
First Experiences Using XACML for Access Control in
Distributed Systems

Markus Lorch
Virginia Tech

Dept. of Computer Science, m/c 106
Blacksburg, VA 24061

+1 206 337 0428

mlorch@vt.edu

Seth Proctor
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803

+1 781 442 2090

seth.proctor@sun.com

Rebekah Lepro
NASA Ames Research Center

Mail Stop 258/6
Moffett Field, CA 94035

+1 650 604 4359

rlepro@arc.nasa.gov

Dennis Kafura
Virginia Tech

Dept. of Computer Science, m/c 106
Blacksburg, VA 24061

+1 540 231 5568

kafura@cs.vt.edu

Sumit Shah
Virginia Tech

Dept. of Computer Science, m/c 106
Blacksburg, VA 24061

+1 540 951 4636

sshah@vt.edu

ABSTRACT
Authorization systems today are increasingly complex. They span
domains of administration, rely on many different authentication
sources, and manage permissions that can be as complex as the
system itself. Worse still, while there are many standards that
define authentication mechanisms, the standards that address
authorization are less well defined and tend to work only within
homogeneous systems. This paper presents XACML, a standard
access control language, as one component of a distributed and
inter-operable authorization framework. Several emerging
systems which incorporate XACML are discussed. These
discussions illustrate how authorization can be deployed in
distributed, decentralized systems. Finally, some new and future
topics are presented to show where this work is heading and how
it will help connect the general components of an authorization
system.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
Security and protection. D.4.6 [Operating Systems]: Security
and Protection – Access controls. I.7.2 [Document and Text
Processing]: Document Preparation – Markup languages.

General Terms
Design, Security, Human Factors, Standardization, Languages.

Keywords
Distributed system security, authorization, policy language,
policy management, access control decision, access control
enforcement.

1. INTRODUCTION
In modern systems, security is a critical feature. Beyond
providing strong protection, security systems must also be flexible
and promote inter-operability between domains of trust. However,
flexibility can come at the price of simplicity and manageability,
especially in the complex realm of authorization. Thus, the
authorization components of a secure system must be able to work
together across domains, but must be manageable to maintain
their collaborative value.

Authorization determines whether or not a given action, for
example reading a file or logging into a server, is allowed. This is
typically, though not always, achieved by authenticating a user
and then using their locally assigned attributes or rights to make
access decisions according to locally defined policies.
Unfortunately, most systems use either proprietary policy
languages or formats that apply only to a specific application (like
traditional file access modes), leading to interoperability
problems. As systems evolve from a central to a distributed
model, this limited ability to interoperate authorization
components creates additional administrative requirements and
hinders overall scalability. Further, heterogeneity restricts the
development of standard management tools and toolkits that serve
common policy needs, leaving developers and administrators
without a common solution to use when creating policy-driven
systems.

Authorization in a distributed system often requires cooperation
among separate and autonomous administrative domains.
Maintaining a consistent authorization strategy requires each
system to maintain at least some knowledge of its potential
collaborators throughout the entire system. Further, any
authorization decision that spans two or more authorization
domains requires each participant be capable of correctly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM Workshop on XML Security, October 31, 2003, Fairfax, VA, USA
Copyright (C) Sun Microsystems, Inc. and Association for Computing
Machinery 2003. All Rights Reserved. 1-58113-777-X/03/0010…$5.00.
Java and all Java-based marks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. ACM is
independent of Sun Microsystems, Inc.

producing, accepting and interpreting authorization information
from a group of potentially heterogeneous peers. This capability
requires agreement on protocol, syntax and semantics for each
piece of shared authorization data. Additionally, existing
enforcement mechanisms typically associate authorization data
with identities that are unique to an individual authorization
domain. This requires coordination of local identities between the
domains, forcing administrative domains to cede partial control of
local authorizations to a literal or figurative central authority.

In an attempt to help with these and other problems, OASIS
ratified XACML [11] (eXtensible Access Control Markup
Language), a standard, general purpose access control policy
language defined using XML. XACML was designed to
accommodate most system needs, so it may serve as a single
interface to policies for multiple applications and environments.
In addition to defining a policy language, XACML also specifies
a request and response format for authorization decision requests,
semantics for determining policy applicability, and a host of
advanced features that make it well-suited for tying together
large-scale authorization systems. Although XACML does not
standardize a complete authorization solution, it provides a
foundation upon which cooperative solutions can emerge.

What follows is a brief discussion of XACML. The full details of
the language are discussed in [11]. Sufficient explanation of the
new standard is presented to support the following sections, which
discuss early experiences using XACML in current authorization
systems and with existing and emerging protocols. Several
systems are presented to illustrate different operating scenarios
that can leverage XACML, different means to incorporate
XACML into varying authorization approaches and show various
ways to leverage XACML. Finally, we present some future
directions for XACML and its use in distributed authorization
systems.

2. The eXtensible Access Control Markup
Language - XACML
XACML is a general purpose policy system, designed to support
the needs of most authorization systems. At its core, XACML
defines the syntax for a policy language and the semantics for
processing those policies. There is also a request and response
format to query the policy system, and semantics for determining
applicability of policies to requests. The request and response
formats represent a standard interface, between a Policy Decision
Point (PDP) presents standard behavior when processing policy
and a Policy Enforcement Point (PEP) that issues requests and
handle responses. A PEP can be embedded in an application-
specific system (see Figure 1). This is based on policy framework
definitions used in the IETF [30].

XACML policies consist of an arbitrary tree of sub-policies. Each
tree represents a target, while the leaves of the tree contain a
collection of rules. The target is a simple set of criteria used to
determine a policy's applicability to a request, while the rules
contain more complex logic that makes XACML extremely
expressive, and therefore able to handle myriad policy
requirements. A request consists of attributes associated with the
requesting subjects, the resource acted upon, the action being
performed, and the environment. A response contains one of four
decisions: permit, deny, not applicable (no applicable policies or
rules could be found), or indeterminate (some error occurred
during processing). In the case of an error, optional information is
available to explain the error. Responses may also include
obligations, which are directives from the applicable policies for
the PEP to execute.

The logic within a policy uses an extensible system of datatypes
and functions to promote interoperability. All attributes used in
XACML are of a well-known type, and all functions have well-
known signatures that use these same datatypes. XACML defines

Figure 1. XACML Overview

a set of standard datatypes (like string, boolean, integer, time,
email address, set, etc.), and a set of standard functions (like
equality and comparisons, arithmetic, set comparison, etc.). While
these standard datatypes and functions can express many access
control policies, XACML also specifies a standard extension
mechanism for defining additional datatypes and functions.

In addition to expressing access control logic within a single
policy, policies can include references to other policies. In effect,
a single policy can consist of any number of decentralized,
distributed rules, each managed by different organizational
groups. A key supporting language feature is XACML's use of
combining algorithms, which define how to take results from
multiple rules or policies and derive a single result. As with
datatypes and functions, there are a number of standard
combining algorithms defined (first applicable, deny overrides,
etc.), as well as a standard extension mechanism used to define
new algorithms.

Two mechanisms are used to resolve attribute values within
policy logic: AttributeDesignators (which reference values by
identifier, datatype, and other optional meta-data), and
AttributeSelectors (which use XPath expressions to find values).
If the needed values aren't found in a request during policy
processing, the PDP is free to look elsewhere. This means that
XACML can work with existing attribute systems either by
including values in a request or by using some custom retrieval
module during evaluation.

Policy referencing and retrieval, and attribute value resolution are
both specified as arbitrary operations that the PDP is free to
perform in any way it sees fit. All policies and attributes,
however, are handled in a standard manner once within the PDP.
This facilitates inter-operation with legacy systems, and
cooperation between different modern attribute and policy
management [12] components.

The systems discussed in this paper use the open source XACML
implementation [26] originally developed at Sun Microsystems
Laboratories. The implementation supports the complete XACML
1.1 specification, handles all the extension points discussed in this
section, and includes several optional features of the specification
as well. It is implemented in the JavaTM Programming Language,
and is available at http://sunxacml.sourceforge.net. The PRIMA
system (discussed in section 5) also uses the free Jiffy binary
distribution implementation of XACML available at
http://www.jiffysoftware.com.

3. XACML and Shibboleth
A part of the middleware suite of tools being defined by the
Internet2 group, Shibboleth [7] provides a web-based
authentication and authorization system. The primary use case is
securing interaction between higher education sites, though it is
generally useful for any environments that must work across
domains of trust. The system will work entirely within the scope
of a web browser, so it's easy to setup a resource at one site (for
instance, slides for some course), and then let a student at another
site access the resource through the web. After the student’s
browser issues a request for some resource, a series of exchanges
between the target site and the user's site verify the user's identity,
gather attributes, and perform the access check.

For the authorization step, the target site must determine attributes
associated with the subject. As a simple web request contains the
initial message, no attribute values are available by default. For

security, privacy, and management reasons, an attribute authority
at the subject's site maintains all attributes associated with a
subject. Thus, the resource site contacts the subject site to request
attribute values needed by the policy system. Despite this flexible
attribute management system, actual policy decisions are
ultimately made using htaccess files in an Apache module. The
limitations of htaccess syntax and the difficulties involved with
sharing them or storing them in arbitrary locations severely
reduces access control system flexibility. These drawbacks also
restrict the opportunities to share access control policies among
system components.

Current research at Sun Microsystems and Brown University
focuses on XACML as a solution to these problems. Specifically,
researchers are considering XACML to replace current access
control functionality in Shibboleth, though the work applies to
other systems as well. In particular, XACML addresses the
problems with htaccess files and scales well to a distributed,
decentralized environment. In addition to adding basic access
control, they are also exploring XACML as a language for
defining release policies. This setup provides input into usability
and management issues for XACML in general as well as for each
of these specific environments.

3.1 Online Access
A basic PEP library, built in C, and an online PDP, implemented
using the open source XACML library, support the access control
needs of Shibboleth. Incorporating this functionality into
Shibboleth Apache modules supports more expressiveness than
previously permitted in htaccess syntax. In fact, XACML’s policy
referencing mechanism allows scenarios such as incorporating
policy from a subject’s site into the host site policy. This change
required no modifications to the majority of Shibboleth's features
and there is no difference from a user perspective. Obviously this
functionality is generally useful outside of Shibboleth as any
application or web server plugin can use this library to talk to an
online PDP. Further, the simplicity of the PEP library provides an
easy way to add XACML support into older systems. The existing
open source project provides a PEP interface in the Java
Programming Language, and PEP interfaces in other languages
are being developed.

XACML does not specify a protocol for communication between
a PEP and a PDP. As is discussed in the next section, SAML [13]
is a highly suitable candidate for this protocol. Indeed, the
original XACML request and response format came from the
SAML specification. Further, the current request and response
format from XACML may be included directly in the next version
of SAML together with ways to include XACML related data.
One of the current projects this framework is being used for is to
investigate different exchange protocols, like SAML over SOAP
[4] or the Common Open Policy Service [6], to understand what
will work best both for Shibboleth and authorization systems in
general. Different authorization systems may have different
performance or bandwidth requirements, so an online PDP may
need to support multiple protocols.

3.2 Release Policy
Another issue that the Shibboleth design raises is the management
of attributes and the circumstances under which an attribute
authority should release a user's attributes to another site.
Currently Shibboleth employs a proprietary system using XML
configuration files in which a user defines some simple rules

about when and to whom attributes may be revealed. Other people
have explored this same idea in Shibboleth [21] and in other
systems [25][29]. Unfortunately, no standards address this
problem, nor do good tools for managing these proprietary
solutions exist.

To this end a profile of XACML called Web Services Policy
Language [20] is being prototyped to provide this and other
functionality. The name implies its original goal, which is to
provide Web Services the ability to publish policy requirements
for communication. Since it can also define release criteria (a
similar application), and because it is using a standard language, it
is a good choice for replacing proprietary release languages.
Again, this addition doesn't typically affect the applications or the
user experience. The attribute exchange step requires additional
work only if the user wants to add extra levels of protection to
their attributes. Early results suggest that XACML and WSPL can
be used effectively to protect the privacy of both the user and the
authorization system at the other end during the attribute
exchange process

3.3 Management
Strong support for policy management is integral to the usefulness
of Shibboleth’s features. More expressive policies can be very
useful, but if they're difficult to write and maintain, they may
cancel the benefits of expressiveness. Worse still, while people
with some technical knowledge define most access policies,
average users will typically define attribute release policies.
Thus, release policies must be easy to write and manage or no one
will use them. To this end some initial investigation is being done
into fundamental, low-level management techniques for XACML,
especially in reasoning about policies to provide feedback at a
level that most humans can understand.

3.4 Results
Initial investigations have shown that XACML is a good match
for Shibboleth. With relative ease a new access control system has
been plugged in, and the resulting infrastructure can also be used
by other web plugins and stand-alone applications, which helps
pull the authorization components together. Additionally, policies
can now be shared between applications, regardless of whether
they're using Shibboleth, which makes it easier to work across
different kinds of authorization systems in the same network.
Finally, XACML's ability to work with policies and attributes
managed in arbitrary locations greatly supports the distributed
nature of Shibboleth . The next steps for this project are to
continue investigating protocols and their relative efficiencies,
support other languages for the PEP (for instance so Perl modules
can use the same features), and continue exploring the usability
challenges.

4. Cardea – Combining XACML and
SAML to support distributed authorization
Cardea is a distributed authorization system, developed as part of
the NASA Information Power Grid [15], which dynamically
evaluates authorization requests directly according to a set of
relevant characteristics of the resource and requester rather than
considering specific local identities that represent those
characteristics. Potentially accessed resources are protected by
local access control policies, specified with the XACML syntax,

in terms of subject and resource characteristics. Further, potential
users are modeled only by the characteristics that they can
demonstrate. The exact values needed to complete an
authorization decision are assessed and collected during the
decision process itself. Once assembled, this information is
presented to a PDP that returns a final authorization together with
any relevant details.

Cardea is currently implemented in the Java Programming
Language as a collection of web service portTypes. Much of the
communication between components follows the XACML and
SAML [13] request and response formats. Although XACML and
SAML are transport independent, the initial implementation binds
these protocols to SOAP and utilizes the Apache Axis [2]
architecture as a SOAP engine. Custom handlers specified for the
request and response flows within Axis provide common
mechanisms to optionally sign and verify, using the XML Digital
Signature [3] specification, the content of each generated or
received SOAP message. Cardea interacts with each SOAP
message directly via the JAXM or JAX-RPC API. Therefore, no
functionality strictly depends on custom Axis functionality

Cardea addresses several specific unmet needs that emerge when
authorization spans multiple administrative domains. The system
reduces reliance on locally defined identities to define
authorizations for each potential user. Therefore, it reduces the
system state that must be replicated at each site. Further, it allows
separate administrative domains to coordinate local authorization
decisions while retaining control over access to its local
resources.

The remainder of this section examines the way Cardea combines
the power of XACML and SAML to address those needs and
identifies distinct gaps that were handled. Then, the ways that
XACML were applied within the system architecture are
highlighted, and areas that could benefit from additional research
and future directions are outlined.

4.1 Assumptions and pre-requisites
Although the system minimizes the amount of negotiation and
configuration required to implement distributed authorization,
there are several site-specific items that must be defined
according to the standard semantics of XACML and SAML. First,
local access control policies must be defined using the
characteristics of pertinent user-resource combinations.
Additionally, authorities must be populated with verified attribute
values. Although there is no inherent restriction on how attributes
are maintained or represented internally to its authority, each
attribute value must be available to a qualified requester as a
SAML Assertion.

4.2 The authorization decision process
Cardea evaluates each authorization decision according to a
general procedure that requires minimal a priori knowledge of
participants. This section illustrates several critical steps in the
authorization process (see Figure 2). It specifically highlights
communication between distinct system components, how
XACML and SAML functionality is leveraged and how the
components work together to complete the authorization process.

4.2.1 Authorization decision request received
Initially, the system receives a
SAMLAuthorizationDecisionQuery. There are no mandatory
restrictions on the origin of any accepted request other than what
is required to enforce local access control policy. For example, an
authorization domain may require that any request it processes be
authenticated by a trusted source. Any request presenting from an
untrusted source would be discarded, even if it could actually be
completely processed by the system. Cardea processes all requests
that are digitally signed by an identity guaranteed by a trusted
authority.

4.2.2 Partition search space for locating
attribute authorities
All access control requests present a set of identifying credentials
to Cardea when requesting an authorization decision. Cardea
extracts the credential authority identities from the authorization
request to locate the desired attribute authority.

4.2.3 Query an information service to locate
the authoritative AA and PDP locations
Cardea assumes that a directory service contains the necessary
location and binding data for available attribute authorities.
Cardea places no requirements on the security of interaction with
the directory server. Each implementation must directly define
and support the appropriate means to identify and interact with

trusted information stores. Currently, Cardea assumes location
data will be in URL format and needs no authority-specific
binding data.

4.2.4 Determine attributes considered by
controlling policy
Location information for an attribute authority is used to construct
a SOAP endpoint representing an interface to that authority. To
minimize the set of attribute assertions presented to the PDP for
evaluation, a custom interface was built into the PDP to report the
attribute identifiers expected within each request. XACML and
SAML provide sufficient functionality in their current form to
extract all attributes associated with the principals of a request.
As an authority may store a large number of attributes for a single
principal, this custom interface offers an optimization to reduce
the number of attributes communicated between entities. Such an
optimization must be balanced against the need for policy
delegation and the complexity in evaluating policies for attribute
designators. This custom interface assumes that the identification
of attributes within an XACML policy corresponds to their
identity within the attribute authority. The initial functionality
maps resource identifiers to the set of subject attributes required
by the policy governing that resource. XACML does not specify a
format for reporting the set of attributes required by a PDP.
Therefore, this custom function formats each required attribute set
as SAML attribute statements, permitting a standard interpretation
of each result.

Figure 2. The Cardea Architecture

4.2.5 Query appropriate attribute values
Cardea must insert actual attribute values into the final XACML
request. XACML does not address how to collect the values
contained within that set. Thus, a SAMLAttributeQuery is
executed for each attribute. Depending on the initial authorization
request, this may require interaction with several distinct attribute
authorities. Regardless of the actual attribute authority contacted,
the SAML protocol specifies the semantics of extracting the
appropriate attribute values.

4.2.6 Execute XACML authorization request
Once the complete set of requester attributes is known, all
returned values are formatted as XACML subject attributes.
Resource and action attributes are handled in a similar fashion
Cardea employs custom functionality to transform collected
SAMLAttributeAssertions into a valid XACML attribute format.
This functionality presumes a correspondence between the
attribute identities used in the XACML and SAML
representations of each logically equivalent attribute. After
populating the request, it is enclosed in a SOAP message destined
for the PDP that controls the desired resource. The payload of the
response received contains the evaluation decision made by that
PDP.

4.2.7 Generate an authorization decision
statement for the enforcing PEP
Only an XACML context handler maintains information about the
access request. However, enforcing an authorization decision
often requires information from the request context. Thus, the
original SAMLAttributeAssertion contains the identity of a group
whereas the XACML authorization decision specifies
membership validity. Therefore, the system bundles the XACML
authorization decision together with all the attribute values from
the request context to forward to the appropriate PEP. Although
not currently incorporated into the final SAMLAuthorization-
DecisionStatement, evidence used to evaluate the request and
conditions attached to the decision may also be presented to the
PEP.

4.2.8 Report any local identity associate with
the authorization decision statement
Once the PEP receives a SAMLAuthorizationDecision-Statement,
its verifies the identity of the PDP that generated the statement by
authenticating the attached digital signature. The PEP must define
rules that govern how authorization decision statements will be
enforced. Several alternative technologies may be used to
implement the rules. The only constraint placed on enforcement
functionality by Cardea design requires a PEP to report any local
identity bound to the authorization decision statement be returned
to the initial PDP in the form of a SAMLAttributeAssertion. This
constraint facilitates further distribution of the authorization
process between distinct yet cooperating PDPs.

4.3 Results
Initial prototypes have shown XACML a key aspect of Cardea.
XACML provides the means for resource stakeholders to
uniformly express complex access control policies. It also allows
standard evaluation of access control requests across
heterogeneous resources and external subjects. Additionally, it
integrates fluidly with SAML when used as a means to provide

the attribute information presented in an attribute request, thus
further facilitating interoperability across different kinds of
authorization systems and domains. Finally, XACML's defines a
framework which encourages the separation of authorization
decisions from enforcement mechanisms, providing resource
owners the ability to enforce policy decision in their locally
preferred manner.

5. Privilege and Policy Management in
the PRIMA System
In this section the use of XACML in an access control mechanism
for grid computing systems is described. The access control
mechanism is unique in that it allows users to act authoritatively
for resources they control by directly creating, delegating, and
combining access privileges among themselves without the
intervention of resource administrators. An interesting issue is
how XACML can be used to express privileges and how these
XACML-expressed privileges relate to XACML-expressed
policies. What is evolving from this research is the concept of a
dynamic policy based on privileges that complements the more
static access policy traditionally associated with XACML.

5.1 The PRIMA model
A grid computing system, like many other distributed systems,
has multiple entities that are authoritative for a resource at
different levels of granularity. For example, a site authority may
be responsible for a site wide acceptable use policy. An authority
for a specific hardware resource may define which individuals
will have access to the resource itself and which services are
hosted on that machine. An authority for a specific service may
want to define the access rules for the service and associated data.
In addition to these resource and service oriented authorities there
are entities that want to exercise control over data they own and
define who may have access to (parts of) their data. Individual
users would like to be authoritative for resources they control and
be empowered to delegate access to these resources to other users
directly and efficiently. On top of this there are authorities for
virtual organizations that describe collaborative groups which
may incorporate resources from multiple physical organizations.

PRIMA [18][19], a system for distributed access control in grid
computing environments, supports multiple authorities by
allowing users as well as administrative personnel to delegate
access to resources for which they are authoritative. The scope of
such access can be as fine grained as access to individual data
files or as encompassing as access to a whole set of compute
resources. Subjects (users) can possess and delegate to other
subjects fine-grained privileges to resources for which they are
authoritative. Resource authorities can use the same mechanisms
to grant privileges to users and to issue policy statements for their
resources.

In addition to the definition of individual, delegated privileges,
PRIMA allows for the definition of privilege management
policies (PMPs) that are used to define the permissible actions
with regard to the creation and delegation of individual privileges.
Resource based access control policies (ACPs) are used to abridge
or extend the set of actions allowed based on privileges held by
subjects. This provides for additional flexibility in the definition
of access control rules, allows for the combination of a variety of
rules from different authorities and also enables the timely and
uncomplicated revocation of delegated privileges.

Recently, XACML was introduced into PRIMA to allow for a
more flexible specification of access control rules in privileges
and policies. The ability to reuse code for the creation and parsing
of these constructs as well as possible interoperability benefits
also played a key role in our decision to use XACML. PRIMA
now leverages XACML to express three different types of access
control information:

1. Privilege Attributes
Privilege attributes are created by ordinary users, group
leaders and managers and convey individual access
rights to the recipient, they have a lifetime and may be
relatively short lived. Privilege attributes supplied with
a specific access request are complied into a dynamic
policy document which is used as a unique context by
the resource PDP in conjunction with the more static
resource's access control policies to determine access.

2. Privilege Management Policies
Privilege management policies (PMPs) define the
authorities for a resource and the delegation and
privilege management rules. PMPs are relatively static
and typically created and maintained by system
administrators.

3. Access Control Policies
Traditional access control policies are used to
complement the dynamic policies created from privilege
statements. The combination of these two mechanisms
not only provides for added flexibility in the
specification of access control rules but also provides a
mechanism to limit or revoke rights that were issued or
delegated using privilege statements.

The definition and management of access control policies in a
platform independent format such as XACML is a complex task
requiring high level tools. In traditional systems, this task is often
left to administrators. For ordinary users, group leaders and
managers with little or no system administration background,
advanced graphical user interfaces and appropriate abstractions
are required to enable such users to exert their authority. Two
such tools developed for PRIMA are described later in this
section. One tool, the Privilege Creator, facilitates the creation of

privilege attributes and their secure association with an issuer and
holder. A second tool is being developed that allows for the
creation and maintenance of access control as well as privilege
management policies without requiring knowledge of the policy
language syntax.

5.2 The PRIMA system components
Figure 3 shows an overview of the PRIMA system architecture.
The three principal entities in an authorization system are
subjects, which initiate requests, authorities, which provide access
rules (e.g. via policies), and resources which provide services and
enforce access rules. In Figure 3 two different types of authorities
are shown, the attribute authorities that issue privilege statements
to subjects, and the more traditional policy authorities that create
access-control and privilege management policies and provision
them to the resources. The resource is split into three logical
components, a policy enforcement point (gatekeeper PEP), a
policy decision point (the PRIMA PDP) and the service. The
interaction between the components can be characterized as a
traditional authorization pull model [28]. The inclusion of
privilege attributes with a request (attribute push, see [8]) which
state specific access permissions in the form of rule statements
bound to the specific individual is a distinct feature of PRIMA.
The decision on which of a subject's attributes will be provided
with a specific request lies with the subject and thus provides the
basis for a least privilege access scheme.

The PRIMA system has been implemented specifically to
complement the security mechanisms present in the Globus
Toolkit [9]. The PRIMA PDP is located on the Globus resource
itself and communicates with the PEP through a direct, local
communication channel. Originally PRIMA used proprietary
formats to define privilege attributes, resource access control
policies, and privilege management policies. A proprietary API
was used for communication between the PEP and PDP. By
replacing these proprietary formats with XACML, we leveraged
its standardized open language and message formats, achieved
greater flexibility and expressiveness and facilitated reuse of
parser and evaluation libraries. The possible use of standard tools
for the management of policy documents in XACML is another
important advantage.

Figure 3. The PRIMA System Architecture

5.2.1 Flow of Access Control Information
Access control information (ACI) encompasses all the data
provided to make access control decisions. In PRIMA, ACI
consists primarily of the privilege statements (in the form of
privilege attributes), the ACPs, and the PMPs. Information about
the requested action and environmental data is also taken into
consideration by the PDP. Privilege statements are provided by
attribute authorities to subjects at admin time, i.e. de-coupled
from the point in time where a request is made to a resource
(access time). Access control policies and privilege management
policies are provided to the PDPs by the respective administrative
entities, also at admin time.

The sequence of actions at request time (as indicated in Figure 3)
is as follows: (1) a subject contacts a resource (it's PEP), mutually
authenticates and provides a resource request along with
privileges of the subject's choosing. The PEP in turn compiles all
provided privileges into a dynamic policy, which will provide the
individual, least-privilege policy context for the specific access.
During creation of the dynamic policy, the PEP checks that each
included privilege is applicable and valid through queries to the
PDP, which bases its answers on compliance with the PMP. Once
the dynamic policy has been assembled it is provisioned to the
PDP. (2) The PEP contacts the PDP to determine if the actual
request is permissible with respect to all applicable access-control
policies and with respect to the dynamic policy. (3) The PDP
provides a response to the PEP. (4) If the authorization was
successful the PEP will permit the subject's request to pass
through to the service and the service response (5) will be
provided to the subject (6).

5.2.2 The Privilege Creator
The Privilege Creator, ACGen, is a graphical user tool
implemented in the Java Programming Language. It allows the
user to create privilege statements that will be embedded in an
X.509 Attribute Certificate (AC) [28] as the payload. Existing
grid infrastructures are versed in certificate formats, thus
minimizing the required infrastructure modifications. A single
attribute certificate may contain a set of privileges and can also be
bound to a set of entities. The “Issuer” and “Holder” entities of
the AC are filled with the respective X.500 distinguished names
(DN), and the AC structure is signed with the issuer's private key.
The holder DN can either be acquired by searching an LDAP
server or entered manually. The privilege statement itself is an
individual XACML rule. The rule specifies the subject to which
the attribute is bound (holder), the resource to which it applies,
the permitted action, and, optional conditions. Appendix A1
shows such a rule that grants access to a specific file. Currently
supported are privileges that define system access (the right to a
local user account), file access and network access.

5.2.3 Policy Creator
The policy creator also is a GUI tool implemented in the Java
Programming Language that aids the user in creating XACML
ACPs. While the current implementation only supports the
creation of very limited policies for grid resources, it allows an
authoritative party to define basic, predefined access rules with
relative ease. Policy creation and enactment may be done
remotely, without the need to edit proprietary access control lists
at the resource through shell access. The tool mainly aids with the
syntactical complexity of XACML but eventually will also
provide semantic support, possibly through policy templates.

Embedding the access control policies in X.509 ACs and
provisioning them to the PDPs using grid middleware file staging
performs secure movement. A small utility at the PDP verifies
received policies for issuer authority and integrity (leveraging the
PDP to query the privilege management policies) and configures
them into the PDP's policy store.

5.2.4 The PRIMA Policy Decision Point
The policy decision point accepts XACML requests for access
control and privilege management decisions. It provides answers
based on three different policies, the (set of) ACPs, the dynamic
policies and the PMPs. ACPs are provided to the PDP by the
respective policy authority via our policy creator. PMPs, due to
their crucial role in defining the sources of authority and thus
bootstrapping the PDPs operation, have to be manually made
available to the PDP by a traditional system administrator.

The initial version of our PDP uses the C++ implementation of
XACML by JiffySoftware [16], which is currently available as a
binary alpha release. We plan to switch to use Sun Microsystem's
open source XACML library for future releases, as it provides
richer functionality.

5.3 Results
The change from simple proprietary formats for privilege
statements and access policies to XACML allowed for the reuse
of creation, parsing and evaluation code that already exists and
has been tested. A drawback of this change was the significantly
greater size of policies and privilege statements due to the XML
encoding overhead and verbosity of the language.

The creation of dynamic policies augments the more static policy
model XACML was originally developed for and shows that
XACML policies and other language components can be applied
in a variety of access control scenarios. The integration of
XACML into the PRIMA infrastructure, which leverages X.509
attribute certificates for the transport of access control
information, was without problems and did not require changes to
the protocols used between grid nodes. The support for X.500
names in XACML enabled us to link policy rules directly to the
entities identified by X.509 certificates.

6. Implementation considerations
The initial implementations presented in this paper needed to
address several challenges common to distributed authorization
systems that are not addressed directly within XACML. Several
of the subjects fall outside the scope of the XACML, such as
management and retrieval of authorization attributes, or the
location of applicable policy decision points. Complimentary
technologies are required to provide the needed functionality.
Other issues arise when extending XACML functionality, either
for expressiveness or manageability, such as management of
actual policy files. The remainder of this section presents a
number of such issues that require careful consideration when
incorporating XACML into a distributed authorization system and
some of the approaches adopted by these initial implementations.

6.1 Creation and management of access
control policies
XACML provides a mechanism independent representation of
access rules that vary in granularity via a standard yet flexible
language. This flexibility permits the combination of multiple

policies (e.g. from different authoritative parties) into a single
applicable policy set to use when making access control decisions
for resources in a widely distributed system with overlapping
competencies. Further, this mechanism-independent
representation of access rules allows a single policy to be applied
to heterogeneous resources throughout and across administrative
domains. This common representation greatly reduces errors,
discrepancies, and auditing complexity.

However, creation of actual XACML policies is not a simple task.
Further, supporting XACML in heterogeneous environment calls
for fully specified data type and function definitions that produce
a highly verbose document even if the actual policy rules are
trivial. Manual creation of such policies by ordinary users, as
required in the PRIMA distributed authority model (see § 5.2), or
by resource administrators, as required in the Cardea system (see
§4.2), is not reasonable. Therefore, additional management tools,
such as the introduced PRIMA policy creator, to support policy
file management and administration are required. As previously
noted, the standard open format of XACML encourages reuse of
these tools and libraries across many diverse systems.

6.2 Encoding of Privilege Management
Policies in XACML
The flexibility of the XACML language allows its application to
emerging scenarios without modification to the existing
vocabulary. XACML is not directly targeted at specifying sources
of authority and privilege management rules. PRIMA’s use of
XACML demonstrates the flexibility of allowing such policy
encodings without changes to the basic XACML vocabulary. A
sample privilege management policy in XACML is shown in
appendix A2. This policy states that “Markus Lorch” and “Sumit
Shah” can grant access rights (action: “delegate GRAM access”)
for gram://zuni.cs.vt.edu (a Globus resource) to all the users
belonging to the Virginia Tech domain (OU=Virginia Tech User).
Current work in prototyping attribute release policies through the
Web Services Policy Language (an XACML profile) underlines
the versatility and flexibility of XACML with respect to new
applications of the language.

6.3 Locating the correct PDP
Before an authorization decision can be obtained, an authoritative
PDP must be located. This boot strapping problem is common to
any distributed system and not specific to authorization systems
based on XACML. Thus, XACML does not provide a standard
mechanism to resolve this issue but relies on individual
implementations to handle it appropriately to their environment.
Initial system implementations either assume fixed PDP locations
with policy file discovery dependant on the requested resource or
discovery of a PDP via an information service query to a trusted
source. For example, Cardea assumes that a directory service
contains the necessary location and binding data for the
appropriate PDP. Once a PDP is identified, XACML functionality
provides for the location of applicable policy files, including
policies to be retrieved from a remote location.

6.4 XACML request preparation and
request context management
XACML considers the collection and encoding of attributes used
in an authorization system to lie outside its core focus. Further,
XACML views attributes as an external form of access control

information that must be converted from their native form to be
included in an XACML authorization decision request in the form
of a request context by a context manager component. Therefore,
XACML does not standardize interactions to retrieve this data for
an authorization request. Two distinct approaches have been
implemented within the introduced systems to share subject data
used for authorization. The first provides a framework by which
this information is shared via SAML. The second uses privilege
attributes managed by subjects to directly influence the context
creation.

The XACML model is based on the authorization pull sequence
[28] and requires the context manager to maintain state
information to associate requests that it created with received
responses. If another authorization sequence such as the push or
the agent sequence [28] are desired, the contextual information
necessary for a PEP to enforce an access decision response from a
PDP has to be supplied to the PEP through a supplementary
mechanism. Current work on SAML 2.0 proposes to include the
original authorization decision request context with an
authorization decision response, which would address this issue.

6.4.1 Encoding of descriptive attributes in
Cardea
Cardea employs SAMLAttributeAssertions to collect and encode
attribute data for an authorization decision request. Custom
functionality transforms the collected SAMLAttributeAssertions
into a valid XACML attribute format. Although specific
mappings need not be predefined, the functionality presumes a
correspondence between the attribute identities used in the
XACML and SAML representations of each logically equivalent
attribute. By supporting such transformations, these attributes are
available both within the decision and enforcement phases of
authorization. Therefore, Cardea augments XACML functionality
with SAML functionality to provide this data to all participants in
an authorization decision.

6.4.2 Encoding of privilege attributes in
PRIMA
In PRIMA, individual XACML rule statements are used to
represent individual privilege attributes. A secure container
provides issuer and validity information outside of the attribute
definition. The attribute itself consists of a “rule” construct within
which the holder of the privilege and the resource for which the
right is targeted are specified in a “target” construct. The rule has
a “permit” effect if matched and specifies request details in the
“action” construct, while a “condition” construct may optionally
be used to provide for more complex rules. The container (X.509
Attribute Certificate) provides the information on authority (issuer
identifier, signature) and validity (time frame), which are not
defined in a standard XACML rule. This separation of the validity
and authority information from the actual access control rules is
not a drawback but rather promotes the separation of concerns in
the system. The validity and authority information is used when a
request context and dynamic policy is built by the PEP, whereas
the access control rules will provide the content for the dynamic
policy that later will be used by the PDP.

A change to an XML based container for PRIMA privilege
attributes (i.e. SAML attribute assertions) was not necessary as
the integration of XACML structures into ASN.1 (as an
IA5String) did not pose any problems, thus the existing

infrastructure, protocols and tools for the creation and exchange
of the attribute containers could remain unchanged.

7. Related Work and Ongoing Work
This section provides general descriptions of systems that provide
similar features to those found in XACML and the systems
described in this paper. Following that is a brief introduction to
other work being done to use XACML in future systems.

7.1 Related Work
There are several other projects that deal with distributed
authorization. Although each of these systems takes a unique
approach to the authorization problem, the features of XACML
directly benefit or improve the existing functionality.

The Community Authorization Service (CAS) [23] reduces
administrative overhead by separating resource administration
from community specific administration. Resource administrators
grant bulk rights to a specific community (e.g. a Virtual
Organization (VO) [10]) while community administrators manage
membership and privileges associated with members without
resource administrator intervention. Group members authenticate
to grid resources with a group credential (limited proxy
credential) that limits the individual's rights to a subset of the
rights the community has at the resource. To promote scalability,
CAS requires only a shared group account per community rather
than an individual account for each member. The CAS system is
independent of the policy language used to define restrictions in
proxy credentials. XACML is being evaluated as an alternative to
the proprietary policy statement format currently used in
restricted proxy credentials.

Akenti [27] addresses issues raised when multiple authorities
(stakeholders) control access to resources. Akenti provides a
policy language to define, as well as infrastructure components to
enforce, flexible access control policies. Akenti leverages a
collection of proprietary XML-based certificates to encapsulate
policy, use-condition and attribute statements. For a flat set of
resources there is only one policy certificate. For hierarchical
resources there may be multiple policy certificates, one for each
level of the hierarchy. Akenti allows the certificates to be stored
in remote repositories and provides mechanisms to ensure that all
applicable use-conditions (from possibly a group of stakeholders)
are combined when making an access control decision. The
Akenti team will investigate the use of XACML for the
representation of distributed policies and the applicability and
effectiveness of the policy combining mechanism.

Like Akenti, PERMIS [5] provides a Privilege Management
Infrastructure (PMI). PERMIS uses X.509 Attribute Certificates
[8] to specify subject attributes such as roles and permissions.
Each permission represents the right to access a target in a
particular mode. PERMIS defines a hierarchical role based access
control (RBAC) policy language in terms of those roles and
permissions. The RBAC policy (in XML format) is used to
control access to all the targets within the policy domain and is
composed of a number of sub-policies. The PERMIS project is
currently investigating the use of XACML as a core language to
replace parts of their proprietary policy language.

7.2 Ongoing Work
The systems discussed in this paper represent current and future
work that leverage XACML for authorization. This paper also

discusses several standards that will integrate with XACML to
streamline authorization. However, there are many other systems
that already integrate XACML or are starting to experiment with
doing so now. This section provides some small insight into a few
categories of such systems.

One such class of systems is peer-to-peer (P2P) which typically
lacks any form of centralized administration and usually leaves
users to manage their own data and policies. P2P projects like
JXTA [17] provide a general framework for building applications.
Thus, the underlying security systems must be flexible enough to
handle any application but still be manageable. Work is currently
underway within JXTA projects to explore XACML’s role in its
authorization framework and the tools needed for JXTA and P2P
environments. Other P2P systems are exploring using XACML to
address privacy concerns. Examples include a research project at
Sun Microsystems looking at human interaction and personal
privacy protection.

Another class of systems evaluating XACML is Role Based
Access Control (RBAC), an increasingly important component in
distributed systems, but one that is often hard to support in
heterogeneous environments. NIST has a project [14] to define
flexible RBAC systems, and it has strong authorization
requirements. The XACML Technical Committee is working with
NIST to define this relationship, and a draft [1] is available.

Finally, there are several projects that are evaluating XACML as a
core policy language within its authentication engine, like the
ebXML Registry [22]. ebXML Registry includes support for
XACML in its latest specification draft and prototypes [24] using
XACML are already working well. There are also proposals, for
example, defining how to use XACML as a complementary
language in systems like the Java Policy framework, though many
of these are in an early discussion stage.

8. Summary
Early experiences using XACML in distributed systems have
proven positive. The language is indeed useful for specifying
arbitrarily complex policies in a wide variety of (distributed)
applications and environments. While targeted at traditional
access control systems, XACML also proves practical for
expressing privilege management policies and defining privilege
statements. The standard format works well in tying together
heterogeneous systems, and already fosters development of
common tools. Its open standard status, definition in XML, and
availability of open source projects has already drawn support
from diverse applications. XACML's ability to tie into other
authorization systems makes it a natural inter-operability point,
even for legacy systems. Its expressive semantics and extensible
nature also make it useful as an intermediary language. The
ability to work with decentralized policies, and the ease with
which it integrates into the systems presented in this paper point
to XACML as an excellent choice for distributed authorization
systems.

XACML does have some limitations at present, however. The
language's flexibility and expressiveness comes at the cost of
complexity and verbosity. As such, it's hard to work directly with
the language or policy files. Tools are underway, but until there is
widespread availability, it will be hard for average users to work
with any XACML-based system. Even with good tools in place,
there is an inherent semantic complexity that's separate from the
syntactic complications. This too will need to be addressed, and
tools are needed that help people understand the meaning of

policies. Finally, there are remaining issues in how XACML
presently works with other standards, some of which are fairly
critical, such as online protocols and storage systems. Again,
these issues are currently being addressed, but until they are
resolved, it will remain difficult to leverage the full power of
XACML.

In conclusion, XACML is an important and useful component for
a distributed system's authorization needs. It supports varied
authorization models and approaches within its basic definitions.
Further, several potential areas to evaluate optimizations against
flexibility are known. Finally, missing pieces have been
identified and are being addressed. As has been illustrated in this
paper, XACML will work well with real systems today, and it has
the features required to help tie authorization systems together in
the future.

9. Acknowledgments
This work was supported in part by the Virginia Commonwealth
Information Security Center (CISC) and the Pennsylvania State
University.

The authors would like to thank the following people for their
efforts in the work described in this paper: Anne Anderson, Steve
Carmody, Tom Doeppner, Yassir Elley, Tracy Hadden, Steve
Hanna, Linda Null, Radia Perlman, Roberto Tamassia, Bill
Thigpen, and Danfeng Yao.

10. References
[1] Anne Anderson, “XACML RBAC Profile”, OASIS TC

Working Draft, June 5th, 2003

[2] http://xml.apache.org/axis, visited 2003-09-29

[3] Mark Bartel et al, “XML Signature Syntax and Processing”,
World Wide Web Consortium Recommendation, February
2002

[4] Don Box et al “Simple Object Access Protocol (SOAP) 1.1”
World Wide Web Consortium Note, May 2000

[5] D. Chadwick and A. Otenko, “The Permis X.509 Role Based
Privilege Management Infrastructure”, SACMAT 2002
Conference Proceedings, ACM Press, NY, pp. 135 - 140

[6] D Durham et al, “The COPS (Common Open Policy Service)
Protocol”, IETF Proposed Standard, RFC 2748, Jan. 2000

[7] Marlena Erdos and Scott Cantor, “Shibboleth Architecture
v5”, Internet2/MACE, May 2002

[8] S. Farrell, R. Housley, “An Internet Attribute Certificate
Profile for Authorization“, IETF RFC, April 2002

[9] I. Foster and C. Kesselman, “Globus: A Toolkit-Based Grid
Architecture”, The Grid, Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann, San Francisco, 1999, pp.
259-278

[10] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations", International
Journal of Supercomputer Applications, 2001.

[11] Simon Godik, Tim Moses, et al, “eXtensible Access Control
Markup Language (XACML) Version 1.0”, OASIS
Standard, February 18th, 2003

[12] Cheh Goh, “Policy Management Requirements”, Hewlett
Packard Laboratories Technical Report, HPL-98-64, April
1998, http://www.hpl.hp.com/techreports/98/HPL-98-
64.html

[13] Phillip Hallam-Baker, Eve Maler, et al, “Assertions and
Protocol for the OASIS Security Assertion Markup
Language (SAML), Oasis Standard, November 5th, 2002

[14] Information Technology Industry Council, “Role Based
Access Control”, Proposed ANSI Standard, April 4th, 2003

[15] http://www.ipg.nasa.gov, visited 2003-09-29

[16] http://www.jiffysoftware.com/, visited 2003-09-29

[17] http://www.jxta.org, visited 2003-09-29

[18] Markus Lorch and Dennis Kafura, "Supporting Secure Ad-
hoc User Collaboration in Grid Environments", Proc. 3rd Int.
Workshop on Grid Computing - Grid 2002, Pages 181 - 193,
Baltimore, USA, November 18th, 2002

[19] Markus Lorch, David Adams, Dennis Kafura, Madhu
Koneni, Anand Rathi, Sumit Shah “The PRIMA System for
Privilege Management, Authorization and Enforcement in
Grid Environments”, communicated to the 4th Ind. Workshop
on Grid Computing – Grid 2003

[20] Tim Moses, Anne Anderson, Seth Proctor, and Simon Godik,
“XACML Profile for Web Services”, OASIS TC Working
Draft, September 29th, 2003

[21] Sidharth Nazareth, “SPADE: SPKI/SDSI for Attribute
Release Policies in a Distributed Environment”, Dept of
Computer Science, Dartmouth College Technical Report
TR2003-453, May 30, 2003

[22] OASIS Registry Technial Committee, “OASIS/ebXML
Registry Services Specification v2.0”, April 2002

[23] L. Pearlman et al, “A Community Authorization Service for
Group Collaboration”, 2002 IEEE Workshop on Policies for
Distributed Systems and Networks

[24] Registry Reference Project, http://ebxmlrr.sourceforge.net/,
visited 2003-09-29

[25] K E Seamons et al, “Protecting Privacy during On-line Trust
Negotiation”, Second Workshop on Privacy Enhancing
Technologies, April 2002

[26] http://sunxacml.sourceforge.net, visited 2003-09-29

[27] M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based
Authorization Policy in a PKI Environment,” ACM
Transactions on Information and System Security, to appear,
August 2003

[28] J. Vollbrecht et al, “AAA Framework“, IETF RFC 2904,
August 2000

[29] William Winsborough and Ninghui Li “Protecting Sensitive
Attributes in Automated Trust Negotiation”, WPES,
November 2002

[30] R Yavatkar, D Pendarakis, and R Guerin, “A Framework for
Policy-based Admission Control”, IETF Informational
Standard, RFC 2753, January 2000

11. Appendix
11.1 A File Privilege Encoded as an XACML Rule Component

<Rule RuleId="File-Privilege-Rule" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:x500Name-equal">
 <AttributeValue DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name">
 CN=Sumit Shah (sshah),OU=Virginia Tech User,OU=Class 2,O=vt,C=US
 </AttributeValue>
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name" />
 </SubjectMatch>
 </Subject>
 </Subjects>

 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 gridftp://zuni.cs.vt.edu/data/collaboration/results.dat
 </AttributeValue>
 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </ResourceMatch>
 </Resource>
 </Resources>

 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 Read
 </AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
</Rule>

11.2 A Simple Privilege Management Policy in XACML

<?xml version="1.0" encoding="UTF-8" ?>
<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy cs-xacml-schema-policy-01.xsd"
 PolicyId="IssuerVerification"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">
<Description>
 This is a privilege management policy. The RULE defines two subjects as issuers which are
 authoritative to grant "Delegate GRAM access" privileges for resource "gram://zuni.cs.vt.edu/"
 to other entities. The Condition element adds a constraint by specifying that only entities
 that belong to the Virginia Tech domain can be holders of the privilege.
</Description>

<Target>
 <Subjects>
 <AnySubject />
 </Subjects>
 <Resources>
 <AnyResource />
 </Resources>
 <Actions>
 <AnyAction />
 </Actions>
</Target>

<Rule RuleId="IssuerVerificationRule" Effect="Permit">

<Description>
 This is the main rule of this policy, if a request is successfully matched against
 this rule an evaluating PDP will return Permit
</Description>

 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:x500Name-equal">
 <AttributeValue DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name">
 CN=Markus Lorch (mlorch),OU=Virginia Tech User,OU=Class 2,O=vt,C=US
 </AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name" />
 </SubjectMatch>
 </Subject>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:x500Name-equal">
 <AttributeValue DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name">
 CN=Sumit Shah (sshah),OU=Virginia Tech User,OU=Class 2,O=vt,C=US
 </AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name" />
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">

gram://zuni.cs.vt.edu/</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </ResourceMatch>
 </Resource>
 </Resources>

 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 delegate GRAM access </AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ActionMatch>
 </Action>
 </Actions>
 </Target>

 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-match">
 <AttributeValue DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name">
 OU=Virginia Tech User,OU=Class 2,O=vt,C=US</AttributeValue>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-one-and-only">
 <SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name"
AttributeId="urn:oasis:names:tc:xacml:1.0:attribute:holder" />
 </Apply>
 </Condition>
</Rule>

<Rule RuleId="FallThroughReturnDeny" Effect="Deny">
<Description>
 This second rule is a "fall-through" rule. It ensures that a PDP evaluating the
 policy will return DENY if the main rule cannot be fulfilled. By default if
 a condition in a rule evaluates to FALSE then the rule's effect is NotApplicable
 and consecutive rules will be processed.
</Description>
</Rule>

</Policy>

