More thoughts about .NET Winforms

My comments on .NET resources and XLIFF will be divided in two sections. Part 1 (Still quite simple features of .NET Winforms) adds some notes to the document from Enda and Gerard.

Still quite simple features of .NET Winforms

Graphics

Winforms can contain a number of controls with graphics, like image controls or even simple buttons. Like with the menus, graphics are embedded in the resource stream of Winforms. Since trans-units and bin-untis can be used at the same levels in a XLIFF documents this does not violate the XLIFF specification.

Hierarchies

Controls in Winforms are not necessarily children of the winform. Controls can have other controls as parent, like buttons in a group box. Control coordinates are always relative to the parent. This is a significant difference to Windows standard resources. This feature can be mapped to XLIFF using groups.

Tough features of .NET

It is very easy to extend .NET by adding new controls and properties. This will have an impact on the XLIFF specification if we decide to cope with all of these issues.

Custom controls

Custom control can easily be developed and used in the development environment. There is no way to determine how such a control have to be displayed to the user in a visual localization environment. Only the control has this information. If visual editing is required the assembly containing the custom control must go along the localization process. May be this data be stored in reference elements?

Custom controls can have custom properties relevant for localization. If the parser generating the XLIFF file is able to access this data, this data must be added the XLIFF document either as attributes of the trans-unit of the control or as a sub trans-unit if the property is a translatable text. The following fragment shows a mapping of a control userControl1 with custom property MyUserProperty1 and a MyUserProperty2.

<group>

 <trans-unit id = '2' resname='userControl1' coord='0;8;90;8'
 restype='x-NET-GreatLib.UserControl' XXX:MyUserProperty1='5'>

 <source>a text of the control</source>

 </trans-unit>

 <trans-unit id = '3' resname='MyUserProperty2'>

 <source>a second text of the control</source>

 </trans-unit>

</group>

Of course other mapping schemes are possible.

Custom Properties

In the sample above, only simple properties have been used like a number or a text. In .NET it is also very easy to define custom types like enums or sets.

It is this simple to define a new type in .NET.

public enum EnumDirection

{

ToTheLeft,

ToTheRight,

}

If an instance of this type is used in a custom control, it will be serialized to the resources like this:

 <data name="userControl1.LabelDirection" type="MyWindowsControlLibrary.EnumDirection, MyWindowsControlLibrary, Version=1.0.1.0, Culture=neutral, PublicKeyToken=null">

 <value>ToTheLeft</value>

 </data>

It is important to understand that the resource only contains the actual value of the property but not the other possible values. And XLIFF itself does not contain a mechanism to provide information to validate property values.

Other complex custom properties can be serialized in a format defined by the control itself. There is for example a standard .NET property called LinkLabel, it could look like this:

A LinkLabel Control

The marked area is serialized as follows:

 <data name="linkLabel1.LinkArea" type="System.Windows.Forms.LinkArea, System.Windows.Forms, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">

 <value>2, 9</value>

 </data>

Depending on the serialization scheme it is not always possible not validate a change of the property without the help of the control itself. For example optional values might have been omitted in the serialized output.

And even other controls like ListView controls contain localizable data in sections like this:

 <data name="listView1.Items.Items" mimetype="application/x-microsoft.net.object.binary.base64">

 <value>

AAEAAAD/////AQAAAAAAAAAMAgAAAFpTeXN0ZW0uV2luZG93cy5Gb3JtcywgVmVyc2lvbj0xLjAuMzMw

MC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODkFAQAAACFT

eXN0ZW0uV2luZG93cy5Gb3Jtcy5MaXN0Vmlld0l0ZW0FAAAABFRleHQKSW1hZ2VJbmRleAxTdWJJdGVt

Q291bnQIU3ViSXRlbTEIU3ViSXRlbTIBAAAEBAgIMVN5c3RlbS5XaW5kb3dzLkZvcm1zLkxpc3RWaWV3

SXRlbStMaXN0Vmlld1N1Ykl0ZW0CAAAAMVN5c3RlbS5XaW5kb3dzLkZvcm1zLkxpc3RWaWV3SXRlbStM

aXN0Vmlld1N1Ykl0ZW0CAAAAAgAAAAYDAAAABUl0ZW0x/////wMAAAAJBAAAAAkFAAAABQQAAAAxU3lz

dGVtLldpbmRvd3MuRm9ybXMuTGlzdFZpZXdJdGVtK0xpc3RWaWV3U3ViSXRlbQIAAAAEdGV4dAVzdHls

ZQEEPlN5c3RlbS5XaW5kb3dzLkZvcm1zLkxpc3RWaWV3SXRlbStMaXN0Vmlld1N1Ykl0ZW0rU3ViSXRl

bVN0eWxlAgAAAAIAAAAGBgAAAApJdGVtMSBTdWIyCgEFAAAABAAAAAYHAAAACkl0ZW0xIFN1YjMKCw==

</value>

To Be discussed

The question that comes up is, what do we expect from an XLIFF profile for .NET. If the intention is process the localizable text, a profile which look much like the resx format would be appropriate. But a simple mapping of the rex file would not be sufficient as demonstrated with the ListView control.

Visual support for editing could be provide by adding the skeleton file and additional custom assemblies to the XLIFF file, allowing a localization tool to gather all other relevant information for visual editing (anchors, docking,…) and for property validation (LinkLabel, EnumDirection).

The other approach would be to try to map visual aspects and information for type validation to XLIFF. The visual aspects can be mapped but will differ from the native .NET format used by localization tools. So these tools will not be able to handle this format. If the resulting mapping is close to the winres profile, localization tools will be able to provide some support but the the visual editing options will not be satisfying.

The property validation is a different story because it will mean that the XLIFF specification must be extended to support this feature, if it is possible at all (see LinkLabel). For operations like these we need to access the custom properties directly to validate data. We have not found another way.

I would opt for a simple resx-like .NET profile.

Thanks for your interest and feedback,

Florian

