

The XDI Graph Model
2011-05-08

Editor: Drummond Reed, XDI TC Co-Chair

This document is a work-in-progress from the OASIS XDI Technical Committee
reflecting contributions from many members of the TC. Its purpose is to provide an
overview and examples of the XDI graph model that has been developed over the past
several years by the TC and is now in the process of being formally defined in the XDI
1.0 specifications.

Note that it is only an informative document only and is not normative for any
specifications from the TC.

A link to the current version of this document is maintained on this XDI TC wiki page:
 http://wiki.oasis-open.org/xdi/XdiGraphModel

Earlier versions of this document were called The XDI RDF Model and were maintained
on the http://wiki.oasis-open.org/xdi/XdiRdfModel wiki page.

The XDI Model 2011-02-09 Page 2

Table of Contents
Introduction... 3	

About XRI 3.0 Syntax... 3	

Global and Local Context Symbols .. 3	

Subsegments and Composite XRIs... 4	

Cross-References .. 4	

Part 1: Key Concepts of the XDI Graph Model.. 6	

Comparison with RDF Graph Model.. 6	

Basic Graph Structure and Addressing ... 7	

Encoding XDI Literals as XRIs Using the Data URI Scheme.. 7	

XDI Contexts: Linked Graphs .. 8	

Public and Private Addresses.. 8	

XDI Documents .. 8	

XDI Endpoints .. 8	

XDI Messages... 9	

Part 2: XDI Semantics .. 10	

XDI Grammar: The XDI Metagraph Symbols ... 10	

Semantics of $ as a Predicate: Equivalence.. 10	

Semantics of * as a Predicate: Property.. 12	

Semantics of ! as a Predicate: Subtype and Supertype ... 12	

Semantics of () as a Predicate: Subcontext and Supercontext 13	

XDI Protocol Operations .. 14	

XDI Dictionaries... 14	

The XDI Type Dictionary... 15	

XDI Variables ... 15	

Typed Operations.. 16	

Link Contracts and XDI Authorization... 16	

Part 3: XDI Serialization Formats... 17	

JSON Serialization Rules.. 17	

JSON Example.. 18	

Part 4: Example XDI Graph Patterns.. 19	

The XDI Model 2011-02-09 Page 3

Introduction
XDI (XRI Data Interchange) is an open standard semantic data sharing format and
protocol under development by the OASIS XDI Technical Committee. XDI is an
application of XRI structured identifiers, specified by the OASIS XRI Technical
Committee, to the problem of sharing, linking, and synchronizing data independent of
any particular domain, application, or schema.

The XDI TC, which began its work in 2004, originally developed a data model called the
ATI (Authority/Type/Instance) model. In early 2007 a new model was developed based
on the RDF graph model from the W3C Semantic Web activity. This model (originally
called the XDI RDF Model and now just the XDI Graph Model), provides the foundation
for the XDI 1.0 specifications.
This document provides an overview of the XDI graph model and examples of how it can
be applied to many well-known challenges in Internet data sharing.

About XRI 3.0 Syntax
XDI structured data sharing is rooted in the capabilities of XRI structured identifiers.
Addressing of the XDI graph is based on the ABNF specified in XRI Syntax 3.0. Key
features of this syntax are described in this section.

Global and Local Context Symbols
The first key feature of XRI syntax is single character symbols that represent abstract
global contexts—shared root nodes for XRI identifier graphs. In XRI 2.0 there were five
such symbols. The ABNF for XRI 3.0 reduces that set to the four shown below.1

GCS
Char

Description

$ The self-context. $ is also the root of the XDI grammar dictionary
specified by the OASIS XDI Technical Committee.

+ The generic context—the root of XRIs that have no specified authority
but evolve by shared consensus (e.g., Wikipedia).

= The personal context, i.e., the ultimate authority for an XRI in this
context is an individual person.

@ The organizational context, i.e., the ultimate authority for an XRI in this
context is a group or organization.

In addition to the global context symbols, XRI 3.0 has the same two local context
symbols as XRI 2.0.

1 In XRI 2.0, the “!” symbol was used as both a global context symbol and a local context symbol. In XRI
3.0 its use as a global context symbol was deprecated.

The XDI Model 2011-02-09 Page 4

LCS
Char

Description

* The context for mutable identifiers, i.e., identifiers that may be
reassigned to identify different resources over time.

! The context for immutable identifiers, i.e., identifiers that are
permanently assigned to a resource and will not change.

Subsegments and Composite XRIs
Generic URI syntax as defined in IETF RFC 3986 supports hierarchical structure within
the path component of a URI using forward slashes to delimit path segments. XRI syntax
adds the ability to add structure within a path segment. These subsegments are delimited
by any of the global or local context symbols described above, or by cross-references (see
below).
A property of XRI subsegment syntax is that any two single-segment XRIs (XRIs that
consist of only one or more subsegments) may be concatenated to form a third valid
single-segment XRI. This is called a composite XRI. For example, following are three
absolute single-segment XRIs representing an organization, a tag, and a person,
respectively:
 @example.company +human.resources =example.person.name

These three XRIs can be concatenated into a single composite XRI.
 @example.company+human.resources=example.person.name

Within this identifier, each component XRI appears in the context of its predecessor. This
structure, similar to nested elements in XML, enables construction of identifiers whose
semantics are both machine- and human-understandable. Such semantic identifiers
support introspection, federated discovery, algorithmic mapping, and other benefits not
readily available from opaque identifiers.

Cross-References
A third key feature of XRI syntax is called cross-references. As a language for structured
identifiers, XRI requires the ability to: a) group XRIs into a single syntactic component,
and b) encapsulate identifiers from other identifier syntaxes and namespaces similar to
the same way XML can encapsulate and “tag” data from other native data sources.

XRI syntax uses parentheses for this purpose. This feature of XRI syntax is vital to XDI
because it enables any URI to be included in an XDI statement. It also enables an
algorithmic transformation of conventional RDF documents into XDI documents.
For example, following is an RDF N3 relationship expressed using URIs:
 <http://example.name> <http://dc.org/tag/author> <http://example.com/example.html>

The XDI Model 2011-02-09 Page 5

Each of these URIs can be expressed as a relative XRI cross-reference by enclosing it in
parentheses:2
(http://example.name)
(http://dc.org/tag/author)
(http://example.com/example.html)

Now we have three single-subsegment XRIs that can be composed into a single XRI
representing an XDI statement for the same triple expressed in N3 above. The first
segment is the XDI subject, the second is the XDI predicate, and the third the XDI object.
(http://example.name)/(http://dc.org/tag/author)/(http://example.com/example.html)

2 Note that escaping of parentheses characters within the URI, plus other standard URI delimiters like # and
?, is necessary during this step. These tranformation rules are defined in the XRI 3.0 Syntax spec.

The XDI Model 2011-02-09 Page 6

Part 1: Key Concepts of the XDI Graph Model

Comparison with RDF Graph Model
The XDI shared graph model is a close cousin to the RDF graph model, i.e., both are
based on subject-predicate-object triples. However, due to the problem space for which
XDI was developed—global sharing of data across contexts—there are subtle but
important differences between the two models as explained the following table:

RDF graph model XDI graph model Explanation

Blank nodes Context nodes In RDF, blank nodes are not addressable or portable
across contexts. In XDI, all XDI subjects are context
nodes. This means they serve a similar function as
RDF blank nodes, i.e., they can be both the subject
and object of XDI statements. However at the same
time they are addressable, both absolutely and
relatively, and their addresses can be ported across
contexts.

Named graphs Nested graphs Named graphs (as supported in SPARQL) are a
solution to providing context (graph addressability) to
RDF graphs. However they require the use of quads
instead of triples. With context nodes, XDI graphs
support nested contexts to any depth using only
triples.

Not addressable 100% addressable Unique addressability of all nodes within the graph is
not a requirement of RDF graphs. With XDI, all
nodes in all contexts must be uniquely addressable
with at least one XRI. XDI grammar also includes a
means for expressing that two XRIs identify the same
logical XDI context node. These are called
synonyms.

Opaque identifiers Semantic identifiers In RDF, the URIs used to identify nodes and arcs are
opaque values. In XDI, each component XRI within
an XDI address itself represents an XDI statement,
so an XDI processor can semantically “read” these
XRIs to understand XDI documents.

Graph context Global context In RDF, every RDF graph is an independent set of
RDF statements. In XDI, there is a shared global
context, and every XDI graph rooted in the shared
global context is part of the global XDI graph.
Contexts may be discovered from other contexts to
navigate the XDI global graph.

The XDI Model 2011-02-09 Page 7

Basic Graph Structure and Addressing
In the XDI graph model, the structure of the graph is expressed using XDI statements
encoded as composite XRIs. These XRIs form paths in the XDI directed graph, making
the entire graph addressable.
The structure of the XDI graph can be expressed in a small set of ABNF statements
defining an XDI address (these build on the ABNF from XRI 3.0):
xdi-address = xdi-subject ["/" xdi-predicate ["/" xdi-object]]
xdi-subject = xdi-segment
xdi-predicate = xdi-segment
xdi-object = xdi-segment
xdi-segment = [literal] *xdi-subseg
xdi-subseg = global-subseg
 / local-subseg
 / xref
global-subseg = gcs-char [local-subseg / xdi-ref / literal]
local-subseg = lcs-char [xdi-ref / literal]
xdi-ref = "(" [xdi-ref-value] ")"
xdi-ref-value = xdi-address
 / iri

Note that there are four basic types of addresses within the graph.

Address Examples

Context node (XDI subject) =example1
=example1!1234

=example1+passport

Literal node
(Note the final subsegment is a !)

=example1/+age!
=example1+tel/!2!

Set of relational nodes =example1/+friend
@example1+engineering/+employees

Cross-references
(Addresses that cross XDI contexts)

(=example1)
(=example1/+age!)

(@example1+engineering/+employees)

Encoding XDI Literals as XRIs Using the Data URI Scheme
An XDI literal may be expressed as part of the XDI graph by encoding it as an XRI
cross-reference using the Data URI Scheme defined RFC 2397.3 Here is an example of a
phone number expressed in this fashion:
 =example+tel/+home/(data:,+1.206.555.1212)

3 http://tools.ietf.org/html/rfc2397

The XDI Model 2011-02-09 Page 8

XDI Contexts: Linked Graphs
The XDI addressing model supports contexts. From an RDF standpoint, a context is an
RDF graph that may be linked to other RDF graphs. Each context, starting with the
global context, is the root of its own unique XRI addressing space.
Since each XDI context node is the root of its own RDF graph, XDI contexts offer
similar functionality to RDF named graphs. However the universe of RDF named graphs
is a single flat addressing space. With the XDI graph model, any XDI context may be
nested within any other XDI context, to any depth. This enables XDI to address shared
data across multiple contexts, and for relative addresses to be portable when subgraphs
are copied or moved across contexts.

Public and Private Addresses
Like RDF, it is a core design principle that any XDI subject may be identified and
described in any number of XDI contexts by any number of XDI authors. In each context
the XDI subject may be addressable either: a) absolutely, b) relatively within that context,
or c) both. This is important from a privacy perspective:

• To enable correlation of an XDI subject across contexts, one or more absolute XRIs
for the subject may be shared across these contexts. These are typically public or
omnidirectional XDI addresses.

• To prevent correlation of an XDI subject across contexts, one or more relative XRIs
may be assigned to the subject in within each context and not shared across contexts.
These are called private or unidirectional XDI addresses.4

Any combination of these two approaches may be used to fulfill the security and privacy
requirements that apply within each context.

XDI Documents
Although the XDI global addressing space is one logical graph, no single location stores
the entire graph. Any portion of the graph addressable at a specific location or serialized
for transmission in an XDI message is referred to as an XDI document. XDI documents
may be serialized in multiple formats—see Part 3: XDI Serialization Formats.

XDI Endpoints
XDI is not just a graph model; it is also a protocol for interacting with XDI documents
via any transport protocol that has an XDI binding (e.g., http: and https:). The protocol
endpoint at which an XDI document is available for interaction is called an XDI endpoint.

XDI documents may contain a self-reference to one or more concrete URIs that identify
the XDI endpoint at which the XDI document is available, and these may be shared and
synchronized using XDI link contracts with other XDI endpoints to enable XDI
discovery. For example, following is the XDI address of the highest priority https:
endpoint for the XDI document for =example:
 (=example)+uri/$https*1/(data:,http://example.com/xdi/)

4 Note that a private XDI address may be absolute, but in this case it must not be shared across contexts.

The XDI Model 2011-02-09 Page 9

In addition, an XRI that identifies an XDI document can typically be resolved using XRI
resolution to discover the URI(s) for its XDI endpoint.5

XDI Messages
All interactions with an XDI endpoint using the XDI protocol take place by sending and
receiving XDI documents called XDI messages. The basic requirements of XDI messages
will be defined in the XDI Protocol specification. Examples of XDI messages are given
in Part 4 of this document.

5 Note that XRI 2.0 resolution uses the XRDS discovery format. XRI 3.0 resolution will use the newer
XRD (Extensible Resource Descriptor) discovery format.

The XDI Model 2011-02-09 Page 10

Part 2: XDI Semantics

XDI Grammar: The XDI Metagraph Symbols
In RDF, the semantics expressed in an RDF graph are defined by the ontolog(ies) it uses.
Ontology languages such as OWL have been developed to enable shared RDF semantics
across the Web.

XDI documents use a very simple upper ontology known as the XDI metagraph model
(or less formally as XDI grammar). This model is based on the concept of a metagraph
(“graph describing a graph”). To understand this model, start with the four basic concepts
of an RDF graph.

Concept Represents

Subject A node that is the source of an arc

Predicate An arc

Object A node that is the target of an arc

Context The graph itself

Second, assign XRIs to each of these concepts—these are called the XDI supertypes.

Concept XRI

Subject $

Predicate *

Object !

Context ()

Third, define the semantics for each of these XRIs used as a metagraph predicate.

Concept XRI Statement Semantics

Subject $ x/$/y X is subject Y

Predicate * x/*/y X has predicate Y

Object ! x/!/y X has object Y

Context () x/()/y X has subcontext Y

Semantics of $ as a Predicate: Equivalence
In x/$/y, the $ predicate asserts that the subject identified by XRI X is the subject
identified by XRI Y. This means X and Y are logically equivalent, i.e., that they both
identify the same XDI graph node. Such XRIs are called synonyms, and they are a
common design pattern in XDI graphs.

The XDI Model 2011-02-09 Page 11

Since equivalence is reflexive, the following two XDI statements are semantically
equivalent:

 x/$/y
 y/$/x

In English this closely matches the use of the verb “is” to assert the equivalence of two
nouns. For example:

 X is Y.
 Y is X.

The ability to substitute English “is” statements for XDI $ statements works with both
classes and individuals.
 +car/$/+auto
 A car is an auto.

 +auto/$/+car
 An auto is a car.

 bob/$/bob.jones
 Bob is Bob Jones.

 bob.jones/$/bob
 Bob Jones is Bob.

$ used as a context is the context of XDI statements that “point back at themselves”. This
means the inverse of any XDI predicate can expressed by placing it in the $ context, i.e.,
concatenating the predicate with $ as a prefix. For example:
 abraham/+son/cain
 cain/$+son/abraham
 alice/+friend/bob
 bob/$+friend/alice

In English:
 Abraham has a son Cain.
 Cain is a son of Abraham.
 Alice has a friend Bob.
 Bob is a friend of Alice.

This universal XDI semantics of using $ predicate inversion applies to all the XDI
metagraph predicates as summarized in the following table.

Concept XRI Statement Semantics Inverse
Statement

Semantics

Subject $ x/$/y X is subject Y y/$/x Y is subject X

Predicate * x/*/y X has predicate Y y/$*/x Y is a predicate of X

Object ! x/!/y X has object Y y/$!/x Y is an object of X

Context () x/()/y X has subcontext Y y/$()/x Y is a subcontext of X

The XDI Model 2011-02-09 Page 12

Semantics of * as a Predicate: Property
In x/$/y, the * predicate asserts that the subject identified by XRI X has the predicate
identified by XRI Y. This means Y is a property of X. The inverse, $*, means that X is a
property of Y.

 +car/*/+year
 +year/$*/+car
 +circle/*/+diameter
 +diameter/$*/+circle

In English:

 A car has a property named year.
 A year is a property of a car.
 A circle has a property named diameter.
 A diameter is a property of a circle.

* statements are used in XDI dictionaries to define the properties of classes. However
they may also be used in instance documents to describe the properties of an individual.
 abraham/*/+son
 cain/*/$+son
 alice/*/+friend
 bob/*/$+friend

In English:
 Abraham has a son.
 Cain is someone’s son.
 Alice has a friend.
 Bob is someone’s friend.

Semantics of ! as a Predicate: Subtype and Supertype
In x/!/y, the ! predicate asserts that the subject identified by XRI X has the object
identified by XRI Y. In the metagraph model this means X is an incoming arc to node Y,
i.e., X is a predicate that describes the type of object Y. So the statement x/!/y asserts that
Y is a subtype of X, and x/$!/y, asserts that Y is a supertype of X.

 +vehicle/!/+car
 +car/$!/+vehicle
 +shape/!/+circle
 +circle/$!/+shape

In English:

 A type of vehicle is a car.
 A car is a type of vehicle.
 A type of shape is a circle.
 A circle is a type of shape.

The XDI Model 2011-02-09 Page 13

Like * statements, ! statements can be used both in XDI dictionaries to define classes and
in XDI instances to describe individuals.
 +person/!/+son
 cain/$!/+son
 +place/!/+city
 +seattle/$!/+city

In English:
 A type of person is a son.
 Cain is a son.
 A type of place is a city.
 Seattle is a city.

Semantics of () as a Predicate: Subcontext and Supercontext
In x/()/y, the () predicate asserts that the context identified by XRI X has the subcontext
identified by XRI Y. In the metagraph model this means Y is a subject in the RDF graph
identified by X. The inverse, $(), asserts that the subject X is a member of graph Y.

 +moon/()/+vehicle
 +vehical/$()/+moon
 example.company/()/alice
 alice/$()/example.company

In English:

 Moon is a context of vehicle.
 A vehicle has a moon context.
 Example Company is a context of Alice.
 Alice has an Example Company context.

Like * statements, () statements can be used both to define classes and to describe
individuals.
 +work/()/+person
 +work/()/=example1
 +home/()/+address
 +home/()/=example1

In English:
 Work is a context of person.
 Work is a context of Example1.
 Home is a context of address.
 Home is a context of Example1.

As described above, XDI addresses that link contexts are formed by concatenating each
context address in the order of the context containment hierarchy.

 +work/()/+person ==> +work+person
 +work/()/=example1 ==> +work=example1

The XDI Model 2011-02-09 Page 14

 +home/()/+address ==> +home+address
 +home/()/=example1 ==> +home=example1

 +person/$()/+work ==> +work+person
 =example1/$()/+work ==> +work=example1
 +address/$()/+home ==> +home+address
 +example1/$()/+home ==> +home=example1

XDI Protocol Operations
Following the REST model, the XDI protocol supports four atomic operations on the
XDI graph itself.

XDI Graph
Operation

CRUD
Equivalent

Description

$get read Read one or more statements from the graph.

$add create Write one or more new statements to the graph.

$mod update Modify one or more existing statements in the graph (may only
be applied to XDI literals).

$del delete Delete one or more existing statements from the graph.

Three additional XDI operations are defined for other standard graph operations.

XDI Graph
Operation

Description

$copy Push synchronize a portion of the graph from one context to another (in
essence, mirror a set of operations performed in one context in another context).

$move Move a portion of the graph from one context to another (copy it then delete the
original).

$do The abstract root context for all XDI operations. $do is used both for link
contracts and for defining RPC-style operations using the XDI protocol.This topic
will be covered in more detail in the XDI 1.0 specifications

Declaring XRIs for these explicit XDI protocol operations establishes the basis for
permissioning in XDI link contracts (see Link Contracts below).

XDI Dictionaries
XML has schemas, RDF has ontologies, XDI has dictionaries. An XDI dictionary is an
XDI document that provides semantic definitions of a set of XRIs using XDI metagraph
statements. For example, an XDI dictionary for contact data (e.g., the XDI equivalent of
vCard) would define XRIs for contact data types (e.g., name, telephone number, postal

The XDI Model 2011-02-09 Page 15

address, email address, home context, work context, etc.) together with the relationships
between them.

An XDI dictionary may be a static XDI document, or it may be available for interaction
at an XDI endpoint. The latter is called an XDI dictionary service, and it plays a key role
in establishing XDI semantics that are interoperable across communities of use. Some
XDI dictionaries intended to define globally shared semantics may operate Internet-wide
in community models similar to Wikipedia and DBpedia.

The XDI Type Dictionary
To enable the XDI graph to be fully self-describing, the XDI TC defines a special XDI
dictionary to describe specializations of the four XDI supertypes described above. Like
all XDI dictionaries, this XDI type dictionary is extensible by all XDI users.

For XDI literals, three main branches of the XDI type dictionary have been proposed:
• $mime will encompass the IANA-specified MIME media types.
• $xsd will encompass the W3C-specified XML Schema datatypes.
• $json will encompass the IETF-specified native JSON datatypes.

Each of these will be further specialized using simple conventions for mapping http: URI
fragments to XRIs. Following are some examples:
$mime$text$html!
$mime$application$atom+xml!
xsdstring!
xsdboolean!
$json$array!
$json$object!

XDI Variables
Operations on the XDI graph often need to refer to nodes in the graph for which the client
does not yet know the XRI. Such operations need a special XRI so the server can
recognize the client is referring to a variable and not a literal XRI.
The XDI variable identifier ($) is defined for this purpose. Variables in any XDI
document follow the same rule as all other XRIs in XDI documents: they must be unique
within their context. If more than one variable is needed in the same context, the XDI
author can assign unique variable identifiers as needed. A convention is to use digits, e.g.,
($1), ($2), ($3).

The XDI Model 2011-02-09 Page 16

Typed Operations
In the Architecture of the World Wide Web (AWWW), a Web client can request different
representations of a resource by specifying different media types in the HTTP Accept
header. XDI offers the same capability by using composite XRIs to subtype standard XDI
operations. Examples:

Operation XRI Description

getmime$text$html! Return the requested XDI resource as an HTML document.

getboolean! Returns a boolean ($true or $false) asserting whether or not the
requested XDI resource exists.

$add($) Add an XDI resource that contains one or more variables and
return the variable assignments.

The $add($) typed operation is particular useful when an XDI client wishes to add a XDI
resource to an XDI server but wants the server to assign an XRI (such as a persistent XRI
i-number) to the new resource.

Link Contracts and XDI Authorization
One of the core design goals of XDI is to permit controls over XDI data sharing—XDI
authorization—to be expressed within the XDI graph itself. This enables XDI
permissions to be viewed, shared, moved, and managed just like any other part of the
XDI graph. It also enables XDI authorizations to be fully portable across XDI service
providers.
The portion of an XDI graph used to express authorization is called a link contract. The
structure of a link contracts is based on using the XDI $do operator as a context. This $do
context may be placed inside any other context to create a link contract governing the
sharing of data described by the link contract graph.
This pattern is the same for all XDI data sharing relationships, no matter who the XDI
authority is, what data is being shared, what permissions are being granted, or what other
policies are asserted as part of the link contract.

Link contracts are one of the most sophisticated structures in XDI graphs; they are most
easily understood using the example in the Link Contract section of Part 4.

The XDI Model 2011-02-09 Page 17

Part 3: XDI Serialization Formats
Transmitting XDI documents requires serializing the XDI graph. Like RDF, XDI can be
serialized in multiple formats that will be specified in the XDI 1.0 Serialization
Specification. Two serialization formats have been developed by the XDI TC:

• XML was the first format developed, however because XDI data is already full
structured, the overhead of XML adds little value.

• JSON is the preferred serialization format for on-the-wire transmission due to its
simplicity, compactness, efficiency, and popularity.

For simplicity, the examples in this document will use JSON.

JSON Serialization Rules
The rules for serializing the XDI graph in JSON serialization format (specified using
IETF RFC 3885 requirements keywords6) are.

1. An XDI JSON graph serialization MUST be valid JSON according to RFC 4627.7
2. The graph MUST be serialized as a single top-level JSON object (“root context

object”).
3. Every XDI statement in the graph MUST be serialized as a JSON object (“context

object”) contained within the top-level JSON object.
4. For every context object, the string representing the JSON object key MUST

include of the first two segments of the XDI statement, i.e., the XRIs representing
the XDI subject and XDI predicate. The key MUST include the forward slash
separating the XDI subject and XDI predicate, and MUST NOT include a trailing
slash after the XDI predicate.

5. For every context object, the value MUST be a JSON array.
6. If the XDI predicate is more than one subsegment and the final subsegment is “!”,

then the predicate MUST be a literal arc and the value of the JSON array MUST
be interpreted as an XDI literal.

7. If the XDI predicate is “()”, then the predicate MUST be a contextual arc and the
value of the JSON array MUST be an array of strings representing XRIs.

8. If the predicate key ends in any other character, then the XDI predicate MUST be
a relational arc, and:

a. If a value in the array is a string, it MUST be interpreted as an XRI.
b. If a value in the array is a JSON object, it MUST be interpreted as a nested

XDI graph, in which all the XRIs MUST be cross-references.
Note that these serialization rules mean that the entire root context graph is already
indexed by subject/predicate keys, and so are any nested graphs.

6 http://www.ietf.org/rfc/rfc3885.txt
7 http://www.ietf.org/rfc/rfc4627.txt

The XDI Model 2011-02-09 Page 18

JSON Example
Following is an example XDI JSON document.

{
 "()/()": [
 "=example"
],
 "()/$": [
 "(=!1111.2222.3333.4444)"
],
 "()/$d!": [
 "2010-11-12T10:11:12Z)"
],
 "=example/()": [
 "+address"
],
 "=example/$!": [
 "+person"
],
 "=example/+friend": [
 "=example.friend",
 "(friend@example.com)",
 "(http://example.com/friend)"
],
 "=example/+age!": [
 33
],
 "=example/+vegetarian!": [
 false
],
 "=example/+favorite+colors!": [
 "red",
 "blue",
 "green"
],
 "=example+address/+street*1!": [
 "123 Corliss Ave N"
],
 "=example+address/+street*2!": [
 "Apt 44"
],
 "=example+address/+city!": [
 "Seattle"
],
 "=example+address/+state!": [
 "WA"
],
 "=example+address/+postal.code!": [
 "98133"
]
}

The XDI Model 2011-02-09 Page 19

Part 4: Example XDI Graph Patterns
This portion of the document is currently maintained as two standalone files: XDI Graph
Patterns and XDI Statements for XDI Graph Patterns. The current versions are available
at:

http://www.oasis-open.org/committees/download.php/42045/xdi-graph-patterns-2011-05-
08.pdf

http://www.oasis-open.org/committees/download.php/42047/xdi-statements-for-xdi-
graph-patterns-2011-05-08.pdf

The latest version of both documents will be available from:
http://wiki.oasis-open.org/xdi/XdiGraphModel

