Pluggable Authorization and Distributed
Enforcement with pam_xacml

Andreas Klenk! 2, Tobias Heide?,
Benoit Radier?, Mikael Salaun®, Georg Carle!-?

!TU Miinchen, Boltzmannstrae 3, 85748 Miinchen, Germany
2Wilhelm-Schickard-Institut, Sand 13, 72076 Tiibingen, Germany
3France Télécom R&D, avenue Pierre Marzin 2, 22307 Lannion, France

Abstract. Access control is a critical functionality in distributed sys-
tems. Services and resources must be protected from unauthorized ac-
cess. The prevalent practice is that service specific policies reside at the
services and govern the access control. It is hard to keep distributed
authorization policies consistent with the global security policy of an
organization. A recent trend is to unify the different policies in one co-
herent authorization policy. XACML is a prominent XML standard for
formulating authorization rules and for implementing different autho-
rization models. Unifying authorization policies requires an integration
of the authorization method with a large application base. The XACML
standard does not provide a strategy for the integration of XACML with
existing applications. We present pam_xacml, an authorization extension
for the Pluggable Authentication Modules (PAM). We argue how exist-
ing applications can leverage XACML without modification and state
the benefits of using our extended version of the authorization API for
PAM. Our experimental results quantify the impact of security and con-
nection establishment of using remote Policy Decision Points (PDP). Our
approach provides a method for introducing XACML authorization into
existing applications and is an important step towards unified authoriza-
tion policies.

1 Introduction

Since the early days of the computers, the decision about permissible actions
on a resource was critical. For a long time application specific configuration
languages defined if and how the applications should act upon a request by a
specific subject. These policies are sometimes hard to separate from the appli-
cation configuration and are present at each instance of the application. The
fact that the policies reside at the applications, distributed across the network,
makes it difficult to gain a coherent view of the access control decisions and to
change these policies.

In recent years general purpose policy description languages emerged. These lan-
guages provide a method for formulating application independent policies that
can be evaluated by general purpose Policy Decision Points (PDP). Policy lan-
guages [1][4][11][12] enable unified and centralized security policies that allow for

a better insight into the authorization decisions and facilitate timely changes to
the security policy. As an important benefit, unified policies can be tested for
compliance with a high level security policy. Model checkers can automatically
test policies for redundancy, constraints, and safety properties, and can perform
a change-impact analysis [6]. The eXtensible Access Control Markup Language
(XACML) [17] standard enjoys growing popularity for specifying authorization
policies. However, the use of policy languages is limited if they lack integration
with applications. The current situation is that each application must implement
a complex interface for using XACML PDPs.

The Pluggable Authentication Module (PAM) [20] is well established for provid-
ing unified authentication to applications. As a consequence, these applications
become independent of the underlying authentication method (e.g. Kerberos,
LDAP, Radius, and Smart Cards). Unfortunately there is no solution for autho-
rization. This paper introduces the novel pam_xacml module for authorization
with XACML. pam_xacml can be used for most existing applications that sup-
port PAM. A large number of already existing PAM enabled applications can
therefore instantly use XACML authorization without the need for code mod-
ifications. An extension to the PAM conversation function enables even richer
authorization decisions for applications that implement the new interface, and
allows to return obligations for permissible actions. Introducing unified policies
comes at the cost of additional communication with the PDP. The different de-
ployment options of XACML PDPs have a significant impact on the performance
of authorization. Authorization is a function that may happen multiple times
at different applications during a single service request. Our experiments pro-
vide performance figures on the effect of multi-point authorization in distributed
systems. This paper presents the following contributions, thereby motivating
wide-spread use of XACML in distributed heterogeneous environments:

1. A PAM module for authorization decisions with XACML, usable for existing
applications without modifications.

2. An extension of the PAM conversation function to provide more input for
the authorization decisions and to return obligations to the application.

3. A study on the communication cost of distributed authorization and advice
on different deployment options.

The remainder of this paper is structured as follows. Sec. 2 reviews related work
on authorization in distributed systems. Sec. 3 describes our approach for use by
many PAM enabled applications. Sec. 4 presents results from our measurement
study with the prototype implementation.

2 Related Work

Authorization languages were subject to research and standardization during
the last years. The Authorisation Specification Language was introduced in [11],
Ponder [4] is a declarative language for security and management policies, X-
RBAC [1] uses XML to express Role Based Access Control (RBAC) policies.

We focus on the eXtensible Access Control Markup Language (XACML) [17]
OASIS standard for authorization policies. XACML can take authorization rules
in XML and is able to implement different authorization models, such as Dis-
cretionary Access Control, Mandatory Access Control (MAC) and Role Based
Access Control (RBAC).

Research and standardization developed a plethora of authorization interfaces an
application could use to contact PDPs. The IETF laid down the nomenclature
and architecture commonly found in modern authorization systems [21], but did
not specify concrete interfaces or messages. The Generic AAA (GAAA) [8] is
one implementation that follows the ideas of the IETF framework. Gheorghiu
et al. introduced the General Authorization and Access API (GAAPI) [7]. Two
IETF-Drafts have been written for this API, both of which are now expired. The
Common Open Policy Service (COPS) [5] has a binary encoded policy interface
that allows to contact a PDP, mainly for decisions on media level access control
and QoS specifications. The Open Group published the Authorization (AZN)
API standard in [19]. It describes a C interface for authorization based on the
ISO-standard 10181-3. Applications can use the AZN-API for authorization re-
quests. PERMIS is discussed in [3]. It uses a simplified version of the AZN-API
introduced before. The authors in [10] propose an extension of the Java Authen-
tication and Authorization Service for class-instance level access control with
XACML, which is only available for Java programs.

The Security Assertion Markup Language (SAML) [2] defines an authorization
decision query protocol. The CARDEA system [16] supports a PDP with SAML
interface that can use XACML for its decisions. In case SAML serves as an inter-
face to PDPs, it requires that the requesters of an authorization decision support
the corresponding protocol binding, usually SOAP over HTTP. The public key
cryptography for the verification of SAML documents also introduces complex-
ity at the client. Our approach with pam xacml shields the application from the
communication interface with the PDP. It does not require the applications to
directly support any of the authorization APIs presented here, but relies on PAM
which is already integrated in a large number of applications due to its simplicity.

3 Pluggable Authorization with XACML

This Section introduces pam_xacml, an authorization module based on the Linux
Pluggable Authentication Modules (PAM) [20] for XACML [17] PDPs. Plug-
gable Authentication Modules were proposed by Sun Microsystems and were
standardized by the Open Software Foundation in RFC 86.0 [20]. PAM allows
for the development of authentication modules that can easily be plugged into
the PAM library and hide the specifics of the authentication process from the
applications. There also exist PAM modules that allow for basic authorization
decisions. pam_time makes access dependent on the local time. pam_ldap retrieves
user specific data (e.g. access levels) from the LDAP database, possibly using

host name or time as selection criteria. All these methods are isolated and lack
support for unified authorization policies.

Application Build Request Authorization Return Decision

(PEP)

Build
XACML Request

Evaluate Response

& Obligations

PDP type & address,
PDP interface,
trust & keys

PAM Conversation

with Application

PAM Conversation

with Application

PDP Requester
Factory

Build XACML Request
from Context

<Auth0rization>
PDP & Response

Fig. 1. Request Creation, Authorization at PDP and Response Evaluation

3.1 pamxacml for unmodified Applications that support PAM

We introduce a PAM module to enable XACML authorization policies for ar-
bitrary PAM enabled applications. pam_xacml! is an intermediary between the
XACML PDP and the applications which usually act as Policy Enforcement
Points (see Figure 1). The communication with the PDP works completely iso-
lated from the application. The application is mainly concerned about the result
of the authorization, hence it is sufficient for a PAM authorization module to
fail upon negative decisions or succeed if all required modules returned positive
results.

The authorization request can incorporate information from different sources.
Existing PAM applications provide usually the user name and additional at-
tributes which might not always be present, for instance, the address of the
requester. Context information is accessible through the execution environment,
for example, host name, system load, and local time. Services and databases
can provide user related attributes, such as, account expiration date or account
balance. We allow the use of external scripts to gather context and integrate this
information in the XACML requests.

Any application that uses PAMs pam_acct_mgmt for account management or
pam_sm_authenticate for authentication can simply add the pam_xacml module
to the list of required PAM modules. PAM modules are stackable, that allows
for rules that require all modules or a subset of the modules to succeed, for
declaring a user to be authorized and be authenticated. We can take advantage
of the existing authentication modules and demand a PAM configuration that

! available at http://pamxacml.sourceforge.net

enforces the user identities to be authenticated, before authorization is invoked.
Using pam_xacml for authorization introduces a central instance in the system
that allows to establish trust with PDPs, instead of configuring each application
to authenticate and trust a given PDP. The choice of suitable PDPs is a delib-
erate decision of the administrator of the system. The keying material for the
secure connections can be stored in one location of the OS, and thereby reduce
the risk of the keys to become compromised. The module can monitor autho-
rization requests and decisions and provide detailed log traces for the tracking
of access requests and for the identification of possible attacks. The stacking of
modules allows for the invocation of multiple PDPs for one authorization re-
quest by the application. An example of the stacking of pam_xacml is a scenario
where the host has its own PDP for access control for local resources (e.g. files,
applications), the PDP of the department decides upon access to the resources
in the infrastructure (e.g. database, printer), whereas the corporate PDP decides
if the organization wide business rules permit the request.

Another important aspect is the variety of communication methods that exist
for querying remote XACML PDPs. SAML [2] allows for authorization requests
and the transport of authorization decisions. SOAP [9] is a popular Web Service
protocol that can be used to transport native XACML authorization requests.
Data origin authentication, confidentiality, message integrity and replay protec-
tion introduce even more complexity for the communication. Viable options for
secure authorization are HT'TPS, port tunneling over SSH, or the use of WS-
Security [14]. pam_xacml hides all these details from the application and provides
great flexibility to introduce new access methods and additional PDPs to the
infrastructure, with only minimal impact on the system configuration.

‘ Application ‘ ‘ PAM Library ‘ ‘ pam_xacml ‘ PDP

pam_start() Ask the registered
acct_mgmt modules

pam_acct_mgmt()

e A A
=~ \/ = <
pam_acct_mgmt()
Build converse(PAM_AUTHZ_REQUEST)
XACML ||
Request return(XACML_Request)
[xacm reques
Parse
XACML
Response XACML Response
Must converse(MANDATORY, XACMLﬁResponM
Understand \{ . Jerstood
Obligations return(understood)
return(PAM_SUCCESS)
AP AN S el
=
Setun(PAM_SUCCESS) = =
o TPAVL SV LLESS)
pam_end()

Fig. 2. Authorization with the PAM Conversation Mechanism

3.2 Applications with Authorization Interface

The prior Section assumed applications without any special support for
pam_xacml. This limits the available information for the authorization. The ap-
plication itself knows best about the parameters of the service request. The use
of pam_xacml for existing applications can only regulate if access to an applica-
tion as a whole should be possible. It has no means to limit access to certain
actions on the application.

The basic idea is to give the application full control over the authorization by
building the authorization request within the application. Authorization inter-
faces of applications are long lived, because they are linked to control flows deep
within the programs. They must provide exhaustive information about the cur-
rent situation and ensure effective enforcement of the access control decisions. We
decided to go for the XACML policy language [17] for the interface with the ap-
plication, because it has a set of common data types, well-defined semantic and
has a straightforward XML language for authorization request and authoriza-
tion response. The advantage of the XACML interface is, that it provides an
migration path for applications that evolve towards using unified policies. These
applications can start with pam_xacml to integrate support for XACML request
and response XML documents and can be extended for native support of SAML
XACML authorization later on. Alternative authorization interfaces with the
application, such as AZN APT [19] or GAAPI [7] can be added in the future.
The applications builds the raw XACML request and lets pam_xacml handle the
communication and security. The application does not necessarily need to under-
stand the XACML response, because pam_xacml parses the response and signals
an authorization failure to PAM if the PDP denied access. This approach allows
for a lightweight integration of the authorization interface in the application.
We use the PAM Conversation mechanism that allows applications to dynami-
cally link against the PAM library, without the need to recompile the application
when new PAM modules become available. The conversation mechanism is in-
voked to transport a message type and message content between application and
PAM module. pam_xacml introduces new message types to enable an application
to pass authorization request and to receive authorization response (see Figure
2). An application can supply detailed specifications about requested resources
and intended actions. Positive decisions can carry Obligations to put constraints
on permitted actions. An example for an Obligation is a bandwidth constraint
on the communication, enforced by a middlebox. We implemented a template
based XACML request builder with the XACML aware PAM conversation func-
tion that needs less than 60 lines of C code in the application and works without
any XML library. Future work is to add support for non-XACML PDPs, trans-
parent for the applications.

4 Experiments on Distributed Authorization

Policy enforcement is usually pessimistic as that it continues only with processing
of a request, after a positive authorization decision was taken, hence it has a
significant impact on session establishment. None of the publications we surveyed
in Section 2 presented a detailed analysis on the performance of distributed
authorization. We will focus on the impact of communication and cryptography,
because no matter how fast a PDP policy engine implementation will become,
the communication cost for making the request and receiving the decision will
always be present.

Client Firewall with SOCKS Web Server Web Service
Authorization of
SOAP 1P Address + Port | | SOAP SOAP SOAP SOAP
and User
HTTP HTTP HTTP HTTP HTTP| [Authorization of
TLS/SSL TLS/SSL TLS/SSL TLS/SSL TLs/ssL| |SOAP Request
Authorizati f based on
TCP SOCKS TCP SOCKS TCP uthorization ot | rop TcP| |Attributes
HTTP Request
1P P P based on URI||p P

Fig. 3. Consequtive Authorization Decisions

4.1 Reference Scenario with Consecutive Authorization Decisions

Access control is guided by the principle of minimal exposure to adversaries. Ser-
vices, applications and infrastructure have their own policy enforcement code in
place. One service access usually involves multiple components, each of which
must authorize the access. This architecture leads to multiple lines of defense
that an intruder must circumvent. Service interfaces, for instance, are usually
complex, and subject to change, making it hard to guarantee correct enforce-
ment of access control decisions and assure the absence of exploits. As opposed
to firewalls that are verifiable reference monitors and can filter most malicious
requests, but lack insight into the application logic.

The Figure 3 introduces the reference scenario with consecutive authorizations
of a SOAP request, using pam_xacml at each step. The firewall has an integrated
SOCKS]J15] server that relays communication to the web server after successful
authentication and authorization of the requester. We used the SS52 SOCKS
server and extended it to support bandwidth restrictions specified by XACML
Obligations. SOCKS knows about user identities and requested service addresses.
Hence, it can only authorize that a user is allowed to access the web sever at

2 http://ss5.sourceforge.net

all. The web server in turn receives a HTTP request specifying an URI which
can now be checked. The Web Service can authorize at the finest granularity,
by using parameters like, intended action on the resource, resource specification,
current state, and context for its authorization request. The Web Service and
the PDP were accessible via SOAP interfaces through a stack of Apache Axis,
the Tomcat servlet container and the Apache web server3. All machines were
installed with a standard configuration of Fedora Core 4 and had an Intel Xeon
2.80GHz CPU with 1GB of memory, except the client which had an Intel Pen-
tium 4 2.26GHz CPU with 512MB memory. The computers were connected by
a 100MBit/s LAN with Round Trip Times (RTT) smaller than 0.1 milliseconds.
We used different methods for issuing authorization requests to the PDP: plain
SOAP, SOAP over TLS with the OpenSSL library and SOAP over an SSH
tunnel. We used 1024bit RSA certificates for TLS server and client to assure
mutual authentication. Port forwarding with the SSH tunnel was established
before each experiment and was authenticated by the server certificate and chal-
lenge response. Refer to [18] for a measurement study on the performance and
throughput of different security protocols. We instrumented the client applica-
tion and the pam_xacml module and used tcpdump* to determine the exact time
stamps of packets arriving at the host and packets that are being sent from the
host.

0.200

Processing at PDP ———

Communication during Authorization m—
Cryptography Bz

pam_xacml Processing Time EXXx

Time for SOCKS and Application £~ .

0.180 -

0.160

0.140 *

0.120 .

0.100 *

0.080 f

Time in Seconds

0.060 f

0.040

0.020 % .
0.000

So, So, Ss. Ss., S 7
%o "o "%p 5 Skt ki S Sk, S {8, o {8, % {8, s,
Q. ~ gy, ey U “O4p Qdp A Ao, Ap
e e e Y4 Ay A Y Ay
Up, e, Yy thy

Fig. 4. Breakdown of Service Access Time for 1/2/3 Authorization Requests

3 Apache, Tomcat, Axis available at http://www.apache.org
4 http://www.tcpdump.org

4.2 Measurements

We were interested in the delay of single requests, for this reason, we made 100
requests with a time of 3 seconds between each request. We performed measure-
ments for one, two or three consecutive authorizations, for each protocol binding
(see Figure 4). The processing time for obtaining a decision at the PDP was virtu-
ally the same for all experiments. The interpretation of the performance numbers
of the PDP is limited, because we use Sun’s XACML® implementation with a
simple policy, not comparable with real world policies. We determined the cost
for a PDP decision without communication and SOAP overhead as 9 ms. The
PDP decision inclusive the handling by the Operating System, the server and
the SOAP processing took 15ms for one authorization. The pam_xacml module
introduced a delay of at most 5ms for the PAM execution, the communication
with the application and the XML processing. The delay for the whole commu-
nication was below 2ms. The signaling from the application with SOCKS and
the service request/response took 22ms in total. TLS cryptography introduced
a significant overhead of 35ms for the connection handshake and derivation of
the session key. The already established secure link with ssh took 4ms for the
cryptography, only little more than the unencrypted messages.

In case of consecutive authorizations, the delay of all components involved in
the authorization grows linearly with the number of authorization decisions.
The whole process with 3 authorization requests takes a client between 90ms
and 180ms over a secure link.

1.400
A B " XACML Request/Response with SOAP ——11
L] SSH Tunnel for SOAP XACML Request/Response
n TLS for SOAP XACML Request/Response £z
Serialization{ L] Delay for 1.200
Delay o; sending

Packet
Burst B, 1.000

Network
Delay ¢,
Processing

Time a, 0.800

Time in Seconds

0.600

0.400

0.200
Time

0.000

10 ms 25ms 50 ms 100 ms 150 ms
One Way Network Delay

Fig. 5. Delay Contributions to Fig. 6. Impact of Propagation Delay on Authoriza-
Time for Authorization tion for different Communication Protocols

% http://sunxacml.sourceforge.net

10

4.3 Impact of Propagation Delay

The impact of the communication on the authorization was negligible in the
testbed. As many organizations have global scope, we want to estimate the im-
pact of the propagation delay on the authorization.

Many factors contribute to the end-to-end delay of authorization (see Figure 5):
The processing time «, in the Operating System and within the client and ser-
vice programs. The delay (3, for sending the packets that belong to one message
waiting in the queue of the Operating System. The [3,, delay consists mainly of
the serialization delay o; of the individual packets. The o; can be calculated from
the bandwidth of the link and size of the data to be sent. The bandwidth is usu-
ally constrained by the access network of client and server. The network delay ¢,
is influenced by factors such as queuing and forwarding at routers, packet loss,
effects of multi-path routing and most important, the distance of the link. The
distance of the link determines the propagation delay at roughly 5us per km.
The time for a queued message to arrive at its destination is therefore 3, + ¢,.
We observed always the same sequence of messages in our setup, for instance,
only after a request has been fully received a response was sent. We know the
exact times «,, of each message after it has been completely received at a host
and the first packet of the reply is going to be sent. We can approximate the
Tuuthz for a complete authorization exchange as Tyuth. = Y. Bn + @n + @, where
n is one message during the authorization. We can estimate how larger propaga-
tion delays impact the authorization performance, because the processing time
ay, is independent of the network delay and longer routes in the network have
small impact on (3,. The effects of longer routes through the network is mostly
independent of the packet size and is therefor dominated by ¢,, which is depen-
dent on the number of messages sent through the network. We can substitute
the network delay in the testbed with a more realistic fictive network delay ¢/,
for each message (see Figure 6). Our numbers tend to underestimate the total
delay, because we neither consider packet loss and fragmentation, nor the effects
of multi path routing which all contribute to the delay variance in real networks.
We can now calculate a lower bound on the communication delay, based on
real world RTT, measured with ping from our network. Accessing a PDP in
Europe (50ms RTT) would cost 200ms using TLS, 150ms with SSH and for a
SOAP document 100ms. We confirmed our methodology by analyzing delays
of tcpdump traces of HTTPS/TLS connections over large distances. As we ar-
gued before, the delay of consecutive authorization would grow linearly with
the number of authorization decisions. Hence, our reference scenario would have
an noticeable communication delay of 600ms using TLS plus the 180ms for the
cryptographic operations as presented in Section 4.2. We confirmed with addi-
tional measurements, that the effect of WS-Security [13] encrypted and signed
SOAP documents experiences comparable network delay contributions as with
our SOAP only scenario.

The conclusion from these results is to locate the PDP close to the applications
that need authorization and to use a persistent secure channel. One optimization
could be, albeit not always applicable, to use optimistic authorization to start

11

processing a request before the decision is taken and to discard and roll back
changes to system upon a negative outcome.

5 Conclusion

XACML is a policy language for authorization that is gaining momentum in
research and standardization. It can greatly simplify administration if it allows
to regulate access to resources in distributed systems with one policy set. The
success of XACML as enabler for unified policies depends on the extent existing
applications are able to issue authorization requests and act upon authorization
decisions. We harvest the power of XACML for applications by providing an
authorization module for the PAM system. It is pluggable into existing appli-
cations and is stackable to authorize with a sequence of PDPs for one request.
Applications that use PAM for authentication or account verification can directly
benefit from the pam_xacml module without any changes to the code. XACML
support can simply be enabled in the PAM configuration of the application. As
this mechanism is restricted in the information that it can obtain from the ap-
plication, and as the enforcement decision boils down to permitting or denying
access to an application in total, an application interface for authorization is de-
sirable. We introduce new message types for the PAM conversation function, to
allow an application to express all parameters relevant for authorization, such as
the requesting subject, accessed resources or intended actions. The authorization
response can contain obligations to restrict permissible actions. The proposed
pam_xacml messaging interface allows for more powerful authorization compared
to legacy applications and can open a migration path for application developers
towards full XACML support, by first supporting the new PAM message types
for authorization and adding communication interfaces for direct communica-
tion with the PDPs later on. A measurement study on the impact of consecutive
authorization decisions showed the cost of using unified policies in distributed
systems. We expect pam_xacml to have great potential for bringing XACML
support to existing systems and for realizing unified policies.

References

1. Rafae Bhatti, James Joshi, Elisa Bertino, and Arif Ghafoor. Access Control in
Dynamic XML-Based Web-Services with X-RBAC. In Liang-Jie Zhang, editor,
Proceedings of the International Conference on Web Services, ICWS 03, June 23
- 26, 2003, Las Vegas, Nevada, USA, pages 243-249. CSREA Press, 2003.

2. Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML) V2.0. Standard,
OASIS, March 2005.

3. David W Chadwick and Alexander Otenko. The PERMIS X.509 Role Based Priv-
ilege Management Infrastructure. In SACMAT’02. ACM, June 3-4 2002.

4. N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Ponder: a language for
specifying security and management policies for distributed systems. Imperial
College Research Report DoC 2000/1, 2000.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

David Durham, Jim Boyle, Ron Cohen, Shai Herzog, Raju Rajan, and Arun Sastry.
RFC 2748: The COPS (Common Open Policy Service) Protocol. The Internet
Society, January 2000.

Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and Change-Impact Analysis of Access-Control Policies.
In ICSE ’05: Proceedings of the 27th international conference on Software engi-
neering, pages 196-205, New York, NY, USA, 2005. ACM.

Grig Gheorghiu, Tatyana Ryutov, and Clifford Neuman. Authorization for Meta-
computing applications. In Proceedings of the 7th IEEE International Symposium
on High Performance Distributed Computing, July 28-31 1998.

Leon Gommans, Cees de Laat, Bas van Oudenaarde, and Arie Taal. Authorization
of a QoS path based on generic AAA. Future Gener. Comput. Syst., 19(6):1009—
1016, 2003.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition). W3C Recommendation, April 2007.
Rajeev Gupta and Manish Bhide. A Generic XACML Based Declarative Autho-
rization Scheme for Java. In Sabrina De Capitani di Vimercati, Paul F. Syverson,
and Dieter Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Com-
puter Science, pages 44—63. Springer, 2005.

Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A Logical Language
for Expressing Authorizations. In SP ’97: Proceedings of the 1997 IEEE Symposium
on Security and Privacy, page 31, Washington, DC, USA, 1997. IEEE Computer
Society.

L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing
environment, 2003.

Christiaan Lamprecht and Aad van Moorsel. Performance Measurement of Web
Services Security Software. In 21st UK Performance Engineering Workshop, 2005.
Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Chris Kaler, Ronald Monzillo,
and Phillip Hallam-Baker. Web Services Security: SOAP Message Security 1.1
(WS-Security 2004). W3C Recommendation, February 2006.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC 1928, SOCKS
Protocol Version 5, June 1996.

R. Lepro. Cardea: Dynamic access control in distributed systems. Technical Re-
port NAS Technical Report NAS-03-020, NASA Advanced Supercomputing (NAS)
Division, Moffett Field, CA 94035, November 2003.

Tim Moses. eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard, February 2005.

Heiko Niedermayer, Andreas Klenk, and Georg Carle. The Networking Perspec-
tive of Security Performance - a Measurement Study. In MMB 2006, Nirnberyg,
Germany, March 2006.

The Open Group. Authorization (AZN) API. Jan. 2000. ISBN: 1-85912-266-3.
Vipin Samar and Roland J. Schemers. Unified Login with Pluggable Authentication
Modules (PAM). Open Software Foundation: Request For Comments RFC 86.0,
October 1995.

John R. Vollbrecht, Pat R. Calhoun, Stephen Farrell, Leon Gommans, George M.
Gross, Betty de Bruijn, Cees T.A.M. de Laat, Matt Holdrege, and David W.
Spence. RFC 2904: AAA Authorization Framework. The Internet Society, Aug.
2000.

