specific details in the policy itself.

Dale: The ebXML folks looked into this. CPPA encapsulates
characteristics akin to "SOAP features". They broke through this

issue by reaching agreement on sets of features, which pragmatically
made reference to layers as appropriate . So the language includes
constructs for "transient confidentiality" and "persistent
confidentiality" and "both" as security features. It closely matches
Tim's slide 9 (combining policies 1 and 2 into applied policy 3). EbXML
has two models: take-it-or-leave-it (CPP Template) and negotiated (CPA).
Didn’t focus on the procedural creation of CPA, but it can be done.

Summary of the discussion: Even if we're not willing to say that it's

a requirement to "layer" policies, it may still be useful or necessary
to "group" policies. Need some assurance that someone is enforcing each
of the policies.

The need for a semantic model in which to
configure, manage, and interpret (including
in combination) groups of policy staments.

Summary: This seems uncontroversial, given the previous point.

The need to allow for (perhaps decentralized)
evolution of the policy framework or statement model.

Ron: In cases where there are relationships between things (like the
"pipelining" of encryption vs. signing, or when you have two policies
about the same data field), there may be some complexity that the
solution needs to handle. how might the introduction of a new constraint
in the semantic model affect existing constraints? Related to version
control. Policies may be out-of-date. Policies may get relaxed Jerry
suggests that (when a request does not conform) the provider simply
returns its policy. Ron: When a request is made in a fashion that is
inconsistent with the current policy of the recipient, we need a way for
the recipient to inform the client that it is operating with out date
policy info. Perhaps we need to revise the SOAP protocol or profile its
use so that this type of feedback need not be an application layer
concern.

Jerry: We need a denotational semantics for our language.

Ron: Do we have any requirements about handling constraints (in the
sense of limitations) imposed by the SOAP invocation model? Jerry:
You can creatively use the mechanisms SOAP does contain by the client
sending an encrypted message that it knows the responder can't
decrypt, causing the responder to return its policies for a correct
message. Frank: This is like the familiar fake-ping mechanism.

2:15-2:30 (11:15-11:30 PST) Break/Lunch (taken 2:30-2:50)
2:30-4:00 (11:30-1:00 PST) Presentation and collaborative
development of Work descriptions suitable for inclusion

in the charters of one or more forums.

Rob - Let’s not reinvent the wheel. Get familiar with existing work
(EbXML, XACML, WS-Policy-*).

Rob - emphasizes need for use-case analysis after a TC is chartered.

Ron combines requirements from Tim’s presentation with his
list of work items and rationalized the result.

(some folks planning to leave early so we sut problem
description short and moved on to the next agenda item)

3:30-4:30 Charter Discussion

What forums (eg. TCs), if any, do we perceive as the
appropriate host for a particular piece of work?

Definition of next steps:

How do we transfer problem description(s) to the
appropriate forums, including potentially by deciding
to charter a new forum?

Discussion of forum specific requirements, collection
of advocates, sponsors, etc, to meet the requirements
of the standard organization.

Frederick asks if we need to consider IPR issues. Everyone agreed. Ron
has candidate language for an OASIS charter addressing the need for a
royalty-free specification.

Jerry asks if we are planning to define a language from scratch. If we
like XACML or WS-Policy we don’t have to define a new language.

Rob suggests we can’t predict what the work products are. Ron suggests
that Attachment is the subject of an existing TC. Rob suggests
chartering a Discussion List, rather than going directly to a TC.

Various approaches to taking on the work were discussed:

- Further ad hoc requirements-gathering meetings
- An OASIS discussion group
- An OASIS TC to both define specific flows/use cases and
develop the solution
- Get more input from other efforts on chartering before proceeding

One concern is that the discussion so far has been a little biased
towards security policy. It's important to get wider input, for
example from web services management efforts.

Discussion of the IPR question. Ron feels that the other major
participants will not participate until an RF IPR regime is established.
Ron presented a wording for a TC IPR clause.

Ron presents a template charter.

Fairly broad sense that it an ineffective use of our time to

work on writing charter wording as a group, but that sample text should
be

sent our and collaborated on in email, before a next teleconference.

4:30 Wrap up

Decided that some of us will propose a draft charter, which will be
circulated by email before being discussed in a teleconference, and then
published more widely for comments and to determine support for
submission.

