Representing .NET Winforms in Xliff

This discussion centres on representing .NET Winforms in xliff. The source format for the Winforms could be *.resx code file or the compiled equivalent *.exe or *.dll. (Note: the *.resources intermediate file could also be used as a source format for Winforms).

While these three formats need to be parsed in different ways, they all essentially comprise of a list of name – value pairs which describe a Winform or user interface screen.

The xliff dialog profile that has been suggested by members of the committee needs to be enhanced somewhat if all of the characteristics of Winforms are to be catered for. .NET Winforms have moved on from the Win32 dialogs templates and the xliff dialog profile is not sufficient to describe some of these enhancements.

Here are some of the new features in Winforms that the Dialog profile in xliff would have difficulty describing.

Font information

With .NET Winforms it is possible to set the font information per control. With Win32 Dialogs, a font could only be set in the dialog template, i.e. a single font for the whole dialog.

The current Winres dialog profile suggests putting the font instruction in the dialog <group>, see below.

<group restype='dialog' resname='IDD_DIALOG1'

 font='MS Sans Serif;8' coord='0;0;235;55' >

This works perfectly for Win32 dialogs, but not for .NET Winforms. Currently, the xliff schema allows for font information to be set at <group>, <trans-unit>, <target> and <alt-trans>, so the xliff 1.1 schema will allow specification of a different font per control.

To facilitate the ability to specify a different font per control, it would be necessary to move the font instruction to the <trans-unit> element. This would facilitate a font instruction for the Winform / Dialog itself via the caption’s <trans-unit> and for all other controls via their own <trans-unit>.

Embedded Menus

When designing .NET WinForms, it is possible to add more than a single menu. The Win32 dialog template allowed for a single menu ID in the dialog. Leading on from that, our current Winres dialog profile suggests putting the menu ID into the dialog <group> element. See example…

<group restype='dialog' resname='IDD_DIALOG1'

 menu='IDR_MAIN' coord='0;0;235;55' >

The first problem is that a Winform can contain many menus. Our current profile can easily be enhanced to cater for this by delimiting the IDs, or menu names by semicolons. Eg.

menu='IDR_MAIN;IDR_CONTEXTMENU'

The second issue is that with Winforms, the menu or menus are actually embedded in the resource stream for the Winform. So the individual menu items appear like controls in a dialog (their type obviously defines them as menu items as opposed to controls).

It is worth noting that menus are not well described in Winforms, the individual items are simply listed in the file. There is no notion of hierarchy as there is in the menu template for Win32. This hierarchical information is contained in the code segment of the executable. Because menus are not well described in Winforms anyway, I would propose not amending our menu or dialog profile to allow embedding of a menu within a dialog profile. This would mean that embedded menus in a Winform would have to be created in their own <group> and referenced via the menu attribute of the dialog <group>.

Other Embedded Items

WinForms can also have all sorts of weird things like timers, and common dialogs like ColorDialog embedded within them. Usually these objects will not have localizable data in them, so the current Winres profile should be ok. It means that the Winform files will need to use the <skeleton> element to store the rest of the data that is not being pulled out for localization.

Tooltips

Controls within WinForms can have ToolTip entries. While this does not seem too strange, the current Winres profiles does not support this. With Win32 dialogs, the tooltips were stored in a string table and were generally localized out of context or with tools like Catalyst along with the appropriate menu item (menu item, long prompt and tooltip were linked by ID).

To confuse matters even more, Winforms can have many tooltip entries for each control. Eg. it is possible to have one tooltip appear after 0.5 seconds and another one appear after 1.5 seconds (don’t ask me why you would do that, but it is possible, so people will ;-)

It seems that the most straight forward approach would be to recommend in our profiles document for Winforms that tooltips be listed as simply another <trans-unit> in the dialog <group> with a restype=tooltip (already available in schema) and to link them with the same resname. Eg.

<group restype='dialog' resname='IDD_DIALOG1' coord='0;0;235;55'>

 <trans-unit id='0' restype='caption' font='Tahoma;10'>

 <source>Caption Text</source>

 </trans-unit>

 <trans-unit id='ID_OK' restype='button' font='MS Shell Dlg;8'>

 <source>OK</source>

 </trans-unit>

 <trans-unit id='ID_OK' restype='tooltip'>

 <source>This is a tooltip message for OK button</source>

 </trans-unit>

 <trans-unit id='ID_OK' restype='tootip'>

 <source> This is another tooltip message for OK button</source>

 </trans-unit>

</group>
Inheritance

Winforms support inheritance. For example, with a view toward consistency, a developer may design a base Winform with an OK button, a Cancel button and a Help button aligned along the bottom. It is then possible to design other Winforms leaving these controls out, but inheriting from the base form such that the combination of the inherited form and the new one create a complete Winform.

This way, any change to the base form will be propagated across all Winforms that inherit from it.

What this means is that when reading a Winform definition in a *.resx file or a *.exe file, it cannot be assumed that the entire Winform is present. It is possible to inherit the co-ordinates from a base Winform while specifying the text in the derived Winform. One result of this is that rendering of the Winform may not be possible because the definition may be incomplete without searching for the inherited form definition as well.

It is likely that while this causes a difficulty for rendering, it should not affect the profile. The only addition that could be made would be to be able to specify in an attribute that a control is inherited. It is not felt that this is required.

Optimization

When outputing a localised *.resx file only the changed strings should be included. This results in a smaller, optimized output file. The same is true for the binary satellite assemblies, the output only includes changes from the English file.

This is the correct way to deal with localised Winforms. This does not affect the definition of the Winform in xliff and should not impact the winres profiles currently being worked on. This will be up to the author of the *.xliff file.

Note on BAML resources

Next is the BAML resource set. It is an embedded binary version of xaml resources. Baml resources can also be a standalone resource file like res files, or can be in .resources files or in .net dlls. Localizing xaml files is currently too much of a challenge. Developers and designers can be so creative with a document hierarchy based schema. You can have a binary object, animation of any kind with the string of text. One of the key task is to first flatten the resource tree into key value pairs, then process them as typical source/target resources with a source string and a target string. The largest quantities of resource types is still strings and by a long shot, well for both windows and office at least.

