About the .NET Resource Format

The intention of this document is to provide information about the .NET resource format so that a profile for XLIFF can be discussed. The .NET resource format has unique features different from 'visual' resource format currently supported in XLIFF, rc files.

.NET resource Format is Much Richer

Compared to Windows resources, .NET not just uses more properties but also richer properties. Properties can be mapped to a string representation in most cases but type information is at least useful if not necessary for proper processing.

The resource format contains entries for each property, like this simplified example:

<data name="label1.Size" type="System.Drawing.Size, System.Drawing, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">

 <value>292, 23</value>

</data>

<data name="label1.Text">

 <value>label1</value>

</data>

<data name="label1.TextAlign" type="System.Drawing.ContentAlignment, System.Drawing, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">

 <value>MiddleCenter</value>

</data>

Some property types cannot be estimated by the property name, like RightToLeft.. Depending of the control type it can be of type System.Windows.Forms.RightToLeft or of type System.Boolean.

Also it is easy to implement custom controls that use custom properties with custom property values. For all these levels – controls, properties, property values – type information is essential for proper processing.

In XLIFF properties are implemented as attributes of trans-unit or target. This makes it difficult to map .NET typed properties.

The .NET resource format is not self-contained

The resource format does not contain all information to render the layout of forms or menus correctly. Also it does not contain all information needed to modify certain properties in a proper way. Currently menus and tool bars are controls that have incomplete data that is only available in code. Some localization tools use the code extract the missing resource information. It is likely that with .NET 2.0 new controls will be introduced, that might have similar problems.

Custom enum properties only have a set of valid property values. The current value of a property is known in the resource (because it is used there). But the resource format itself does not provide any information about the other allowed values. The other values can only be determined through a process called reflection. For this determination the binary implementing the type must be accessible.

.NET Resource Format is more Complex

As described above most property values can easily be converted to text and in a format defined in XLIFF. Exceptions are:

Fonts are GDI plus. There will be some loss of information when tools are just using GDI fonts.

Enums and flags (sets) can only be modified if type information is available.

Complex properties are serialized themselves in base64. Only the control itself is able to de- and encode the localizable data.

.NET is hierarchical but serialization is flat using parent property to store the hierarchical information.

.NET uses Visual Inheritance

If not all ancestors of a form are available, rendering is not possible. Some aspects of inheritance like the visibility of inherited members (public/private) are only available in code.

Conclusion

The native support of .NET is a major investment for localization tool providers like us. In order to provide a usable solution for our customers we also have to rely on information stored in binaries (type reflection) and will also parse code in one of our next releases to obtain information which is missing in the resources.

For an XLIFF profile two approaches are possible. One is to keep it as close as possible to .NET itself and the other is to go for an abstract representation like an extended WinRes format.

From our experience with .NET I don’t believe that the second approach will result in a format that can be used by tools to render the resources so that they can be localized in a professional way. Saying this I would opt for an profile that tries to mimic the original .NET resource format as close as possible so that:

1. Still all localizable text can be processed like for all other profiles.

2. If the XLIFF file contains or is accompanied by the necessary code/binaries, .NET aware localization tools can provide the full set of functionality similar to the native capabilities.

I think it is still worth to mention that even the second choice means a major investment for localization tool providers, which might be a significant barrier for .NET implementations coming up.

