XACML Administrative Delegation

Usecases

This proposal is intended to support the following usecases.

Administration/Delegation

1. Policy Administration - Control the types of policies different individuals can create and modify policies. Typically different individuals would be allowed to create policies about certain sets of Resources. Alternatively administration might be divided up by Action type, Subject or some other properties.

In XACML 2.0 the question of under what circumstances policies can be created that will utilized by a given PDP is out of scope of XACML. The spec essentially says that some policies exist which the PDP will use. 

It is also desirable to support multiple levels of indirection, so it should be possible to say things like "Jack can create policies that let Mary create policies about the Financial Servers."

2. Dynamic Delegation - Permit some users to create policies of limited duration to delegate certain capabilities to others. XACML 2.0 allows policies that say, "Mary can do something on behalf of Jack" by means of different Subject Categories. But, it would be useful to allow people to generate policies on the fly that say, "while I am on vacation, Mary can approve requests." This requires the ability to create policies that control the policies that can be created.

However in meeting these two usecases, it is NOT desirable to require either of the following to always be true:

a. Anything you can do, you can delegate to someone else to do.

b. If you can delegate something, you can always do it yourself by generating the necessary policy that applies to you.

It should be possible to create policies that enable a. and/or b., but they should not be "wired in."

The main difference between usecases #1 and #2 is how policies get accessed. In #1, most likely policies will be found in some repository or set of repositories. There will be some simple enforcement mechanism that says that the "Issuer" field in the policy must correspond to the person who created or modified this policy. In #2, policies might need to be carried in application requests or accessed dynamically via some back channel. In this case, signatures or some other such mechanism would be used to verify the Issuer's identity. 

Note that in both cases having a policy from Fred, signed by Fred does not mean the policy will be enforced. It merely means it will be considered as a candidate. It is still necessary to find a chain of policies back to the root (PDP) in order for Fred's policy to be enforced.

It is also desirable to arrange that policy evaluation can be optimized by doing as much work prior to access request time as possible. It should be possible to "flatten" policy chains to an equivalent form using whatever policies are in hand.

Support for Administration/Delegation should not reduce the existing functionality of XACML 2.0

Only if X is permitted to do it

Consider the common usecase: Mary is the manager and approves expense reports for her dept. When she is on vacation, Jack can approve expense reports.

We need a convenient way to say "Jack is allowed to do such and such, but only if Mary is allowed to do it" Mary might or might not be issuer of this policy. Currently there is no way to do this except by duplicating the rules that apply to Mary.

In other words we need a way (function?) which replaces the Access Subject in the request context with a specified subject, call the entire policy evaluation process and if the result is “Permit” return a value of “true.” Two logical generalizations of this requirement would be 1) to allow substitution of other subject types and 2) support the alternative of “Deny” returns “true.” For the purposes of this document, these are NOT considered requirements.

Terminology

For simplicity, this document uses the term policy to include both Policy and PolicySet.

The fololwing terms may make the discussion clearer.

Situation – Some set of properties delineated by the Target and Conditions of a policy, but excluding the Delegation Subject.

Forward Chaining – Finding a chain of Administrative and Access policies beginning at the root, such that each policy authorizes the next one.

Backward Chaining - Finding a chain of Administrative and Access policies beginning with an access policy, such that each policy is authorized by the next one.

Solution Overview and Semantics

Every policy has an Issuer. The Issuer may be explicit or implicit. If the Issuer is not present, it is understood that the policy is issued by the root or PDP.

A policy may have a Delegation Subject. Policies without Delegation Subjects are called Access Policies. Policies with Delegation Subjects are called Administrative Policies.

For reasons that will appear below under the processing model, the Delegation Subject must appear in the Target. The two main alternatives are to put the Delegation Subject in the existing Subjects, using a new Subject Category value to indicate it. If this method is used, there must be a single Subject within the Subjects, as the Delegation Subject must match as described below.

The other alternative, which seems better to me, is to have a new element within Target, called something like Delegate. 

The semantics of the Issuer are as follows. If the Issuer is the root, the policy is in force. Otherwise, it must be authorized by an administrative policy.

The semantics of an Access Policy are exactly as in XACML 2.0. Access is permitted or denied in the specified Situation.

The semantics of an Authorization Policy are that it permits or denies that the Delegation Subject is allowed to issue an Access Policy or Administrative Policy covering the specified Situation.

When the Administration Policy authorizes an Access Policy, it completely specifies that policy. The Issuer of the Access Policy must match (be an instance of) the Delegation Subject and the Situation of the Access Policy must be an instance of the Situation of the Administrative Policy.

When the Administrative Policy authorizes another Administration Policy, it indicates by its Delegation Subject who may issue the policy and what the Situation must be, however the Delegation Subject of the authorized Administration Policy is unspecified and may be any legal Subject construct. If this were not the case, Administrative Policies would have to contain additional Subjects and would be specific to the level of delegation they operated at. This seems too complex to be workable.

It has also been proposed that Administrative Policy contain an optional depth of delegation value, in order to give the Issuer some control over how the policy is used and to make it easier to detect loops. This seems like a useful feature, but it is not essential.

This proposal does not utilize Obligations. First of all, they are not needed, because an Administrative Policy can be distinguished from an Access Policy by the presence or absence of the Delegation Subject. Secondly, in XACML 2.0 Obligations indicate something that the PEP must do. It seems inappropriate to also use them to indicate something the PDP must do.

Processing Model

XACML 2.0 has the following processing model.

1. Use the Target to find potentially applicable policies.

2. Evaluate the Condition.

3. If the Condition is true, note the Effect

4. If there are multiple applicable policies with different Effects, use the indicated combining algorithm to derive a single result.

We will refer to these steps as the core process.

In order to evaluate a policy under this proposal, in principle, the following steps are performed. The technique used is backward chaining.

1. Separate all Access Policies into pools according to their Issuer.

2. Perform core processing on each pool.

3. If any are issued by the root, put that result aside for later.

4. For each distinct Issuer, find all Administrative Policies where the Delegation Subject matches the Issuer and the rest of the Target matches the original request context.

5. Evaluate the Condition against the request context.

6. If the condition is true, note the effect.

7. Separate the Administrative Policies into pools according to their Issuer.

8. If any of the pools contain multiple applicable policies with different Effects, use the indicated combining algorithm to derive a single result.

9. If the result is deny, discard that pool of results.

10. If all the pools for a given Access Policy Issuer are discarded, discard that Access Policy result.

11. If the Issuer of any of the Administrative Policies is the root, put that result aside for later.

12. Repeat steps 4-11 on any remaining pools.

13. If there are multiple results with different Effects, use the indicated combining algorithm to derive a single result.

If delegation depth is used, appropriate checks must be made every time potentially applicable Administrative Policies are obtained. It will also be necessary to detect loops by noting which Administrative Policies have been used in each chain and discarding duplicates.

Optimization

When administrative policies are simple and few in number, the previous process can be executed as written. However, when policies are numerous, preprocessing will help improve performance at access time. The following strategies may be employed.

· Eliminate unauthorized polices. Eliminating policies, especially Administrative Policies, which are not issued by the root and for which no chain back to the root exists will greatly reduce the processing required at access decision time. This always works when policies are drawn exclusively from a repository. When policies may be presented dynamically at access time, it will be useful to limit what policies can be presented. For example, dynamic policies might be restricted to being only Access Policies or either Access or leaf Administrative policies. If root policies can be presented dynamically, it will not be possible to perform this processing in advance.

· Flatten delegation chains – When a chain can be found from the root authorizing a particular Access Policy, a derived policy, with the same Situation and Effect, but Issued by the root can be substituted for the original Access Policy. 

· Split policies – It may be possible to split a policy into two (or more) simpler ones. For example, when a policy contains a disjunctive condition, it will be equivalent to two distinct policies each containing one of the alternatives, with the same effect. The benefit of doing this is that it may then be possible to eliminate or flatten one of the derived policies.
These optimizations may be done by backward chaining or forward chaining or both.

One of the main obstacles to performing these optimizations will be the lack of information about Subject attributes (or perhaps Resource attributes) in advance of access time. Since the Delegation Subject plays a particularly crucial role and since the number of parties who are allowed to be Issuers will typically be small compared to the total user population, it may be worthwhile to arrange that the authoritative source of these attributes be made available when doing optimizations.

Actions Other Than Create

In this scheme, an Administrative Policy allows policies to be created. What about other operations on policies, such as Read, Update and Delete?

First let us observe that Update (modify) can be treated as a Delete followed by a Create. It the case where policies are presented dynamically and therefore signed by the Issuer, this is literally true. Notice that this works whether the party doing the Update is the same as the original Issuer or different. In general, a model which tried to control modifications to portions of policies would be too complex to be workable.

Delete on the other hand is problematic, especially when combined with negative policies. In a dynamic policy environment, a party could suppress a negative policy and obtain unauthorized access. Environments supporting dynamic policies will need to consider this problem carefully and consider prohibiting or carefully circumscribing the use of negative policies or providing some technique for insuring that all applicable policies are made available.

In an environment where all policies are kept in a repository, delete can easily be controlled by means of access control policies on an API. This would also allow Read access to policies to be controlled in a simple way. The simplest approach would be to allow administrators fairly general access to create policies and simply enforce that each policy be marked with the correct Issuer. Administrative Policies would be used to fine-tune the capabilities of individuals. Manual coordination between the API Access Control Policies and Administrative Policies would probably suffice in most cases.

Access Permitted

Independent of the above scheme, a new function is proposed to make it possible to say “only allow this if X is permitted to do it.”

The function is called “AccessPermitted” and it takes one parameter, a Subject. It returns a Boolean value. It takes the current Request Context, substitutes the parameter Subject for the Access Subject in the Request Context (or adds it if none is present) and runs the complete decision process (including delegation if applicable).

If the result is “Permit”, the function returns “true” otherwise it returns “false”.


1

