To: xacml xacml@lists.oasis-open.org
Cc: Erik Rissanen, Craig Forster, Bill Parducci

Re: [xacml] Question on xacml 2.0 - multiple action-id Request/Action elements

Hi Craig, Bill, and Erik (and other TC members),

I have given this some more attention and reviewed some of the original emails that discussed this issue, for example: http://lists.oasis-open.org/archives/xacml/200110/msg00107.html
which describes how the xacml tc was originally looking at how multiple actions are handled in SAML.

There was some additional commentary explaining different points of view: http://lists.oasis-open.org/archives/xacml/200110/msg00119.html

and also a somewhat related item where it was decided that:
    ""The XACML syntax should not address the question of which actions are valid for a particular resource classification.""
http://lists.oasis-open.org/archives/xacml/200203/msg00057.html

Suffice it to say that I get the point that the intent of the spec is that a single "action" is what the Request/Action element is intended to contain.

That being said, I have also found that this structure has resulted in a notion that somehow one cannot use XACML 2.0 for such operations as requesting read and write to a file system.

It is this issue that I would like to address head-on here.

It appears to me that "proper" conceptualization of the resources that are being accessed is important if one wants to use the XACML Authorization services effectively.

In the case of file systems, it appears to me that accessing a file for rwed has been over-simplified conceptually and has been represent to mean that one is asking to perform 4 simultaneous actions on the file. Anyone who has written the simplest introductory i/o program knows that this is not case. 

What one does in practice in some file systems is first request to "open" the file with "rwed" access privileges granted. Then one performs individual operations or "r", "w", "e", "d". Presumably, one can check each of these requests as well.

Since we've all been working on the Internet so long, maybe it is easier to present this as if we were developing a web application to access this file system. How would we do it?

At least one reasonable approach that comes to mind is the following:
1. User goes to www.filesystem.com and is presented with a login prompt

2. User logs in and is presented with the file system access screen that contains the following information:

1. Text box for filename

2. 4 check boxes labeled r,w,e,d

3. 1 submit button to request access

4. 4 grayed out (disabled) buttons labeled R, W, E, D in a column

5. A text box to the right of the 4 buttons that can be used to read the file after R is hit, enter text to write to the file system before W is hit, view the results of exection when E is hit, or view a confirmation that the file was deleted when D is hit.

3. User enters the file name in the text box and checks any number of the 4 boxes, for example, check, r, w, and d. User hits the submit button.

4. Screen is refreshed, and now 3 of the previously grayed out buttons, R,W,D are enabled and E is still disabled.

5. User can now go about performing R,W,D operations, one at a time, each being checked.

I believe the problem w file system access w xacml is that attempts have been made to over-simplify the access paradigm and as a result an impression has been created that it is not a solvable out-of-the-box problem.

Using the above task-related approach to file systems, the problem becomes much easier to solve. I believe it is totally analogous to requesting access to a workflow. Prior to granting access to workflow tasks, authorization services generally check to make sure the user has all the privileges necessary to perform all the steps of the workflow.

Similarly, when one requests access to a file, it may analogously be thought of as a workflow where one might in any random order perform a discrete read or write or execute, for example, if one was accessing a program file to examine for a bug, modify with a fix, and execute to test if the correct result was achieved.

Therefore, I think it is perfectly legitimate to issue a request for access to a file system of the following nature:

<Request>
  <Resource>
    <Attribute AttributeId="...resource:resource-id">
       <AttributeValue
         >file://example/med/record/patient/BartSimpson</AttributeValue>
    </Attribute>
  </Resource>
  <Action>
    <Attribute AttributeId="...action:action-id">
      <AttributeValue
        >read,write</AttributeValue>
    </Attribute>
  </Action>
</Request>

If one wants to then do an actual "read" one would submit the same Request with action "read".

How the policies are "written" is not really up to the spec to decide. However, one way to write the policies is to have the 16 combinations of the rwed strings individually identified as distinct actions. Among those 16 actions are also the 4 single actions which can be reused from the initial task-level access to the individual file operation requests.

To me, this is no different than when one loads their card into the ATM. One is not asking to simultaneously withdraw, deposit, transfer, check balances, etc. One is simply requesting access to the resource then individually requesting access to the functions for which they may or may not be granted permission.

I think it might make sense for us to put together a guidance document on how to use XACML for common everyday tasks, since the necessity for the proper conceptualization of access may not be obvious.

Comments welcome. (I am also including this message as a word document because I do not know what to expect the email editors are going to decide to deliver. :) )

    Thanks,
    Rich

