
XLIFF Core Version 2.2
Specification Draft
3 December 2021
Specification URIs

This version:
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.html (Authoritative)
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.xml

Previous version:
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.html (Authoritative)
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.xml

Latest version:
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html (Authoritative)
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.xml

Technical Committee:
OASIS XML Localisation Interchange File Format (XLIFF) TC

Chairs:
Bryan Schnabel (bschnabel@bschnabel.com), Individual
Lucía Morado Vázquez (lucia.morado@unige.ch), University of Geneva

Editors:
David Filip (david.filip@adaptcentre.ie), Trinity College Dublin (ADAPT)
Rodolfo M. Raya (rmraya@maxprograms.com), Individual

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

• Declarative validation artifacts accessible from https://docs.oasis-open.org/xliff/xliff-
core/v2.2/wd/schemas/

Related Work:
This specification replaces or supersedes:

• XLIFF Version 2.1. Edited by Tom Comerford, David Filip, Rodolfo M. Raya, and Yves Savourel.
05 August 2014. OASIS Standard. http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-
v2.1-os.html

Declared XML Namespaces:

• urn:oasis:names:tc:xliff:document:2.0
• urn:oasis:names:tc:xliff:matches:2.0
• urn:oasis:names:tc:xliff:glossary:2.0

3 December 2021xliff-core-v2.2-wd
Page 1 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.html
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.xml
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.html
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd01/xliff-core-v2.2-wd01.xml
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.pdf
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.xml
https://www.oasis-open.org/committees/xliff/
mailto:bschnabel@bschnabel.com
mailto:lucia.morado@unige.ch
mailto:david.filip@adaptcentre.ie
http://www.adaptcentre.ie/
mailto:rmraya@maxprograms.com
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html

• urn:oasis:names:tc:xliff:fs:2.0
• urn:oasis:names:tc:xliff:metadata:2.0
• urn:oasis:names:tc:xliff:resourcedata:2.0
• urn:oasis:names:tc:xliff:sizerestriction:2.0
• urn:oasis:names:tc:xliff:validation:2.0
• http://www.w3.org/2005/11/its
• urn:oasis:names:tc:xliff:itsm:2.0

Abstract:
This document defines version 2.2 of the XML Localization Interchange File Format (XLIFF). The
purpose of this vocabulary is to store localizable data and carry it from one step of the localization
process to the other, while allowing interoperability between and among tools.

Status:
This document was last revised or approved by the OASIS XML Localisation Interchange File Format
(XLIFF) TC on the above date. The level of approval is also listed above. Check the “Latest version”
location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Com-
mittee's email list. Others should send comments to the Technical Committee by using the "Send
A Comment" button on the Technical Committee's web page at https://www.oasis-open.org/commit-
tees/xliff/.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the Technical Committee web page (https://www.oasis-open.org/commit-
tees/xliff/ipr.php).

Note for any machine-readable content (aka Computer Language Definitions) declared Normative
for this Work Product that is provided in separate plain text files, in the event of a discrepancy
between any such plain text file and display content in the Work Product's prose narrative docu-
ment(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[XLIFF-2.2]

XLIFF Version 2.2. Edited by Rodolfo M. Raya and David Filip. 3 December 2021. Specification
Draft. https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.html. Latest version: ht-
tps://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html.

3 December 2021xliff-core-v2.2-wd
Page 2 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xliff
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xliff
https://www.oasis-open.org/committees/xliff/
https://www.oasis-open.org/committees/xliff/
https://www.oasis-open.org/committees/xliff/ipr.php
https://www.oasis-open.org/committees/xliff/ipr.php
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/xliff-core-v2.2-wd.html
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html
https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html

Notices
Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DIS-
CLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this OASIS Committee Specification
or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation
that any information or list of intellectual property rights will at any time be complete, or that any claims
in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and im-
plementation and use of, specifications, while reserving the right to enforce its marks against misleading
uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

3 December 2021xliff-core-v2.2-wd
Page 3 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents
1 Introduction .. 6

1.1 Terminology ... 6
1.1.1 Key words ... 6
1.1.2 Definitions .. 6
1.1.3 Key concepts .. 7

1.2 Normative References .. 8
1.3 Non-Normative References .. 9

2 Conformance .. 10
3 Fragment Identification .. 11

3.1 Selectors for Core Elements ... 11
3.2 Selectors for Modules and Extensions ... 12
3.3 Relative References ... 12
3.4 Examples .. 12

4 The Core Specification .. 14
4.1 General Processing Requirements .. 14
4.2 Elements ... 14

4.2.1 Tree Structure ... 14
4.2.2 Structural Elements ... 15
4.2.3 Inline Elements ... 21

4.3 Attributes ... 28
4.3.1 XLIFF Attributes .. 29
4.3.2 XML namespace ... 45

4.4 CDATA sections ... 46
4.5 XML Comments ... 46
4.6 XML Processing Instructions ... 47
4.7 Inline Content .. 47

4.7.1 Text .. 48
4.7.2 Inline Codes ... 48
4.7.3 Annotations .. 58
4.7.4 Sub-Flows .. 61
4.7.5 White Spaces ... 62
4.7.6 Bidirectional Text ... 62
4.7.7 Target Content Modification ... 63
4.7.8 Content Comparison ... 64

4.8 Segmentation .. 64
4.8.1 Segments Representation ... 65
4.8.2 Segments Order .. 65
4.8.3 Segmentation Modification ... 66
4.8.4 Best Practice for Mergers (Informative) ... 67

4.9 Extension Mechanisms ... 68
4.9.1 Extension Points ... 68
4.9.2 Constraints ... 69
4.9.3 Processing Requirements .. 69

Appendixes

A Media Type Registration Template for XLIFF Version 2.0 and higher Versions (Normative) 70
A.1 Registration Template .. 70

A.1.1 Detailed Security Considerations ... 71
A.1.1.1 Privacy, trust and integrity ... 71
A.1.1.2 Core .. 72
A.1.1.3 Resource Data Module ... 72
A.1.1.4 ITS Module .. 72
A.1.1.5 Other potentially security sensitive constructs .. 72

B Machine Readable Validation Artifacts (Informative) .. 74

3 December 2021xliff-core-v2.2-wd
Page 4 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

B.1 XML Schemas Tree ... 75
B.2 Support Schemas .. 75

C Specification Change Tracking (Informative) ... 77
C.1 High Level Summary of Changes made in Comparison to XLIFF Version 2.1 77
C.2 Tracking of changes made in response to Public Reviews .. 77

C.2.1 Tracking of changes in response to the Public Review of the Candidate OASIS
Standard 01 .. 78
C.2.2 Tracking of changes in response to the 4th Public Review 78
C.2.3 Tracking of changes in response to the 3rd Public Review 78
C.2.4 Tracking of changes in response to the 2nd Public Review 79
C.2.5 Tracking of changes in response to the 1st Public Review 80

D Acknowledgements (Informative) ... 81

3 December 2021xliff-core-v2.2-wd
Page 5 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

1 Introduction
XLIFF is the XML Localization Interchange File Format designed by a group of multilingual content
publishers, software providers, localization service providers, localization tools providers, and researchers.
It is intended to give any multilingual content owner a single interchange file format that can be understood
by any localization provider, using any conformant localization tool. While the primary focus is on being
a lossless interchange format, usage of XLIFF as a processing format is neither encouraged nor discour-
aged or prohibited.

All text is normative unless otherwise labeled. The following common methods are used for labeling
portions of this specification as informative and hence non-normative:

Appendices and sections marked as "(Informative)" or "Non-Normative" in title,
Notes (sections with the "Note" title),
Warnings (sections with the "Warning" title),
Examples (mainly example code listings, tree diagrams, but also any inline examples or illustrative ex-
emplary lists in otherwise normative text),
Schema and other validation artifacts listings (the corresponding artifacts are normative, not their listings).

1.1 Terminology
1.1.1 Key words
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and
optional are to be interpreted as described in [RFC 2119].

1.1.2 Definitions
Agent

any application or tool that generates (creates), reads, edits, writes, processes, stores, renders or
otherwise handles XLIFF Documents.

Agent is the most general application conformance target that subsumes all other specialized user
agents disregarding whether they are defined in this specification or not.

Enrich, Enriching
the process of associating module and extension based metadata and resources with the Extracted
XLIFF payload

Processing Requirements

• Enriching may happen at the time of Extraction.

Note

Extractor knowledge of the native format is not assumed while Enriching.

Enricher, Enricher Agent
any Agent that performs the Enriching process

Extract, Extraction
the process of encoding localizable content from a native content or User Interface format as XLIFF
payload, so that localizable parts of the content in the source language are available for Translation
into the target language along with the necessary context information

3 December 2021xliff-core-v2.2-wd
Page 6 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Extractor, Extractor Agent
any Agent that performs the Extraction process

Merge, Merging
the process of importing XLIFF payload back to the originating native format, based on the full
knowledge of the Extraction mechanism, so that the localized content or User Interface strings replace
the source language in the native format

Merger, Merger Agent
an Agent that performs the Merge process

Warning

Unless specified otherwise, any Merger is deemed to have the same knowledge of the
native format as the Extractor throughout the specification.

Mergers independent of Extractors can succeed, but it is out of scope of this specification
to specify interoperability for Merging back without the full Extractor knowledge of the native
format.

Modify, Modification
the process of changing core and module XLIFF structural and inline elements that were previously
created by other Writers

Processing Requirements

• XLIFF elements may be Modified and Enriched at the same time.

Note

Extractor or Enricher knowledge of the native format is not assumed while Modifying.

Modifier, Modifier Agent
an Agent that performs the Modification process

Translation, Translate
a rendering of the meaning of the source text, expressed in the target language

Writer, Writer Agent
an Agent that creates, generates, or otherwise writes an XLIFF Document for whatever purpose,
including but not limited to Extractor, Modifier, and Enricher Agents.

Note

Since XLIFF is intended as an exchange format rather than a processing format, many ap-
plications will need to generate XLIFF Documents from their internal processing formats,
even in cases when they are processing XLIFF Documents created by another Extractor.

1.1.3 Key concepts
XLIFF Core

The core of XLIFF 2.2 consists of the minimum set of XML elements and attributes required to (a)
prepare a document that contains text extracted from one or more files for localization, (b) allow it
to be completed with the translation of the extracted text, and (c) allow the generation of Translated
versions of the original document.

The XML namespace that corresponds to the core subset of XLIFF 2.2 is
"urn:oasis:names:tc:xliff:document:2.0".

3 December 2021xliff-core-v2.2-wd
Page 7 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

XLIFF-defined (elements and attributes)
The following is the list of allowed schema URI prefixes for XLIFF-defined elements and attributes:

urn:oasis:names:tc:xliff:
http://www.w3.org/2005/11/its

However, the following namespaces are NOT considered XLIFF-defined for the purposes of the
XLIFF 2.2 specification:

urn:oasis:names:tc:xliff:document:1.0
urn:oasis:names:tc:xliff:document:1.1
urn:oasis:names:tc:xliff:document:1.2
urn:oasis:names:tc:xliff:changetracking:2.0

Elements and attributes from other namespaces are not XLIFF-defined.

XLIFF Document
A n y X M L d o c u m e n t t h a t d e c l a r e s t h e n a m e s p a c e
"urn:oasis:names:tc:xliff:document:2.0" as its main namespace, has <xliff> as the
root element and complies with the XML Schemas and the declared Constraints that are part of this
specification.

XLIFF Module
A module is an optional set of XML elements and attributes that stores information about a process
applied to an XLIFF Document and the data incorporated into the document as result of that process.

Each official module defined for XLIFF 2.2 has its grammar defined in an independent XML Schema
with a separate namespace.

1.2 Normative References
[BCP 47] M. Davis, Tags for Identifying Languages, http://tools.ietf.org/html/bcp47 IETF (Internet En-

gineering Task Force).

[HTML5] Ian Hickos, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward
O'Connor, Silvia Pfeiffer HTML5. A vocabulary and associated APIs for HTML and XHTML,
http://www.w3.org/TR/html5/ W3C Recommendation 28 October 2014.

[ITS] David Filip, Shaun McCance, Dave Lewis, Christian Lieske, Arle Lommel, Jirka Kosek, Felix Sasaki,
Yves Savourel Internationalization Tag Set (ITS) Version 2.0, http://www.w3.org/TR/its20/ W3C
Recommendation 29 October 2013.

[NOTE-datetime] M. Wolf, C. Wicksteed, Date and Time Formats, http://www.w3.org/TR/NOTE-datetime
W3C Note, 15th Setember 1997.

[NVDL] International Standards Organization, ISO/IEC 19757-4, Information Technology - Document
Schema Definition Languages (DSDL) - Part 4: Namespace-based Validation Dispatching
Language (NVDL), http://standards.iso.org/ittf/PubliclyAvailableStand-
ards/c038615_ISO_IEC_19757-4_2006(E).zip ISO, June 1, 2006.

[RFC 2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, ht-
tps://www.ietf.org/rfc/rfc2119.txt IETF (Internet Engineering Task Force) RFC 2119, March
1997.

[RFC 3987] M. Duerst and M. Suignard, Internationalized Resource Identifiers (IRIs), ht-
tps://www.ietf.org/rfc/rfc3987.txt IETF (Internet Engineering Task Force) RFC 3987, January
2005.

3 December 2021xliff-core-v2.2-wd
Page 8 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://tools.ietf.org/html/bcp47
http://www.w3.org/TR/html5/
http://www.w3.org/TR/its20/
http://www.w3.org/TR/NOTE-datetime
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc3987.txt

[RFC 7303] H. Thompson and C. Lilley, XML Media Types, https://www.tools.ietf.org/html/rfc7303
IETF (Internet Engineering Task Force) RFC 7303, July 2014.

[Schematron] International Standards Organization, ISO/IEC 19757-3, Information Technology - Docu-
ment Schema Definition Languages (DSDL) - Part 3: Rule-Based Validation — Schematron
(Second Edition), http://standards.iso.org/ittf/PubliclyAvailableStand-
ards/c055982_ISO_IEC_19757-3_2016.zip ISO, January 15, 2016.

[UAX #9] M. Davis, A. Lanin, A. Glass, UNICODE BIDIRECTIONAL ALGORITHM, http://www.uni-
code.org/reports/tr9/tr9-35.html Unicode Bidirectional Algorithm, May 18, 2016.

[UAX #15] M. Davis, K. Whistler, UNICODE NORMALIZATION FORMS, http://www.unicode.org/re-
ports/tr15/tr15-44.html Unicode Normalization Forms, February 24, 2016.

[Unicode] The Unicode Consortium, The Unicode Standard, http://www.unicode.org/versions/Uni-
code9.0.0/ Mountain View, CA: The Unicode Consortium, June 21, 2016.

[XML] W3C, Extensible Markup Language (XML) 1.0, http://www.w3.org/TR/xml/ (Fifth Edition) W3C
Recommendation 26 November 2008.

[XML namespace] W3C, Schema document for namespace http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/xml.xsd [http://www.w3.org/2009/01/xml.xsd]. at https://docs.oasis-
open.org/xliff/xliff-core/v2.2/wd/schemas/informativeCopiesOf3rdPartySchemas/w3c/xml.xsd in
this distribution

[XML Catalogs] Norman Walsh, XML Catalogs, https://www.oasis-open.org/committees/down-
load.php/14809/xml-catalogs.html OASIS Standard V1.1, 07 October 2005.

[XML Schema] W3C, XML Schema, refers to the two part standard comprising [XML Schema Structures]
and [XML Schema Datatypes] (Second Editions) W3C Recommendations 28 October 2004.

[XML Schema Datatypes] W3C, XML Schema Part 2: Datatypes, http://www.w3.org/TR/xmlschema-
2/ (Second Edition) W3C Recommendation 28 October 2004.

[XML Schema Structures] W3C, XML Schema Part 1: Structures, https://www.w3.org/TR/xmlschema-
1/ (Second Edition) W3C Recommendation 28 October 2004.

1.3 Non-Normative References
[LDML] Unicode Locale Data Markup Language http://unicode.org/reports/tr35/

[SRX] Segmentation Rules eXchange http://www.unicode.org/uli/pas/srx/

[UAX #29] M. Davis, UNICODE TEXT SEGMENTATION, http://www.unicode.org/reports/tr29/ Unicode
text Segmentation.

[XML I18N BP] Best Practices for XML Internationalization, 13 February 2008, http://www.w3.org/TR/xml-
i18n-bp/ W3C Working Group.

3 December 2021xliff-core-v2.2-wd
Page 9 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://www.tools.ietf.org/html/rfc7303
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055982_ISO_IEC_19757-3_2016.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055982_ISO_IEC_19757-3_2016.zip
http://www.unicode.org/reports/tr9/tr9-35.html
http://www.unicode.org/reports/tr9/tr9-35.html
http://www.unicode.org/reports/tr15/tr15-44.html
http://www.unicode.org/reports/tr15/tr15-44.html
http://www.unicode.org/versions/Unicode9.0.0/
http://www.unicode.org/versions/Unicode9.0.0/
http://www.w3.org/TR/xml/
http://www.w3.org/2001/xml.xsd
http://www.w3.org/2009/01/xml.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/informativeCopiesOf3rdPartySchemas/w3c/xml.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/informativeCopiesOf3rdPartySchemas/w3c/xml.xsd
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
http://unicode.org/reports/tr35/
http://www.unicode.org/uli/pas/srx/
http://www.unicode.org/reports/tr29/
http://www.w3.org/TR/xml-i18n-bp/
http://www.w3.org/TR/xml-i18n-bp/

2 Conformance
1. Document Conformance

a. XLIFF is an XML vocabulary, therefore conformant XLIFF Documents must be well formed and
valid [XML] documents.

b. Conformant XLIFF Documents must be valid instances of the official Core XML Schema (ht-
tps://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd) that is a part of
this multipart Work Product.

c. As not all aspects of the XLIFF specification can be expressed in terms of XML Schemas,
conformant XLIFF Documents must also comply with all relevant elements and attributes
definitions, normative usage descriptions, and Constraints specified in this specification docu-
ment.

d. XLIFF Documents may contain custom extensions, as defined in the Extension Mechanisms
section.

2. Application Conformance

a. XLIFF Writers must create conformant XLIFF Documents to be considered XLIFF compliant.

b. Agents processing conformant XLIFF Documents that contain custom extensions are not re-
quired to understand and process non-XLIFF elements or attributes. However, conformant
applications should preserve existing custom extensions when processing conformant XLIFF
Documents, provided that the elements that contain custom extensions are not removed ac-
cording to XLIFF Processing Requirements or the extension's own processing requirements.

c. All Agents must comply with Processing Requirements for otherwise unspecified Agents or
without a specifically set target Agent.

d. Specialized Agents defined in this specification - this is Extractor, Merger, Writer, Modifier, and
Enricher Agents - must comply with the Processing Requirements targeting their specifically
defined type of Agent on top of Processing Requirements targeting all Agents as per point c.
above.

e. XLIFF is a format explicitly designed for exchanging data among various Agents. Thus, a con-
formant XLIFF application must be able to accept XLIFF Documents it had written after those
XLIFF Documents were Modified or Enriched by a different application, provided that:

i. The processed files are conformant XLIFF Documents,

ii. in a state compliant with all relevant Processing Requirements.

3. Backwards Compatibility

a. Conformant applications are required to support XLIFF 2.1.

b. Conformant applications are NOT required to support XLIFF 1.2 or previous Versions.

Note

XLIFF Documents conformant to this specification are not and cannot be conformant to XLIFF
1.2 or earlier versions. If an application needs to support for whatever business reason both
XLIFF 2 and XLIFF 1.2 or earlier, these will need to be supported as separate functionalities.

3 December 2021xliff-core-v2.2-wd
Page 10 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd

3 Fragment Identification
Because XLIFF Documents do not follow the usual behavior of XML documents when it comes to element
identifiers, this specification defines how Agents must interpret the fragment identifiers in IRIs pointing
to XLIFF Documents.

Note

Note that some identifiers may change during the localization process. For example <data>
elements may be re-grouped or not depending on how tools treat identical original data.

Constraints

• A fragment identifier must match the following format:

<expression> ::= "#" ["/"] <selector>
 {<selectorSeparator> <selector>}
<selector> ::= [<prefix> <prefixSeparator>] <id>
<prefix> ::= NMTOKEN
<id> ::= NMTOKEN
<prefixSeparator> ::= "="
<selectorSeparator> ::= "/"

• There must not be two identical prefixes in the expression.

• When used, the following selectors must be declared in this order: file selector, group selector and
unit selector.

• The selectors for modules or extensions, <note>, <segment> or <ignorable> or source inline
elements, target inline elements and <data> have the following constraints:

• Only one of them may be used in the expression.

• The one used must be the last selector of the expression.

Warning

Please note that due to the above Constraints, referencing fragments using third party
namespaces within Modules or extensions (including but not limited to XLIFF Core or the
Metadata Module) is not possible. This is to restrict the complexity of the fragment identification
mechanism, as it would otherwise have potentially unlimited depth.

3.1 Selectors for Core Elements
• The prefix f indicates a <file> id and the value of that id is unique among all <file> id attribute

values within the enclosing <xliff> element.

• The prefix g indicates a <group> id and the value of that id is unique among all <group> id attribute
values within the enclosing <file> element.

• The prefix u indicates a <unit> id and the value of that id is unique among all <unit> id attribute
values within the enclosing <file> element.

• The prefix n indicates a <note> id and the value of that id is unique among all <note> id attribute
values within the immediate enclosing <file>, <group>, or <unit> element.

3 December 2021xliff-core-v2.2-wd
Page 11 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

• The prefix d indicates a <data> id and the value of that id is unique among all <data> id attribute
values within the enclosing <unit> element.

• The prefix t indicates an id for an inline element in the <target> element and the value of that id
is unique within the enclosing <unit> element (with the exception of the matching inline elements
in the <source>).

• No prefix indicates an id for a <segment> or an <ignorable> or an inline element in the <source>
element and the value of that id is unique within the enclosing <unit> element (with the exception
of the matching inline elements in the <target>).

3.2 Selectors for Modules and Extensions
A selector for a module or an extension uses a registered prefix and the value of that id is unique within
the immediate enclosing <file>, <group> or <unit> element.

Constraints

• The prefix of a module or an extension must be an NMTOKEN longer than 1 character and must be
defined in the module or extension specification.

• The prefix of a module or an extension must be registered with the XLIFF TC.

• A given module or extension namespace URI must be associated with a single prefix.

• A prefix may be associated with more than one namespace URI (to allow for example different versions
of a given module or extension to use the same prefix).

See also the constraints related to how IDs need to be specified in extensions (which applies for modules
as well).

3.3 Relative References
Fragment identifiers that do not start with a character / (U+002F) are relative to their location in the
document, or to the document being processed.

Any unit, group or file selector missing to resolve the relative reference is obtained from the immediate
enclosing unit, group or file elements.

3.4 Examples
Given the following XLIFF document:

<xliff xmlns="urn:oasis:names:tc:xliff:document:2.0" version="2.0"
 srcLang="en" trgLang="fr">
 <file id="f1">
 <notes>
 <note id="n1">note for file.</note>
 </notes>
 <unit id="u1">
 <my:elem xmlns:my="myNamespaceURI" id="x1">data</my:elem>
 <notes>
 <note id="n1">note for unit</note>
 </notes>
 <segment id="s1">
 <source><pc id="1">Hello <mrk id="m1" type="term">World</mrk>!</pc>
 </source>

3 December 2021xliff-core-v2.2-wd
Page 12 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <target><pc id="1">Bonjour le <mrk id="m1" type="term">Monde</mrk>
 ! </pc></target>
 </segment>
 </unit>
 </file>
</xliff>

You can have the following fragment identifiers:

• #f=f1/u=u1/1 refers to the element <pc id="1"> of the source content of the element <unit
id="u1">.

• #f=f1/u=u1/t=1 refers to the element <pc id="1"> of the target content of the element <unit
id="u1">.

• #f=f1/n=n1 refers to the element <note id="n1"> of the element <file id="f1">.

• #f=f1/u=u1/n=n1 refers to the element <note id="n1"> of the element <unit id="u1">.

• #f=f1/u=u1/s1 refers to the element <segment id="s1"> of the element <unit id="u1">.

• Assuming the extension defined by the namespace URI myNamespaceURI has registered the prefix
myprefix, the expression #f=f1/u=u1/myprefix=x1 refers to the element <my:element
id="x1"> of the element <unit id="u1">.

3 December 2021xliff-core-v2.2-wd
Page 13 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4 The Core Specification
XLIFF is a bilingual document format designed for containing text that needs Translation, its corresponding
translations and auxiliary data that makes the Translation process possible.

At creation time, an XLIFF Document may contain only text in the source language. Translations ex-
pressed in the target language may be added at a later time.

The root element of an XLIFF Document is <xliff>. It contains a collection of <file> elements.
Typically, each <file> element contains a set of <unit> elements that contain the text to be translated
in the <source> child of one or more <segment> elements. Translations are stored in the <target>
child of each <segment> element.

4.1 General Processing Requirements
• An Agent processing a valid XLIFF Document that contains XLIFF-defined elements and attributes

that it cannot handle must preserve those elements and attributes.

• An Agent processing a valid XLIFF Document that contains custom elements and attributes that it
cannot handle should preserve those elements and attributes.

4.2 Elements
This section contains a description of all elements used in XLIFF Core.

4.2.1 Tree Structure
Legend:

1 = one
+ = one or more
? = zero or one
* = zero or more

<xliff>
|
+---<file> +
 |
 +---<skeleton> ?
 | |
 | +---<other> *
 |
 +---<other> *
 |
 +---<notes> ?
 | |
 | +---<note> +
 |
 +---At least one of (<unit> OR <group>)
 | |
 | +---<unit>
 | |
 | +---<other> *
 | |
 | +---<notes> ?

3 December 2021xliff-core-v2.2-wd
Page 14 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 | | |
 | | +---<note> +
 | |
 | +---<originalData> ?
 | | |
 | | +---<data> +
 | |
 | +---At least one of (<segment> OR <ignorable>)
 | | |
 | | +---<segment>
 | | |
 | | +---<source> 1
 | | |
 | | +---<target> ?
 | |
 | +---<ignorable>
 | |
 | +---<source> 1
 | |
 | +---<target> ?
 |
 +---<group>
 |
 +---<other> *
 |
 +---<notes> ?
 | |
 | +---<note> +
 |
 +---At least one of (<unit> OR <group>)

4.2.2 Structural Elements
The structural elements used in XLIFF Core are: <xliff>, <file>, <skeleton>, <group>, <unit>,
<segment>,<ignorable>,<notes>,<note>,<originalData>,<data>,<source> and<target>.

4.2.2.1 xliff
Root element for XLIFF documents.

Contains:

- One or more <file> elements

Attributes:

- version, required
- srcLang, required
- trgLang, optional
- xml:space, optional
- attributes from other namespaces, optional

3 December 2021xliff-core-v2.2-wd
Page 15 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Constraints

• The trgLang attribute is required if and only if the XLIFF Document contains <target> elements
that are children of <segment> or <ignorable>.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- the its:versionattribute from the namespace http://www.w3.org/2005/11/its, optional.

4.2.2.2 file
Container for localization material extracted from an entire single document, or another high level self
contained logical node in a content structure that cannot be described in the terms of documents.

Note

Sub-document artifacts such as particular sheets, pages, chapters and similar are better mapped
onto the <group> element. The <file> element is intended for the highest logical level. For
instance a collection of papers would map to a single XLIFF Document, each paper will be
represented with one <file> element, whereas chapters and subsections will map onto nested
<group> elements.

Contains:

- Zero or one <skeleton> element followed by
- elements from other namespaces, optional
- Zero or one <notes> element followed by
- One or more <unit> or <group> elements in any order.

Attributes:

- id, required
- canResegment, optional
- original, optional
- translate, optional
- srcDir, optional
- trgDir, optional
- xml:space, optional
- attributes from other namespaces, optional

Constraints

• The following XLIFF Module elements are explicitly allowed by the wildcard other:

- Zero or one <mda:metadata> elements
- Zero or one <res:resourceData> element
- Zero or one <slr:profiles> elements
- Zero or one <slr:data> elements
- Zero or one <val:validation> elements
- Zero, one, or more <its:provenanceRecords> elements

• Module and Extension elements may be used in any order.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.

3 December 2021xliff-core-v2.2-wd
Page 16 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

- attributes from the namespace http://www.w3.org/2005/11/its, optional, provided that the
Constraints specified in the ITS Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:itsm:2.1, optional, provided
that the Constraints specified in the ITS Module are met.

4.2.2.3 skeleton
Container for non-translatable material pertaining to the parent <file> element.

Contains:

Either

- Non-translatable text
- elements from other namespaces

or

- is empty.

Attributes:

- href, optional

Constraints

• The attribute href is required if and only if the <skeleton> element is empty.

Processing Requirements

• Modifiers and Enrichers processing an XLIFF Document that contains a <skeleton> element must
not change that element, its attributes, or its content.

• Extractors creating an XLIFF Document with a <skeleton> element must leave the <skeleton>
element empty if and only if they specify the attribute href.

4.2.2.4 group
Provides a way to organize units into a structured hierarchy.

Note that this is especially useful for mirroring a source format's hierarchical structure.

Contains:

- elements from other namespaces, optional
- Zero or one <notes> element followed by
- Zero, one or more <unit> or <group> elements in any order.

Attributes:

- id, required
- name, optional
- canResegment, optional
- translate, optional
- srcDir, optional
- trgDir, optional
- type, optional
- xml:space, optional
- attributes from other namespaces, optional

3 December 2021xliff-core-v2.2-wd
Page 17 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Constraints

• The following XLIFF Module elements are explicitly allowed by the wildcard other:

- Zero or one <mda:metadata> elements
- Zero or one <slr:data> elements
- Zero or one <val:validation> elements
- Zero, one, or more <its:provenanceRecords> elements

• Module and Extension elements may be used in any order.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.
- attributes from the namespace http://www.w3.org/2005/11/its, optional, provided that the
Constraints specified in the ITS Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:itsm:2.1, optional, provided
that the Constraints specified in the ITS Module are met.

4.2.2.5 unit
Static container for a dynamic structure of elements holding the extracted translatable source text,
aligned with the Translated text.

Contains:

- elements from other namespaces, optional
- Zero or one <notes> elements followed by
- Zero or one <originalData> element followed by
- One or more <segment> or <ignorable> elements in any order.

Attributes:

- id, required
- name, optional
- canResegment, optional
- translate, optional
- srcDir, optional
- trgDir, optional
- xml:space, optional
- type, optional
- attributes from other namespaces, optional

Constraints

• A <unit> must contain at least one <segment> element.

• The following XLIFF Module elements are explicitly allowed by the wildcard other:

- Zero or one <mtc:matches> elements
- Zero or one <gls:glossary> elements
- Zero or one <mda:metadata> elements
- Zero or one <res:resourceData> elements
- Zero or one <slr:data> elements
- Zero or one <val:validation> elements
- Zero, one, or more <its:locQualityIssues> elements

3 December 2021xliff-core-v2.2-wd
Page 18 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

- Zero, one, or more <its:provenanceRecords> elements

• Module and Extension elements may be used in any order.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.
- attributes from the namespace http://www.w3.org/2005/11/its, optional, provided that the
Constraints specified in the ITS Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:itsm:2.1, optional, provided
that the Constraints specified in the ITS Module are met.

4.2.2.6 segment
This element is a container to hold in its aligned pair of children elements the minimum portion of
translatable source text and its Translation in the given Segmentation.

Contains:

- One <source> element followed by
- Zero or one <target> element

Attributes:

- id, optional
- canResegment, optional
- state, optional
- subState, optional

4.2.2.7 ignorable
Part of the extracted content that is not included in a segment (and therefore not translatable). For example
tools can use <ignorable> to store the white space and/or codes that are between two segments.

Contains:

- One <source> element followed by
- Zero or one <target> element

Attributes:

- id, optional

4.2.2.8 notes
Collection of comments.

Contains:

- One or more <note> elements

4.2.2.9 note
This is an XLIFF specific way how to present end user readable comments and annotations. A note can
contain information about <source>, <target>, <unit>, <group>, or <file> elements.

Contains:

3 December 2021xliff-core-v2.2-wd
Page 19 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

- Text

Attributes:

- id, optional
- appliesTo, optional
- category, optional
- priority, optional
- attributes from other namespaces, optional

Constraints

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- fs:fs, optional
- fs:subFs, optional

4.2.2.10 originalData
Unit-level collection of original data for the inline codes.

Contains:

- One or more <data> elements

4.2.2.11 data
Storage for the original data of an inline code.

Contains:

- Non-translatable text
- Zero, one or more <cp> elements.

Non-translatable text and <cp> elements may appear in any order.

Attributes:

- id, required
- dir, optional
- xml:space, optional, the value is restricted to preserve on this element

4.2.2.12 source
Portion of text to be translated.

Contains:

- Text
- Zero, one or more <cp> elements
- Zero, one or more <ph> elements
- Zero, one or more <pc> elements
- Zero, one or more <sc> elements
- Zero, one or more <ec> elements
- Zero, one or more <mrk> elements
- Zero, one or more <sm> elements
- Zero, one or more elements

Text and inline elements may appear in any order.

3 December 2021xliff-core-v2.2-wd
Page 20 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Attributes:

- xml:lang, optional
- xml:space, optional

Constraints

• When a <source> element is a child of <segment> or <ignorable>, the explicit or inherited value
of the optional xml:lang attribute must be equal to the value of the srcLang attribute of the enclosing
<xliff> element.

4.2.2.13 target
The translation of the sibling <source> element.

Contains:

- Text
- Zero, one or more <cp> elements
- Zero, one or more <ph> elements
- Zero, one or more <pc> elements
- Zero, one or more <sc> elements
- Zero, one or more <ec> elements
- Zero, one or more <mrk> elements
- Zero, one or more <sm> elements
- Zero, one or more elements

Text and inline elements may appear in any order.

Attributes:

- xml:lang, optional
- xml:space, optional
- order, optional

Constraints

• When a <target> element is a child of <segment> or <ignorable>, the explicit or inherited value
of the optional xml:lang must be equal to the value of the trgLang attribute of the enclosing
<xliff> element.

4.2.3 Inline Elements
The XLIFF Core inline elements at the <source> or <target> level are: <cp>, <ph>, <pc>, <sc>,
<ec>, <mrk>, <sm> and .

The elements at the <unit> level directly related to inline elements are: <originalData> and <data>.

4.2.3.1 cp
Represents a Unicode character that is invalid in XML.

Contains:

This element is always empty.

Parents:

<data>, <mrk>, <source>, <target> and <pc>

3 December 2021xliff-core-v2.2-wd
Page 21 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Attributes:

- hex, required

Example:

<unit id="1">
 <segment>
 <source>Ctrl+C=<cp hex="0003"/></source>
 </segment>
</unit>

The example above shows a character U+0003 (Control C) as it has to be represented in XLIFF.

Processing Requirements

• Writers must encode all invalid XML characters of the content using <cp>.

• Writers must not encode valid XML characters of the content using <cp>.

4.2.3.2 ph
Represents a standalone code of the original format.

Contains:

This element is always empty.

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- canCopy, optional
- canDelete, optional
- canReorder, optional
- copyOf, optional
- disp, optional
- equiv, optional
- id, required.
- dataRef, optional
- subFlows, optional
- subType, optional
- type, optional
- attributes from other namespaces, optional

Example:

<unit id="1">
 <originalData>
 <data id="d1">%d</data>
 <data id="d2">
</data>
 </originalData>
 <segment>
 <source>Number of entries: <ph id="1" dataRef="d1" /><ph id="2"
 dataRef="d2"/>(These entries are only the ones matching the
 current filter settings)</source>

3 December 2021xliff-core-v2.2-wd
Page 22 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 </segment>
</unit>

Constraints

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.

• No other attributes must be used.

Processing Requirements

• Extractors must not use the <ph> element to represent spanning codes.

Rationale: Using a standalone placeholder code for a spanning code does not allow for controlling
the span (for instance tag order and data integrity) when Modifying inline content and is in direct
contradiction to the business logic described in Representation of the codes and normative statements
included in Usage of <pc> and <sc>/<ec>

Note

It is possible although not advised to use <ph> to mask non translatable inline content. The
preferred way of protecting portions of inline content from translation is the Core Translate An-
notation. See also discussion in the ITS Module section on representing translatability inline..

4.2.3.3 pc
Represents a well-formed spanning original code.

Contains:

- Text
- Zero, one or more <cp> elements
- Zero, one or more <ph> elements
- Zero, one or more <pc> elements
- Zero, one or more <sc> elements
- Zero, one or more <ec> elements
- Zero, one or more <mrk> elements
- Zero, one or more <sm> elements
- Zero, one or more elements

Text and inline elements may appear in any order.

Parents:

- <source>
- <target>
- <pc>
-<mrk>

Attributes:

- canCopy, optional
- canDelete, optional
- canOverlap, optional
- canReorder, optional

3 December 2021xliff-core-v2.2-wd
Page 23 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

- copyOf, optional
- dispEnd, optional
- dispStart, optional
- equivEnd, optional
- equivStart, optional
- id, required
- dataRefEnd, optional
- dataRefStart, optional
- subFlowsEnd, optional
- subFlowsStart, optional
- subType, optional
- type, optional
- dir, optional
- attributes from other namespaces, optional

Example:

<unit id="1">
 <originalData>
 <data id="1"></data>
 <data id="2"></data>
 </originalData>
 <segment><pc id="1" dataRefStart="1" dataRefEnd="2">
 Important</pc> text</source></segment>
</unit>

Constraints

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.

• No other attributes must be used.

Processing Requirements

• Extractors must not use the <pc> element to represent standalone codes.

Rationale: Using a spanning code for a standalone code can easily result in having text inside a span
where the original format does not allow it.

4.2.3.4 sc
Start of a spanning original code.

Contains:

This element is always empty.

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- canCopy, optional

3 December 2021xliff-core-v2.2-wd
Page 24 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

- canDelete, optional
- canOverlap, optional
- canReorder, optional
- copyOf, optional
- dataRef, optional
- dir, optional
- disp, optional
- equiv, optional
- id, required
- isolated, optional
- subFlows, optional
- subType, optional
- type, optional
- attributes from other namespaces, optional

Example:

<unit id="1">
 <segment>
 <source><sc id="1" type="fmt" subType="xlf:b"/>
 First sentence. </source>
 </segment>
 <segment>
 <source>Second sentence.<ec startRef="1" type="fmt"
 subType="xlf:b"/></source>
 </segment>
</unit>

Constraints

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.

• No other attributes must be used.

• The values of the attributes canCopy, canDelete, canReorder and canOverlap must be the
same as the values the ones in the <ec> element corresponding to this start code.

• The attribute isolated must be set to yes if and only if the <ec> element corresponding to this
start marker is not in the same <unit>, and set to no otherwise.

Processing Requirements

• Extractors must not use the <sc> / <ec> pair to represent standalone codes.

Rationale: Using a spanning code for a standalone code can easily result in having text inside a span
where the original format does not allow it.

4.2.3.5 ec
End of a spanning original code.

Contains:

This element is always empty.

3 December 2021xliff-core-v2.2-wd
Page 25 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- canCopy, optional
- canDelete, optional
- canOverlap, optional
- canReorder, optional
- copyOf, optional
- dataRef, optional
- dir, optional
- disp, optional
- equiv, optional
- id, optional
- isolated, optional
- startRef, optional
- subFlows, optional
- subType, optional
- type, optional
- attributes from other namespaces, optional

Example:

<unit id="1">
 <originalData>
 <data id="d1">\b </data>
 <data id="d2">\i </data>
 <data id="d3">\b0 </data>
 <data id="d4">\i0 </data>
 </originalData>
 <segment>
 <source>Text in <sc id="1" dataRef="d1"/>bold <sc id="2"
 dataRef="d2"/> and<ec startRef="1" dataRef="d3"/>
 italics<ec startRef="2" dataRef="d4"/>. </source>
 </segment>
</unit>

Constraints

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.

• No other attributes must be used.

• The values of the attributes canCopy, canDelete and canOverlapmust be the same as the values
the ones in the <sc> element corresponding to this end code.

• The value of the attribute canReorder must be no if the value of canReorder is firstNo in the
<sc> element corresponding to this end code.

• The attribute isolated must be set to yes if and only if the <sc> element corresponding to this
end code is not in the same <unit> and set to no otherwise.

3 December 2021xliff-core-v2.2-wd
Page 26 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

• If and only if the attribute isolated is set to yes, the attribute idmust be used instead of the attribute
startRef that must be used otherwise.

• If and only if the attribute isolated is set to yes, the attribute dir may be used, otherwise the at-
tribute dir must not be used on the <ec> element.

Processing Requirements

• Extractors must not use the <sc> / <ec> pair to represent standalone codes.

Rationale: Using a spanning code for a standalone code can easily result in having text inside a span
where the original format does not allow it.

4.2.3.6 mrk
Represents an annotation pertaining to the marked span.

Contains:

- Text
- Zero, one or more <cp> elements
- Zero, one or more <ph> elements
- Zero, one or more <pc> elements
- Zero, one or more <sc> elements
- Zero, one or more <ec> elements
- Zero, one or more <mrk> elements
- Zero, one or more <sm> elements
- Zero, one or more elements

Text and inline elements may appear in any order.

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- id, required
- translate, optional
- type, optional
- ref, optional
- value, optional
- attributes from other namespaces, optional

Constraints

• The [XML namespace] must not be used at this extension point.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.
- attributes from the namespace http://www.w3.org/2005/11/its, optional, provided that the
Constraints specified in the ITS Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:itsm:2.1, optional, provided
that the Constraints specified in the ITS Module are met.

See the Annotations section for more details and examples on how to use the <mrk> element.

3 December 2021xliff-core-v2.2-wd
Page 27 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.2.3.7 sm
Start marker of an annotation where the spanning marker cannot be used for wellformedness reasons.

Contains:

This element is always empty.

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- id, required
- translate, optional
- type, optional
- ref, optional
- value, optional
- attributes from other namespaces, optional

Constraints

• The [XML namespace] must not be used at this extension point.

• The following XLIFF Module attributes are explicitly allowed by the wildcard other:

- attributes from the namespace urn:oasis:names:tc:xliff:fs:2.0, optional, provided that
the Constraints specified in the Format Style Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:sizerestriction:2.0, optional,
provided that the Constraints specified in the Size and Length Restriction Module are met.
- attributes from the namespace http://www.w3.org/2005/11/its, optional, provided that the
Constraints specified in the ITS Module are met.
- attributes from the namespace urn:oasis:names:tc:xliff:itsm:2.1, optional, provided
that the Constraints specified in the ITS Module are met.

See the Annotations section for more details and examples on how to use the <sm> element.

4.2.3.8 em
End marker of an annotation where the spanning marker cannot be used for wellformedness reasons.

Contains:

This element is always empty.

Parents:

<source>, <target>, <pc> and <mrk>

Attributes:

- startRef, required

See the Annotations section for more details and examples on how to use the element.

4.3 Attributes
This section lists all the various attributes used in XLIFF core elements.

3 December 2021xliff-core-v2.2-wd
Page 28 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.3.1 XLIFF Attributes
The attributes defined in XLIFF 2.0 are: appliesTo, canCopy, canDelete, canOverlap, canReorder,
canResegment, category, copyOf, dataRef, dataRefEnd, dataRefStart, dir, disp, dispEnd,
dispStart, equiv, equivEnd, equivStart, hex, href, id, isolated, name, order, original,
priority, ref, srcDir, srcLang, startRef, state, subFlows, subFlowsEnd, subFlowsStart,
subState, subType, trgLang, translate, trgDir, type, value and version.

4.3.1.1 appliesTo
Comment target - indicates the element to what the content of the note applies.

Value description: source or target.

Default value: undefined.

Used in: <note>.

4.3.1.2 canCopy
Replication editing hint - indicates whether or not the inline code can be copied.

Value description: yes if the code can be copied, no if the code is not intended to be copied.

Default value: yes.

Used in: <pc>, <sc>, <ec>, <ph>.

4.3.1.3 canDelete
Deletion editing hint - indicates whether or not the inline code can be deleted.

Value description: yes if the code can be deleted, no if the code is not allowed to be deleted.

Default value: yes.

Used in: <pc>, <sc>, <ec>, <ph>.

4.3.1.4 canOverlap
Code can overlap - indicates whether or not the spanning code where this attribute is used can enclose
partial spanning codes (i.e. a start code without its corresponding end code, or an end code without its
corresponding start code).

Value description: yes or no.

Default value: default values for this attribute depend on the element in which it is used:

• When used in <pc>: no.

• When used in <sc> or <ec>: yes.

Used in: <pc>, <sc> and <ec>

Example:

<unit id="1">
 <originalData>
 <data id="1">\i1 </data>

3 December 2021xliff-core-v2.2-wd
Page 29 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <data id="2">\i0 </data>
 <data id="3">{\b </data>
 <data id="4">}</data>
 </originalData>
 <segment>
 <source><pc id="1" dataRefStart="3" dataRefEnd="4" canOverlap="no">
 Bold, <sc id="2" dataRef="1" canOverlap="yes"/>both</pc>,
 italics<ec startRef="2" dataRef="2"/></source>
 </segment>
</unit>

4.3.1.5 canReorder
Re-ordering editing hint - indicates whether or not the inline code can be re-ordered. See Editing Hints
section for more details.

Value description: yes in case the code can be re-ordered, firstNo when the code is the first element
of a sequence that cannot be re-ordered, no when it is another element of such a sequence.

Default value: yes.

Used in: <pc>, <sc>, <ec>, <ph>.

For the normative Usage Description see Constraints and Processing Requirements in the Editing Hints
section.

4.3.1.6 canResegment
Can resegment - indicates whether or not the source text in the scope of the given canResegment flag
can be reorganized into a different structure of <segment> elements within the same parent <unit>.

Value description: yes or no.

Default value: default values for this attribute depend on the element in which it is used:

• When used in <file>:

The value yes.

• When used in any other element:

The value of the canResegment attribute of its parent element.

Used in: <file> <group> <unit>, and <segment>.

4.3.1.7 category
Category - provides a way to categorize notes.

Value description: Text.

Default value: undefined

Used in: <note>.

4.3.1.8 copyOf
Reference to base code - holds the id of the base code of a copied code.

Value description: NMTOKEN. The id value of the base code of which this code is a copy.

3 December 2021xliff-core-v2.2-wd
Page 30 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Default value: undefined

Used in: <ph>, <pc>, <sc>, <ec>.

Example:

<unit id="1">
 <segment>
 <source>Äter <pc id="1">katter möss</pc>?</source>
 <target>Do <pc id="1">cats</pc> eat <pc id="2" copyOf="1">
 mice</pc>? </target>
 </segment>
</unit>

4.3.1.9 dataRef
Original data reference - holds the identifier of the <data> element that contains the original data for a
given inline code.

Value description: An [XML Schema Datatypes] NMTOKEN that must be the value of the id attribute
of one of the <data> element listed in the same <unit> element.

Default value: undefined.

Used in: <ph>, <sc>, <ec>.

Example:

<unit id="1">
 <originalData>
 <data id="d1">{0}</data>
 </originalData>
 <segment>
 <source>Error in '<ph id="1" dataRef="d1"/>'.</source>
 <target>Erreur dans '<ph id="1" dataRef="d1"/>'.</target>
 </segment>
</unit>

The example above shows a <ph> element that has its original data stored outside the content, in a
<data> element.

4.3.1.10 dataRefEnd
Original data reference - holds the identifier of the <data> element that contains the original data for
the end marker of a given inline code.

Value description: An [XML Schema Datatypes] NMTOKEN that must be the value of the id attribute
of one of the <data> element listed in the same <unit> element.

Default value: undefined.

Used in: <pc>.

Example:

<unit id="1">

3 December 2021xliff-core-v2.2-wd
Page 31 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <originalData>
 <data id="d1"></data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source><pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Efficiency</pc> is the operative word here.</source>
 <target><pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Efficacité</pc> est le mot clé ici.</target>
 </segment>
</unit>

The example above shows two <pc> elements with their original data stored outside the content, in two
<data> elements.

4.3.1.11 dataRefStart
Original data reference - holds the identifier of the <data> element that contains the original data for
the start marker of a given inline code.

Value description: An [XML Schema Datatypes] NMTOKEN that must be the value of the id attribute
of one of the <data> element listed in the same <unit> element.

Default value: undefined.

Used in: <pc>.

Example:

<unit id="1">
 <originalData>
 <data id="d1"></data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source><pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Efficiency</pc> is the operative word here.</source>
 <target><pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Efficacité</pc> est le mot clé ici.</target>
 </segment>
</unit>

The example above shows two <pc> elements with their original data stored outside the content, in two
<data> elements.

4.3.1.12 dir
Directionality - indicates the directionality of content.

Value description: ltr (Left-To-Right), rtl (Right-To-Left), or auto (determined heuristically, based
on the first strong directional character in scope, see [UAX #9]).

Default value: default values for this attribute depend on the element in which it is used:

• When used in a <pc>, <sc>, or <ec> element that has a <source> element as its parent:

The value of the srcDir attribute of the <unit> element, in which the elements are located.

• When used in a <pc>, <sc>, or <ec> element that has a <target> element as its parent:

3 December 2021xliff-core-v2.2-wd
Page 32 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

The value of the trgDir attribute of the <unit> element, in which the elements are located.

• When used in a <pc>, <sc>, or <ec> element that has a <pc> element as its parent:

The value of the dir attribute of the parent <pc> element.

• When used in <data>:

The value auto.

Used in: <data>, <pc>, <sc>, and <ec>.

4.3.1.13 disp
Display text - holds an alternative user-friendly display representation of the original data of the inline
code.

Value description: Text.

Default value: undefined

Used in: <ph>, <sc>, <ec>.

Example:

<unit id="1">
 <originalData>
 <data id="d1">{1}</data>
 </originalData>
 <segment>
 <source>Welcome back <ph id="1" disp="[UserName]" dataRef="d1"/>!
 </source>
 </segment>
</unit>

Note

To provide a plain text equivalent of the code, use the equiv attribute.

4.3.1.14 dispEnd
Display text - holds an alternative user-friendly display representation of the original data of the end
marker of an inline code.

Value description: Text.

Default value: undefined

Used in: <pc>.

Example:

<unit id="1">
 <originalData>
 <data id="d1">\cf1\ul\b\f1\fs24 </data>
 <data id="d2">\cf0\ulnone\b0\f0\fs22 </data>
 </originalData>
 <segment>

3 December 2021xliff-core-v2.2-wd
Page 33 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <source>Example of <pc id="1" dataRefStart="d1" dataRefEnd="d2"
 dispStart="" dispEnd="">
 formatted text</pc>.</source>
 </segment>
</unit>

In the example above, the dispStart and dispEnd attributes provide a more user-friendly represent-
ation of the original formatting codes.

Note

To provide a plain text equivalent of the code, use the equivEnd attribute.

4.3.1.15 dispStart
Display text - holds an alternative user-friendly display representation of the original data of the start
marker of an inline code.

Value description: Text.

Default value: undefined

Used in: <pc>.

Example:

<unit id="1">
 <originalData>
 <data id="d1">\cf1\ul\b\f1\fs24 </data>
 <data id="d2">\cf0\ulnone\b0\f0\fs22 </data>
 </originalData>
 <segment>
 <source>Example of <pc id="1" dataRefStart="d1" dataRefEnd="d2"
 dispStart="" dispEnd="">
 formatted text</pc>.</source>
 </segment>
</unit>

In the example above, the dispStart and dispEnd attributes provide a more user-friendly represent-
ation of the original formatting codes.

Note

To provide a plain text equivalent of the code, use the equivStart attribute.

4.3.1.16 equiv
Equivalent text - holds a plain text representation of the original data of the inline code that can be used
when generating a plain text representation of the content.

Value description: Text.

Default value: an empty string.

Used in: <ph>, <sc>, <ec>.

Example:

3 December 2021xliff-core-v2.2-wd
Page 34 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

<unit id="1">
 <originalData>
 <data id="d1">&</data>
 </originalData>
 <segment>
 <source>Open <ph id="1" equiv="" dataRef="d1"/>File</source>
 </segment>
</unit>

In this example the equiv attribute of the <ph> element is used to indicate that the original data of the
code can be ignored in the text representation of the string. This could, for instance, help a spell-
checker tool to process the content as "Open File".

Note

To provide a user-friendly representation, use the disp attribute.

4.3.1.17 equivEnd
Equivalent text - holds a plain text representation of the original data of the end marker of an inline code
that can be used when generating a plain text representation of the content.

Value description: Text.

Default value: an empty string

Used in: <pc>.

Example:

<unit id="1">
 <originalData>
 <data id="d1">
 </data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source>The jam made of <pc id="1" dataRefStart="d1" equivStart=""
 dataRefEnd="d2" equivEnd="">lingonberries</pc> is quite
 tasty.</source>
 </segment>
</unit>

Note

To provide a user-friendly representation, use the dispEnd attribute.

4.3.1.18 equivStart
Equivalent text - holds a plain text representation of the original data of the start marker of an inline code
that can be used when generating a plain text representation of the content.

Value description: Text.

Default value: an empty string

Used in: <pc>.

3 December 2021xliff-core-v2.2-wd
Page 35 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Example:

<unit id="1">
 <originalData>
 <data id="d1">
 </data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source>The jam made of <pc id="1" dataRefStart="d1" equivStart=""
 dataRefEnd="d2" equivEnd="">lingonberries</pc> is quite
 tasty.</source>
 </segment>
</unit>

Note

To provide a user-friendly representation, use the dispStart attribute.

4.3.1.19 hex
Hexadecimal code point - holds the value of a Unicode code point that is invalid in XML.

Value description: A canonical representation of the hexBinary [XML Schema Datatypes] data type: Two
hexadecimal digits to represent each octet of the Unicode code point. The allowed values are any of
the values representing code points invalid in XML, between hexadecimal 0000 and 10FFFF (both in-
cluded).

Default value: undefined

Used in: <cp>.

Example:

<cp hex="001A"/><cp hex="0003"/>

The example above shows a character U+001A and a character U+0003 as they have to be represented
in XLIFF.

4.3.1.20 href
href - a pointer to the location of an external skeleton file pertaining to the enclosing <file> element..

Value description: IRI.

Default value: undefined

Used in: <skeleton>.

4.3.1.21 id
Identifier - a character string used to identify an element.

Value description: NMTOKEN. The scope of the values for this attribute depends on the element, in
which it is used.

• When used in a <file> element:

3 December 2021xliff-core-v2.2-wd
Page 36 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

The value must be unique among all <file> id attribute values within the enclosing <xliff> ele-
ment.

• When used in <group> elements:

The value must be unique among all <group> id attribute values within the enclosing <file> ele-
ment.

• When used in <unit> elements:

The value must be unique among all <unit> id attribute values within the enclosing <file> element.

• When used in <note> elements:

The value must be unique among all <note> id attribute values within the immediate enclosing
<file>, <group>, or <unit> element.

• When used in <data> elements:

The value must be unique among all <data> id attribute values within the enclosing <unit> element.

• When used in <segment>, <ignorable>, <mrk>, <sm>, <pc>, <sc>, <ec>, or <ph> elements:

• The inline elements enclosed by a <target> element must use the duplicate id values of their
corresponding inline elements enclosed within the sibling <source> element if and only if those
corresponding elements exist.

• Except for the above exception, the value must be unique among all of the above within the en-
closing <unit> element.

Note

All of the above defined uniqueness scopes ignore Module and Extension data. It would be im-
possible to impose those uniqueness requirements onto Module or Extension data. As Core
only Modifiers could inadvertently cause conflicts with Modules or Extensions based data they
cannot access. Modules and Extensions reusing Core need to specify their own uniqueness
scopes for the xlf:id. In general, Modules and Extensions are advised to mimic the Core
uniqueness requirement within their specific wrapper elements enclosing the reused Core ele-
ments or attributes, yet Module or Extensions are free to set wider uniqueness scopes if it makes
business sense.

Default value: undefined

Used in: <file>, <group>, <unit>, <note>, <segment>, <ignorable>, <data>, <sc>, <ec>,
<ph>, <pc>, <mrk> and <sm>.

4.3.1.22 isolated
Orphan code flag - indicates if the start or end marker of a spanning inline code is not in the same
<unit> as its corresponding end or start code.

Value description: yes if this start or end code is not in the same <unit> as its corresponding end or
start code, no if both codes are in the same <unit>.

Default value: no.

Used in: <sc>, <ec>.

Example:

3 December 2021xliff-core-v2.2-wd
Page 37 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

<file id="f2" xmlns:abc="urn:abc">
 <unit id="1">
 <mtc:matches>
 <mtc:match id="tc01" ref="seg2">
 <source><sc id="1" isolated="yes"/>Warning:</source>
 <target><sc id="1" isolated="yes"/>Attention :</target>
 </mtc:match>
 </mtc:matches>
 <segment id="seg2">
 <source><pc id="1">Warning: File not found.</pc></source>
 </segment>
 </unit>
</file>

In the example above the <sc> elements have their isolated attribute set to yes because they do
not have their corresponding <ec> elements.

4.3.1.23 name
Resource name - the original identifier of the resource corresponding to the Extracted <unit> or
<group>.

For example: the key in the key/value pair in a Java properties file, the ID of a string in a Windows string
table, the index value of an entry in a database table, etc.

Value description: Text.

Default value: undefined.

Used in: <unit> and <group>.

4.3.1.24 order
target order - indicates the order, in which to compose the target content parts.

Value description: A positive integer.

Default value: implicit, see below

When order is not explicitly set, the <target> order corresponds to its sibling <source>, i.e. it is not
being moved anywhere when composing target content of the enclosing <unit> and the implicit order
value is of that position within the <unit>.

Used in: <target>.

Constraints

• The value of the order attribute must be unique within the enclosing <unit> element.

• The value of each of the order attributes used within a <unit> element must not be higher than
N, where N is the number of all current <segment> and <ignorable> children of the said <unit>
element.

See the Segments Order section for the normative usage description.

3 December 2021xliff-core-v2.2-wd
Page 38 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.3.1.25 original
Original file - a pointer to the location of the original document from which the content of the enclosing
<file> element is extracted.

Value description: IRI.

Default value: undefined

Used in: <file>.

4.3.1.26 priority
Priority - provides a way to prioritize notes.

Value description: Integer 1-10.

Default value: 1

Used in: <note>.

Note

Please note that 1 is the highest priority that can be interpreted as an alert, e.g. an [ITS] Local-
ization Note of the type alert. The best practice is to use only one alert per an annotated element,
and the full scale of 2-10 can be used for prioritizing notes of lesser importance than the alert.

4.3.1.27 ref
Reference - holds a reference for the associated annotation.

Value description: A value of the [XML Schema Datatypes] type anyURI. The semantics of the value
depends on the type of annotation:

• When used in a term annotation, the URI value is referring to a resource providing information about
the term.

• When used in a translation candidates annotation, the URI value is referring to an external resource
providing information about the translation candidate.

• When used in a comment annotation, the value is referring to a <note> element within the same
enclosing <unit>.

• When used in a custom annotation, the value is defined by each custom annotation.

Default value: undefined

Used in: <mrk> or <sm>.

Example:

<unit id="1">
 <segment>
 <source>The <pc id="1">ref</pc> attribute of a term
 annotation holds a <mrk id="m1" type="term"
 ref="http://dbpedia.org/page/Uniform_Resource_Identifier">
 URI</mrk> pointing to more information about the given
 term.</source>

3 December 2021xliff-core-v2.2-wd
Page 39 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://www.w3.org/TR/its20/#locNote-datacat
http://www.w3.org/TR/its20/#locNote-datacat

 </segment>
</unit>

4.3.1.28 srcDir
Source directionality - indicates the directionality of the source content.

Value description: ltr (Left-To-Right), rtl (Right-To-Left), , or auto (determined heuristically, based
on the first strong directional character in scope, see [UAX #9]).

Default value: default values for this attribute depend on the element in which it is used:

• When used in <file>:

The value auto.

• When used in any other element:

The value of the srcDir attribute of its parent element.

Used in: <file>, <group>, and <unit>.

4.3.1.29 srcLang
Source language - the code of the language, in which the text to be Translated is expressed.

Value description: A language code as described in [BCP 47].

Default value: undefined

Used in: <xliff>.

4.3.1.30 startRef
Start code or marker reference - The id of the <sc> element or the <sm> element a given <ec> element
or element corresponds.

Value description: NMTOKEN.

Default value: undefined

Used in: <ec>, .

Example:

<unit id="1">
 <segment>
 <source><sc id="1"/>Bold, <sc id="2"/>both
 <ec startRef="1"/>, italics<ec startRef="2"/></source>
 </segment>
</unit>

4.3.1.31 state
State - indicates the state of the translation of a segment.

Value description: The value must be set to one of the following values:

initial - indicates the segment is in its initial state.
translated - indicates the segment has been translated.

3 December 2021xliff-core-v2.2-wd
Page 40 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

reviewed - indicates the segment has been reviewed.
final - indicates the segment is finalized and ready to be used.

The 4 defined states constitute a simple linear state machine that advances in the above given order.
No particular workflow or process is prescribed, except that the three states more advanced than the
default initial assume the existence of a Translation within the segment. One can further specify the
state of the Translation using the subState attribute.

Default value: initial

Used in: <segment>

Processing Requirements

• Writers must not set the state attribute values to other than the default initial if and only if the
<segment> element where the attribute is set doesn't have the <target> child.

• Writers updating the attribute state must also update or delete subState.

Note

state is an optional attribute of segments with a default value and segmentation can change
as the XLIFF roundtrip progresses, hence implementers don't have to make explicit use of the
attribute. However setting of the attribute is advantageous if a workflow needs to make use of
Advanced Validation methods. For instance missing non-removable codes will only be reported
as an Error by the XLIFF Core Schematron Schema when the state is final.

4.3.1.32 subFlows
Sub-flows list - holds a list of id attributes corresponding to the <unit> elements that contain the sub-
flows for a given inline code.

Value description: A list of NMTOKEN values separated by spaces. Each value corresponds to the id
attribute of a <unit> element.

Default value: undefined

Used in: <ph>, <sc>, <ec>.

Example:

See the example in the Sub-Flows section.

4.3.1.33 subFlowsEnd
Sub-flows list - holds a list of id attributes corresponding to the <unit> elements that contain the sub-
flows for the end marker of a given inline code.

Value description: A list of NMTOKEN values separated by spaces. Each value corresponds to the id
attribute of a <unit> element.

Default value: undefined

Used in: <pc>.

Example:

See the example in the Sub-Flows section.

3 December 2021xliff-core-v2.2-wd
Page 41 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.3.1.34 subFlowsStart
Sub-flows list - holds a list of id attributes corresponding to the <unit> elements that contain the sub-
flows for the start marker of a given inline code.

Value description: A list of NMTOKEN values separated by spaces. Each value corresponds to the id
attribute of a <unit> element.

Default value: undefined

Used in: <pc>.

Example:

See the example in the Sub-Flows section.

4.3.1.35 subState
subState - indicates a user-defined status for the <segment> element.

Value description:

The value is composed of a prefix and a sub-value separated by a character : (U+003A).

The prefix is a string uniquely identifying a collection of values for a specific authority. The sub-value is
any string value defined by an authority.

The prefix xlf is reserved for this specification.

Other prefixes and sub-values may be defined by the users.

Default value: undefined

Used in: <segment>

Constraints

• If the attribute subState is used, the attribute state must be explicitly set.

Processing Requirements

• Writers updating the attribute state must also update or delete subState.

4.3.1.36 subType
subType - indicates the secondary level type of an inline code.

Value description:

The value is composed of a prefix and a sub-value separated by a character : (U+003A).

The prefix is a string uniquely identifying a collection of sub-values for a specific authority. The sub-value
is any string value defined by the authority.

The prefix xlf is reserved for this specification, and the following sub-values are defined:

xlf:lb - Line break
xlf:pb - Page break
xlf:b - Bold
xlf:i - Italics
xlf:u - Underlined

3 December 2021xliff-core-v2.2-wd
Page 42 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

xlf:var - Variable

Other prefixes and sub-values may be defined by the users.

Default value: undefined

Used in: <pc>, <sc>, <ec> and <ph>

Constraints

• If the attribute subType is used, the attribute type must be specified as well.

• The reserved xlf: prefixed values map onto the type attribute values as follows:

For xlf:b, xlf:i, xlf:u, xlf:lb, and xlf:pb, the required value of the type attribute is fmt.
For xlf:var, the required value of the type attribute is ui.

Processing Requirements

• Modifiers updating the attribute type must also update or delete subType.

4.3.1.37 trgLang
Target language - the code of the language, in which the Translated text is expressed.

Value description: A language code as described in [BCP 47].

Default value: undefined

Used in: <xliff>.

4.3.1.38 translate
Translate - indicates whether or not the source text in the scope of the given translate flag is intended
for Translation.

Value description: yes or no.

Default value: default values for this attribute depend on the element in which it is used:

• When used in <file>:

The value yes.

• When used in any other admissible structural element (<group> or <unit>):

The value of the translate attribute of its parent element.

• When used in annotations markers <mrk> or <sm>:

The value of the translate attribute of the innermost <mrk> or <unit> element, in which the
marker in question is located.

Used in: <file> <group> <unit>, <mrk> and <sm>.

4.3.1.39 trgDir
Target directionality - indicates the directionality of the target content.

Value description: ltr (Left-To-Right), rtl (Right-To-Left), or auto (determined heuristically, based
on the first strong directional character in scope, see [UAX #9]).

3 December 2021xliff-core-v2.2-wd
Page 43 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Default value: default values for this attribute depend on the element in which it is used:

• When used in <file>:

The value auto.

• When used in any other element:

The value of the trgDir attribute of its parent element.

Used in: <file>, <group>, and <unit>.

4.3.1.40 type
Type - indicates the type of an element.

Value description: allowed values for this attribute depend on the element in which it is used.

• When used in , , or :

The value must be set to one of the following values:

fmt - Formatting (e.g. a element in HTML)
ui - User interface element
quote - Inline quotation (as opposed to a block citation)
link - Link (e.g. an <a> element in HTML)
image - Image or graphic
other - Type of element not covered by any of the other top-level types.

Example:

<segment>
 <source xml:lang="cs"><pc type="quote">Blázen,
 chce dobýt to nu v takovém po así</pc>, dodal slovy svého
 oblíbeného imaginárního autora.</source>
 <target xml:lang="en"><pc type="quote">Madman, he wants to conquer the
 pole in this weather</pc>, offered he the words of his
 favourite imaginary playwright.</target>
</segment>

One can further specify the type of a code using the attribute.

Default value: Undefined

• When used in or :

One of the following values: generic, comment, term, or a user-defined value that is composed
of a prefix and a sub-value separated by a character : (U+003A).

The prefix is a string uniquely identifying a collection of sub-values for a specific authority. The sub-
value is any string value defined by the authority.

Default value: generic

• When used in or :

A value that is composed of a prefix and a sub-value separated by a character : (U+003A).

The prefix is a string uniquely identifying a collection of sub-values for a specific authority. The sub-
value is any string value defined by the authority. The prefix xlf is reserved.

3 December 2021xliff-core-v2.2-wd
Page 44 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Default value: Undefined

Used in: , , , , , , and .

Processing Requirements

• Modifiers updating the attribute type on , , , or must also update or delete .

4.3.1.41 value
Value - holds a value for the associated annotation.

Value description: Text.

• When used in a term annotation, the value is a definition of the term.

• When used in a comment annotation, the value is the text of the comment.

• When used in a custom annotation, the value is defined by each custom annotation.

Default value: undefined

Used in: <mrk> and <sm>.

4.3.1.42 version
XLIFF Version - is used to specify the Version of the XLIFF Document. This corresponds to the Version
number of the XLIFF specification that the XLIFF Document adheres to.

Value description: Text.

Default value: undefined

Used in: <xliff>.

4.3.2 XML namespace
The attributes from XML namespace used in XLIFF 2.0 are: xml:lang and xml:space.

4.3.2.1 xml:lang
Language - the xml:lang attribute specifies the language variant of the text of a given element. For ex-
ample: xml:lang="fr-FR" indicates the French language as spoken in France.

Value description: A language code as described in [BCP 47].

Default value: default values for this attribute depend on the element in which it is used:

• When used in a <source> element:

The value set in the srcLang attribute of the enclosing <xliff> element.

• When used in a <target> element:

The value set in the trgLang attribute of the enclosing <xliff> element.

• When used in any other element:

The value of the xml:lang attribute of its parent element.

Used in: <source>, <target> and where extension attributes are allowed.

3 December 2021xliff-core-v2.2-wd
Page 45 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.3.2.2 xml:space
White spaces - the xml:space attribute specifies how white spaces (ASCII spaces, tabs and line-breaks)
are to be treated.

Value description: default or preserve. The value default signals that an application's default
white-space processing modes are acceptable for this element; the value preserve indicates the intent
that applications preserve all the white space. This declared intent is considered to apply to all elements
within the content of the element where it is specified, unless overridden with another instance of the
xml:space attribute. For more information see the section on xml:space in the [XML] specification.

Default value: default values for this attribute depend on the element in which it is used:

• When used in <data>:

The value preserve.

• When used in <xliff>:

The value default.

• When used in any other element:

The value of the xml:space attribute of its parent element.

Used in: <xliff>, <file>, <group>, <unit>, <source>, <target>, and <data>.

4.4 CDATA sections
CDATA sections (<![CDATA[...]]>) are allowed in XLIFF content, but on output they may be changed
into normal escaped content.

Note that avoiding CDATA sections is considered a best practice from the internationalization viewpoint
[XML I18N BP].

Processing Requirements

• Agents must process CDATA sections.

• Writers may preserve the original CDATA sections.

4.5 XML Comments
XML comments (<!--...--!>) are allowed in XLIFF content, but they are ignored in the parsed content.

For example:

<source>Text content <!--IMPORTANT-->that is important</source>

and

<source>Text content that is important</source>

are identical after parsing and correspond to the same following parsed content:

Text content that is important

3 December 2021xliff-core-v2.2-wd
Page 46 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://www.w3.org/TR/REC-xml/#sec-white-space

To annotate a section of the content with a comment that is recognized and preserved by XLIFF user
agents, use the <note> element, or the <mrk> element.

Processing Requirements

• Agents must ignore XML comments. That is the XLIFF parsed content is the same whether or not
there is an XML comment in the document.

• Writers may preserve XML comments on output.

4.6 XML Processing Instructions
XML Processing Instructions [XML] (see specifically http://www.w3.org/TR/REC-xml/#sec-pi) are an
XML mechanism to "allow documents to contain instructions for applications." XML Processing Instructions
are allowed in XLIFF content but they are ignored in the parsed content in the same sense as XML
Comments.

Processing Requirements

• Agents must not use Processing Instructions as a means to implement a feature already specified
in XLIFF Core or Modules.

• Writers should preserve XML Processing Instructions in an XLIFF Document.

Warning

Please note that Agents using Processing Instructions to implement XLIFF Core or Module
features are not compliant XLIFF applications disregarding whether they are otherwise conform-
ant.

Warning

Although this specification encourages XLIFF Agents to preserve XML Processing Instructions,
it is not and cannot be, for valid processing reasons, an absolute protection and it is for instance
highly unlikely that Processing Instructions could survive an XLIFF roundtrip at the <segment>
level or lower. Hence implementers are discouraged from using XML Processing Instructions
at the <segment> and lower levels.

4.7 Inline Content
The XLIFF inline content defines how to encode the content Extracted from the original source. The
content includes the following types of data:

• Text -- Textual content.

• Inline codes -- Sequences of content that are not linguistic text, such as formatting codes, variable
placeholders, etc.

For example: the element in HTML, or the placeholder {0} in a Java string.

• Annotations -- Markers that delimit a span of the content and carry or point to information about the
specified content.

For example: a flag indicating that a given section of text is not intended for translation, or an element
indicating that a given expression in the text is a term associated with a definition.

There are two elements that contain inline markup in XLIFF: <source> and <target>.

3 December 2021xliff-core-v2.2-wd
Page 47 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://www.w3.org/TR/REC-xml/#sec-pi

In some cases, data directly associated with inline elements may also be stored at the <unit> level in
an <originalData> element.

4.7.1 Text
The XLIFF inline markup does not prescribe how to represent normal text, besides that it must be valid
XML.

4.7.1.1 Characters invalid in XML
Because the content represented in XLIFF can be extracted from anywhere, including software resources
and other material that can contain control characters, XLIFF needs to be able to represent all Unicode
code points [Unicode].

However, XML does not have the capability to represent all Unicode code points [Unicode], and does
not provide any official mechanism to escape the forbidden code points.

To remedy this, the inline markup provides the <cp> element.

The syntax and semantic of <cp> in XLIFF are similar to the ones of <cp> in the Unicode Locale Data
Markup Language [LDML].

4.7.2 Inline Codes
The specification takes into account two types of codes:

Original code
An original code is a code that exists in the original document being extracted into XLIFF.

Added code
An added code is a code that does not exist in the original document, but has been added to the
content at some point after extraction.

Any code (original or added) belongs to one of the two following categories:

Standalone
A standalone code is a code that corresponds to a single position in the content. An example of
such code is the
 element in HTML.

Spanning
A spanning code is a code that encloses a section of the content using a start and an end marker.
There are two kinds of spanning codes:

• Codes that can overlap, that is: they can enclose a non-closing or a non-opening spanning code.
Such codes do not have an XML-like behavior. For example the RTF code \b1...\b0 is a
spanning code that is allowed to overlap.

• Codes that cannot overlap, that is: they cannot enclose a partial spanning code and have an
XML-like behavior at the same time. An example of such code is the
<emphasis>...</emphasis> element in DocBook.

When the opening or closing marker of a spanning code does not have its corresponding closing
or opening marker in the same unit, it is an orphan code.

4.7.2.1 Representation of the codes
Spanning codes present a set of challenges in XLIFF:

First, because the code format of the original data extracted to XLIFF does not need to be XML, spanning
codes can overlap.

3 December 2021xliff-core-v2.2-wd
Page 48 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

For example, in the following RTF content, the format markers are in a sequence: start bold, start italics,
end bold, end italics. This does not translate into a well-formed mapping.

Text in \b bold \i and\b0 italics\i0

Another challenge is the possible effect of segmentation: A spanning code can start in one segment
and end in another.

For example, in the following HTML content, the segmentation splits the text independently of the codes
so the starting and ending tags of the ... element end up in different parts of the <unit>
element:

[Sentence one.][Sentence two.][][Sentence three.]

Finally, a third potential cause of complication is that the start or the end markers of a spanning code
can become orphans if their segment is used outside of its original <unit>.

For example, an entry with bold text can be broken down into two segments:

Segment 1 = "Warning found: "
Segment 2 = "The file is read-only"

And later, one of the segments can be re-used outside its original <unit>, for instance as a translation
candidate:

New segment = "Warning found - see log"
Fuzzy match = "Warning found: "

Because of these use cases, the representation of a spanning code cannot always be mapped to a
similar spanning element in XLIFF.

When taking into account these issues, the possible use cases and their corresponding XLIFF repres-
entations are as follow:

Table 1. Inline code use cases

Example of RepresentationUse Case

<ph id='1'/>Standalone code

<pc id='1'>text</pc>Well-formed spanning code

<sc id='1'/>Start marker of spanning code

<ec startRef='1'/>End marker of spanning code

<sc id='1' isolated='yes'/>Orphan start marker of spanning code

<ec id='1' isolated='yes'/>Orphan end marker of spanning code

4.7.2.2 Usage of <pc> and <sc>/<ec>
A spanning code must be represented using a <sc> element and a <ec> element if the code is not well-
formed or orphan.

For example, the following RTF content has two spans of formatting:

Text in \b bold \i and\b0 italics\i0

3 December 2021xliff-core-v2.2-wd
Page 49 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

They can only be represented using two pairs of <sc> and <ec> elements:

<unit id="1">
 <originalData>
 <data id="d1">\b </data>
 <data id="d2">\i </data>
 <data id="d3">\b0 </data>
 <data id="d4">\i0 </data>
 </originalData>
 <segment>
 <source>Text in <sc id="1" dataRef="d1"/>bold <sc id="2"
 dataRef="d2"/> and<ec startRef="1" dataRef="d3"/>
 italics<ec startRef="2" dataRef="d4"/>. </source>
 </segment>
</unit>

If the spanning code is well-formed it may be represented using either a single <pc> element or using
a pair of <sc> and a <ec> elements.

For example, the following RTF content has a single span of formatting:

Text in \b bold\b0 .

It can be represented using either notations:

Text in <pc id="1" canOverlap="yes" dataRefStart="c1" dataRefEnd="c2">
bold</pc>.

Text in <sc id="1" dataRef="c1"/>bold<ec startRef="1" dataRef="c2"/>.

Processing Requirements

• When both the <pc> and the <sc>/<ec> representations are possible, Extractors and Modifiers may
use either one as long as all the information of the inline code (e.g. original data, sub-flow indicators,
etc.) are preserved.

• When converting representation between a pair of <sc> and <ec> elements and a <pc> element
or vice-versa, Modifiers must map their attributes as shown in the following table:

3 December 2021xliff-core-v2.2-wd
Page 50 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Table 2. Mapping between attributes

<ec> attributes<sc> attributes<pc> attributes

startRef / id (see <ec>)idid

typetypetype

subTypesubTypesubType

dispdispStart

dispdispEnd

equivequivStart

equivequivEnd

subFlowssubFlowsStart

subFlowssubFlowsEnd

dataRefdataRefStart

dataRefdataRefEnd

isolatedisolated

canCopycanCopycanCopy

canDeletecanDeletecanDelete

canReordercanReordercanReorder

copyOfcopyOfcopyOf

canOverlapcanOverlapcanOverlap

dirdirdir

• Agents must be able to handle any of the above two types of inline code representation.

4.7.2.3 Storage of the original data
Most of the time, inline codes correspond to an original construct in the format from which the content
was extracted. This is the original data.

XLIFF tries to abstract and normalize as much as possible the extracted content because this allows a
better re-use of the material across projects. Some tools require access to the original data in order to
create the translated document back into its original format. Others do not.

4.7.2.3.1 No storage of the original data

In this option, the original data of the inline code is not preserved inside the XLIFF document.

The tool that created the initial XLIFF document is responsible for providing a way to re-create the ori-
ginal format properly when merging back the content.

For example, for the following HTML content:

This naked mole rat is pretty ugly.

one possible XLIFF representation is the following:

<unit id="1">
 <segment>
 <source>This <pc id="1">naked mole rat</pc> is
 <pc id="2">pretty ugly</pc>.</source>

3 December 2021xliff-core-v2.2-wd
Page 51 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <target>Cet <pc id="1">hétérocéphale</pc> est
 <pc id="2">plutôt laid</pc>.</target>
 </segment>
</unit>

4.7.2.3.2 Storage of the original data

In this option, the original data of the inline code is stored in a structure that resides outside the content
(i.e. outside <source> or <target>) but still inside the <unit> element.

The structure is an element <originalData> that contains a list of <data> entries uniquely identified
within the <unit> by an id attribute. In the content, each inline code using this mechanism includes a
dataRef attribute that points to a <data> element where its corresponding original data is stored.

For example, for the following HTML content:

This naked mole rat is pretty ugly.

The following XLIFF representation stores the original data:

<unit id="1">
 <originalData>
 <data id="d1"></data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source>This <pc id="1" dataRefStart="d1" dataRefEnd="d2"> naked
 mole rat</pc> is <pc id="2" dataRefStart="d1"
 dataRefEnd="d2"> pretty ugly</pc>.</source>
 <target>Cet <pc id="1" dataRefStart="d1" dataRefEnd="d2">
 hétérocéphale</pc> est <pc id="2" dataRefStart="d1"
 dataRefEnd="d2"> plutôt laid</pc>.</target>
 </segment>
</unit>

Note

This mechanism allows to re-use identical original data by pointing to the same <data> element.

4.7.2.4 Adding Codes
When processing content, there are possible cases when new inline codes need to be added.

For example, in the following HTML help content, the text has the name of a button in bold:

Press the Emergency Stop button
to interrupt the count-down sequence.

In the translated version, the original label needs to remain in English because the user interface, unlike
the help, is not translated. However, for convenience, a translation is also provided and emphasized
using another style. That new formatting needs to be added:

Appuyez sur le bouton Emergency Stop (<i>Arrêt d'urgence</i>)
pour interrompre le compte à rebours.

3 December 2021xliff-core-v2.2-wd
Page 52 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Having to split a single formatted span of text into several separate parts during translation, can serve
as another example. For instance, the following sentence in Swedish uses bold on the names of two
animals:

Äter katter möss?

But the English translation separates the two names and therefore needs to duplicate the bold codes.

Do cats eat mice?

Processing Requirements

• Modifiers may add inline codes.

• The id value of the added code must be different from all id values in both source and target content
of the unit where the new code is added.

• Mergers may ignore added inline codes when Merging the Translated content back into the original
format.

There are several ways to add codes:

4.7.2.4.1 Duplicating an existing code

One way to create a new code is to duplicate an existing one (called the base code).

If the base code is associated with some original data: the new code simply uses the same data.

For example, the translation in the following unit, the second inline code is a duplicate of the first one:

<unit id="1">
 <originalData>
 <data id="d1"></data>
 <data id="d2"></data>
 </originalData>
 <segment>
 <source>Äter <pc id="1" dataRefStart="d1" dataRefEnd="d2">katter
 möss</pc>?</source>
 <target>Do <pc id="1" dataRefStart="d1" dataRefEnd="d2">
 cats</pc> eat <pc id="2" dataRefStart="d1"
 dataRefEnd="d2">mice</pc>?</target>
 </segment>
</unit>

If the base code has no associated data, the new code must use the copyOf attribute to indicate the
id of the base code. This allows the merging tool to know what original data to re-use.

For example, the translation in the following unit, the second inline code is a duplicate of the first one:

<unit id="1">
 <segment>
 <source>Esznek <pc id="1">a magyarok svéd húsgombócot
 </pc>?</source>
 <target>Do <pc id="1">Hungarians</pc> eat <pc id="2"
 copyOf="1">Swedish meatballs</pc>?</target>

3 December 2021xliff-core-v2.2-wd
Page 53 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 </segment>
</unit>

Processing Requirements

• Modifiers must not clone a code that has its canCopy attribute is set to no.

• The copyOf attribute must be used when, and only when, the base code has no associated original
data.

4.7.2.4.2 Creating a brand-new code

Another way to add a code is to create it from scratch. For example, this can happen when the translated
text requires additional formatting.

For example, in the following unit, the UI text needs to stay in English, and is also translated into French
as a hint for the French user. The French translation for the UI text is formatted in italics:

<unit id="1">
 <originalData>
 <data id="d1"></data>
 <data id="d2"></data>
 <data id="n1"><i></data>
 <data id="n2"></i></data>
 </originalData>
 <segment>
 <source>Press the <pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Emergency Stop</pc> button to interrupt the count-down
 sequence. </source>
 <target>Appuyez sur le bouton <pc id="1" dataRefStart="d1"
 dataRefEnd="d2">Emergency Stop</pc> (<pc id="2"
 dataRefStart="n1" dataRefEnd="n2">Arrêt d'urgence
 </pc>) pour interrompre le compte à rebours. </target>
 </segment>
</unit>

4.7.2.4.3 Converting text into a code

Another way to add a code is to convert part of the extracted text into code. In some cases the inline
code can be created after extraction, using part of the text content. This can be done, for instance, to
get better matches from an existing TM, or better candidates from an MT system.

For example, it can happen that a tool extracting a Java properties file to XLIFF is not sophisticated
enough to treat HTML or XML snippets inside the extracted text as inline code:

text property for the widget 'next'
nextText: Click <ui>Next</ui>

Resulting XLIFF content:

<unit id="1">
 <segment>
 <source>Click <ui>Next</ui></source>
 </segment>
</unit>

3 December 2021xliff-core-v2.2-wd
Page 54 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

But another tool, later in the process, can be used to process the initial XLIFF document and detect
additional inline codes. For instance here the XML elements such as <ui>.

The original data of the new code is the part of the text content that is converted as inline code.

<unit id="1">
 <originalData>
 <data id="d1"><ui></data>
 <data id="d2"></ui></data>
 </originalData>
 <segment>
 <source>Click <pc id="1" dataRefStart="d1" dataRefEnd="d2">
 Next</pc></source>
 </segment>
</unit>

Warning

Converting XLIFF text content into original data for inline code might need a tool-specific process
as the tool which did the initial extraction could have applied some conversion to the original
content to create the XLIFF content (e.g. un-escape special characters).

4.7.2.5 Removing Codes
When processing content, there are some possible cases when existing inline codes need to be removed.

For an example the translation of a sentence can result in grouping of several formatted parts into a
single one. For instance, the following sentence in English uses bold on the names of two animals:

Do cats eat mice?

But the Swedish translation group the two names and therefore needs only a single bolded part.

Äter katter möss?

Processing Requirements

• User agents may remove a given inline code only if its canDelete attribute is set to yes.

• When removing a given inline code, the user agents must remove its associated original data, except
if the original data is shared with another inline code that remains in the unit.

Note that having to delete the original data is unlikely because such original data is likely to be asso-
ciated to an inline code in the source content.

There are several ways to remove codes:

4.7.2.5.1 Deleting a code

One way to remove a code is to delete it from the extracted content. For example, in the following unit,
the translated text does not use the italics formatting. It is removed from the target content, but the ori-
ginal data are preserved because they are still used in the source content.

<unit id="1">
 <originalData>
 <data id="d1"><i></data>

3 December 2021xliff-core-v2.2-wd
Page 55 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <data id="d2"></i></data>
 </originalData>
 <segment>
 <source>I read <pc id="1" dataRefStart="d1" dataRefEnd="d2">Little
 House on the Prairie</pc> to my children.</source>
 <target> </target>
 </segment>
</unit>

4.7.2.5.2 Converting a code into text

Another way to remove an inline code is to convert it into text content. This is likely to be a rare use
case. It is equivalent to deleting the code, with the addition to place the original data for the given code
into the content, as text. This can be done, for example, to get better matches from an existing TM, or
better candidates from an MT system.

For instance, the following unit has an inline code corresponding to a variable place-holder. A tool can
temporarily treat this variable as text to get better matches from an existing TM.

<unit id="1">
 <originalData>
 <data id="d1">%s</data>
 </originalData>
 <segment>
 <source>Cannot find '<ph id="1" dataRef="d1"/>'.</source>
 </segment>
</unit>

The modified unit would end up like as shown below. Note that because the original data was not asso-
ciated with other inline code it has been removed from the unit:

<unit id="1">
 <segment>
 <source>Cannot find '%s'.</source>
 </segment>
</unit>

Warning

Converting the original data of an inline code into text content might need a tool-specific process
as the tool which did the initial extraction could have applied some conversion to the original
content.

4.7.2.6 Editing Hints
XLIFF provides some information about what editing operations are applicable to inline codes:

• A code can be deleted: That is, the code element as well as its original data (if any are attached) are
removed from the document. This hint is represented with the canDelete attribute. The default
value is yes: deletion is allowed.

For example, the following extracted C string has the code <ph id='1'/> set to be not deletable
because removing the original data (the variable placeholder %s) from the string would result in an
error when running the application:

3 December 2021xliff-core-v2.2-wd
Page 56 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

• A code can be copied: That is, the code is used as a base code for adding another inline code. See
Section 4.7.2.4.1, “Duplicating an existing code” for more details. This hint is represented with the
canCopy attribute. The default value is yes: copy is allowed.

• A code can be re-ordered: That is, a given code can be moved before or after another inline code.
This hint is represented with the canReorder attribute. The default value is yes: re-ordering is al-
lowed.

Note

Please note that often those properties are related and appear together. For example, the code
in the first unit shown below is a variable placeholder that has to be preserved and cannot be
duplicated, and when several of such variables are present, as in the second unit, they cannot
be re-ordered:

<unit id="1">
 <originalData>
 <data id="d1">%s</data>
 </originalData>
 <segment>
 <source>Can't open '<ph id="1" dataRef="d1" canCopy="no"
 canDelete="no"/>'.</source>
 </segment>
</unit>
<unit id="2">
 <originalData>
 <data id="d1">%s</data>
 <data id="d2">%d</data>
 </originalData>
 <segment>
 <source>Number of <ph id="1" dataRef="d1" canCopy="no"
 canDelete="no" canReorder="firstNo"/>: <ph id="2" dataRef="d2"
 canCopy="no" canDelete="no" canReorder="no"/>. </source>
 </segment>
</unit>

See the Target Content Modification section for additional details on editing.

Constraints

• When the attribute canReorder is set to no or firstNo, the attributes canCopy and canDelete
must also be set to no.

• Inline codes re-ordering within a source or target content may be limited by defining non-reorderable
sequences. Such sequence is made of a first inline code with the attribute canReorder set to
firstNo and zero or more following codes with canReorder set to no.

• A non-reorderable sequence of codes must not start with a code with the attribute canReorder set
to No and zero or more following codes with canReorder set to no

Note

A non-reorderable sequence made of a single code with canReorder set to firstNo are
allowed just for Extraction convenience and are equivalent to a code with the attribute
canReorder set to yes.

3 December 2021xliff-core-v2.2-wd
Page 57 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Processing Requirements

• Extractors should set the canDelete, canCopy and canReorder attributes for the codes that need
to be treated differently than with the default settings.

• Modifiers must not change the number and order of the inline codes making up a non-reorderable
sequence.

• Modifiers may move a whole non-reorderable sequence before or after another non-reorderable se-
quence.

• When a non-reorderable sequence is made of a single non-reorderable code, Modifiers MAY remove
the canReorder attribute of that code or change its value to yes.

• Modifiers must not delete inline codes that have their attribute canDelete set to no.

• Modifiers must not replicate inline codes that have their attribute canCopy set to no.

Note

Conformance of codes to Editing Hints Processing Requirements within Translations can only
be checked on existing <target> elements, i.e. non-conformance is not reported on <segment>
or <ignorable> elements without <target> children.

The XLIFF Core Schematron Schema will throw Warnings for all existing <target> elements
where codes don't conform to the Editing Hints Processing Requirements, except for <target>
children of <segment> elements with the state attribute set to final, where it will throw Errors.

4.7.3 Annotations
An annotation is an element that associates a section of the content with some metadata information.

Annotations may be created by an Extractor that generated the initial XLIFF Document, or by any other
Modifier or Enricher later in the process. For example, after an Extractor creates the document, an En-
richer can annotate the source content with terminological information.

Annotations are represented using either the <mrk> element, or the pair of <sm> and elements.

4.7.3.1 Type of Annotations
There are several pre-defined types of annotation and definition of custom types is also allowed.

4.7.3.1.1 Translate Annotation

This annotation is used to indicate whether a span of content is translatable or not.

Usage:

• The id attribute is required
• The translate attribute is required and set to yes or no
• The type attribute is optional and set to generic (this is the default value)

For example:

He saw his <mrk id="m1" translate="no">doppelgänger</mrk>.

Note

This annotation overrides the translate attribute set or inherited at the <unit> level.

3 December 2021xliff-core-v2.2-wd
Page 58 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Note

The translate attribute can also be used at the same time as another type of annotation. For
example:

He saw his <mrk id="m1" translate="no" type="term">doppelgänger
</mrk>.

4.7.3.1.2 Term Annotation

This annotation is used to mark up a term in the content, and possibly associate information to it.

Usage:

• The id attribute is required
• The type attribute is required and set to term
• The value attribute is optional and contains a short definition of the term
• The ref attribute is optional and contains a URI pointing to information on the term
• The translate attribute is optional and set to yes or no

For example:

<file id="f-t_a">
 <unit id="1">
 <segment>
 <source>He is my <mrk id="m1" type="term"
 ref="http://dbpedia.org/page/Doppelgänger">
 doppelgänger</mrk>. </source>
 </segment>
 </unit>
</file>

4.7.3.1.3 Comment Annotation

This annotation is used to associate a span of content with a comment.

Usage:

• The id attribute is required
• The type attribute is required and set to comment
• If the value attribute is present it contains the text of the comment. If and only if the value attribute

is not present, the ref attribute must be present and contain the URI of a <note> element within
the same enclosing <unit> element that holds the comment.

• The translate attribute is optional and set to yes or no

For example, here with the value attribute:

The <mrk id="m1" type="comment"
 value="Possible values: Printer or Stacker"><ph id="1" dataRef="d1"/>
</mrk>
has been enabled.

And here using the ref attribute:

<unit id="1">

3 December 2021xliff-core-v2.2-wd
Page 59 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 <notes>
 <note id="n1" appliesTo="target">Please check the translation for
 'namespace'. One also can use 'espace de nom', but I think most
 technical manuals use the English term.</note>
 </notes>
 <segment>
 <source>You use your own namespace.</source>
 <target>Vous pouvez utiliser votre propre <mrk id="m1"
 type="comment" ref="#n=n1">namespace</mrk>.</target>
 </segment>
</unit>

4.7.3.1.4 Custom Annotation

The <mrk> element can be used to implement custom annotations.

A custom annotation must not provide the same functionality as a pre-defined annotation.

Usage:

• The id attribute is required
• The type attribute is required and set to a unique user-defined value.
• The translate attribute is optional and set to yes or no
• The use and semantics of the value and ref attributes are user-defined.

For example:

One of the earliest surviving works of literature is
<mrk id="m1" type="myCorp:isbn" value="978-0-14-44919-8">The
Epic of Gilgamesh</mrk>.

4.7.3.2 Splitting Annotations
Annotations can overlap spanning inline codes or other annotations. They also can be split by segment-
ation. Because of this, a single annotation span can be represented using a pair of <sm> and
elements instead of a single <mrk> element.

For example, one can have the following content:

<unit id="1">
 <segment>
 <source>Sentence A. <mrk id="m1" type="comment" value="Comment for B
 and C">Sentence B. Sentence C.</mrk></source>
 </segment>
</unit>

After a user agent performs segmentation, the annotation element <mrk> is changed to a pair of <sm>
and elements:

<unit id="1">
 <segment>
 <source>Sentence A. </source>
 </segment>
 <segment>
 <source><sm id="m1" type="comment" value="Comment for B and C"/>
 Sentence B. </source>

3 December 2021xliff-core-v2.2-wd
Page 60 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

 </segment>
 <segment>
 <source>Sentence C.<em startRef="m1"/></source>
 </segment>
</unit>

4.7.4 Sub-Flows
A sub-flow is a section of text embedded inside an inline code, or inside another section of text.

For example, the following HTML content includes two sub-flows: The first one is the value of the title
attribute ("Start button"), and the second one is the value of the alt attribute ("Click here to
start!"):

Click to start: <img title="Start button"
 src="btnStart.png" alt="Click here to start!"/>

Another example is the following DITA content where the footnote "A Palouse horse is the same
as an Appaloosa." is defined at the middle of a sentence:

Palouse horses<fn>A Palouse horse is the same as
 an Appaloosa.</fn> have spotted coats.

In XLIFF, each sub-flow is stored in its own <unit> element, and the subFlows attribute is used to
indicate the location of the embedded content.

Therefore the HTML content of the example above can be represented like below:

<unit id="1">
 <segment>
 <source>Start button</source>
 </segment>
</unit>
<unit id="2">
 <segment>
 <source>Click here to start!</source>
 </segment>
</unit>
<unit id="3">
 <segment>
 <source>Click to start: <ph id="1" subFlows="1 2"/></source>
 </segment>
</unit>

Constraints

• An inline code containing or delimiting one or more sub-flows must have an attribute subFlows that
holds a list of the identifiers of the <unit> elements where the sub-flows are stored.

• Sub-flows must be in the same <file> element as the <unit> element from which they are refer-
enced.

Processing Requirements

• Extractors should store each sub-flow in its own <unit> element.

3 December 2021xliff-core-v2.2-wd
Page 61 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

• Extractors may order the <unit> elements of the sub-flows and the <unit> element, from where
the sub-flows are referenced, as they see fit.

Note

Please note that the static structure encoded by <file>, <group>, and <unit> elements is
principally immutable in XLIFF Documents and hence the unit order initially set by the Extractor
will be preserved throughout the roundtrip even in the special case of sub-flows.

4.7.5 White Spaces
While white spaces can be significant or insignificant in the original format, they are always treated as
significant when stored as original data in XLIFF. See the definition of the <data> element.

Processing Requirements

• For the inline content and all non empty inline elements: The white spaces must be preserved if the
value for xml:space set or inherited at the enclosing <unit> level is preserve, and they may be
preserved if the value is default.

4.7.6 Bidirectional Text
Text directionality in XLIFF content is defined by inheritance. Source and target content can have different
directionality.

The initial directionality for both the source and the target content is defined in the <file> element,
using the optional attributes srcDir for the source and trgDir for the target. The default value for
both attributes is auto.

The <group> and <unit> elements also have the two optional attributes srcDir and trgDir. The
default value of the srcDir is inherited from the value of the srcDir attribute of the respective parent
element. The default value of the trgDir attribute is inherited from the value of the trgDir attribute
of the respective parent element.

The <pc>, <sc>, and isolated <ec> elements have an optional attribute dir with a value ltr, rtl, or
auto. The default value is inherited from the parent <pc> element. In case the inline element is a child
of a <source> element, the default value is inherited from the srcDir value of the enclosing <unit>
element. In case the inline element is a child of a <target> element, the default value is inherited from
the trgDir value of the enclosing <unit> element.

Warning

While processing isolated <ec> elements with explicitly set directionality, please beware that
unlike directionality set on the <pc> and <sc> , this method decreases the stack level as per
[UAX #9].

In addition, the <data> element has an optional attribute dir with a value ltr, rtl, or auto that is
not inherited. The default value is auto.

Directionality of source and target text contained in the <source> and <target> elements is fully
governed by [UAX #9], whereas explicit XLIFF-defined structural and directionality markup is a higher-
level protocol in the sense of [UAX #9]. The XLIFF-defined value auto determines the directionality
based on the first strong directional character in its scope and XLIFF-defined inline directionality markup
behaves exactly as Explicit Directional Isolate Characters, see [UAX #9], http://www.unicode.org/re-
ports/tr9/#Directional_Formatting_Characters.

3 December 2021xliff-core-v2.2-wd
Page 62 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
http://www.unicode.org/reports/tr9/#Directional_Formatting_Characters

Note

Please note that this specification does not define explicit markup for inline directional Overrides
or Embeddings; in case those are needed. Extractors and Modifiers will need to use [UAX #9]
defined Directional Formatting Characters.

For instance, HTML elements <bdi> and <bdo> need both Extracted as a <pc> or <sc> /
<ec/> pair with the dir attribute set respectively.

All XLIFF defined inline directionality markup isolates and <sc> / <ec/> isolated spans can
reach over segment (but not unit) boundaries. This needs to be taken into account when splitting
or joining segments (see Segmentation Modification) that contain inline directionality markup.
Albeit It is not advisable to split segments, so that corresponding inline directionality markup
start and end would fall into different segments, such a situation is not too confusing. If this
happens, the "watertight" BiDi box will simply span two or more segments. This is not too con-
fusing because no XLIFF defined directionality markup is allowed on <source>, <target>, or
<segment>, so all higher level protocol inheritance of directionality in such cases is from <unit>
or higher.

4.7.7 Target Content Modification
This section defines the rules Writers need to follow when working with the target content of a given
segment in order to provide interoperability throughout the whole process.

The Extractor may create the initial target content as it sees fit.

The Merger is assumed to have the same level of processing and native format knowledge as the Ex-
tractor. Providing an interoperable way to convert native documents into XLIFF with one tool and back
to the native format with another tool without the same level of knowledge is outside the scope of this
specification.

The Writers Modifying the target content of an XLIFF Document between the Extractor and the Merger
ensure interoperability by applying specific rules. These rules are separated into two cases: When there
is an existing target and when there is no existing target.

4.7.7.1 Without an Existing Target
When there is no existing target, the processing requirements for a given segment are the following:

Processing Requirements

• Writers may leave the segment without a target.

• Modifiers may create a new target as follows:

• Modifiers may add translation of the source text.

• Modifiers must put all non-removable inline codes in the target.

• Modifiers must preserve the order of all the non-reorderable inline codes.

• Modifiers may put any removable inline code in the target.

• Modifiers may add inline codes.

• Modifiers may add or remove annotations.

• Modifiers may convert any <pc> element into a pair of <sc> and <ec> elements.

• Modifiers may convert, if it is possible, any pair of <sc> and <ec> elements into a <pc> element.

3 December 2021xliff-core-v2.2-wd
Page 63 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.7.7.2 With an Existing Target
When working with a segment with content already in the target, Writers must choose one of the three
behaviors described below:

Processing Requirements

• Writers may leave the existing target unchanged.

• Modifiers may modify the existing target as follow:

• Modifiers may add or Modify translatable text.

• Writers must preserve all non-removable inline codes, regardless whether or not they exist in the
source.

• Writers must preserve any non-reorderable inline codes in the existing target.

• Writers must not add any non-reorderable inline codes to the target.

• Modifiers may remove any removable inline codes in the target.

• Modifiers may add inline codes (including copying any cloneable inline codes of the existing target).

• Modifiers may add or remove annotations.

• Modifiers may convert any <pc> element into a pair of <sc> and <ec> elements.

• Modifiers may convert, if it is possible, any pair of <sc> and <ec> elements into a <pc> element.

• Modifiers may delete the existing target and start over as if working without an existing target.

4.7.8 Content Comparison
This specification defines two types of content equality:

• Equality type A: Two contents are equal if their normalized forms are equal.

• Equality type B: Two contents are equal if, in their normalized forms and with all inline code markers
replaced by the value of their equiv attributes, the resulting strings are equal.

A content is normalized when:

• The text nodes are in Unicode Normalized Form C defined in the Unicode Annex #15: Unicode
Normalization Forms [UAX #15].

• All annotation markers are removed.

• All pairs of <sc> and <ec> elements that can be converted into a <pc> element, are converted.

• All adjacent text nodes are merged into a single text node.

• For all the text nodes with the white space property set to default, all adjacent white spaces are
collapsed into a single space.

4.8 Segmentation
In the context of XLIFF, a segment is content which is either a unit of extracted text, or has been created
from a unit of extracted text by means of a segmentation mechanism such as sentence boundary detec-

3 December 2021xliff-core-v2.2-wd
Page 64 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

tion. For example, a segment can be a title, the text of a menu item, a paragraph or a sentence in a
paragraph.

In the context of XLIFF, other types representations sometimes called "segmentation" can be represented
using annotations. For example: the terms in a segment can be identified and marked up using the term
annotation.

XLIFF does not specify how segmentation is carried out, only how to represent its result. Material provi-
sions regarding segmentation can be found for instance in the Segmentation Rules eXchange standard
[SRX] or [UAX #29].

4.8.1 Segments Representation
In XLIFF each segment of processed content is represented by a <segment> element.

A <unit> can comprise a single <segment>.

Each <segment> element has one <source> element that contains the source content and one optional
<target> element that can be empty or contain the translation of the source content at a given state.

Content parts between segments are represented with the <ignorable> element, which has the same
content model as <segment>.

For example:

<unit id="1">
 <segment>
 <source>First sentence.</source>
 <target>Première phrase.</target>
 </segment>
 <ignorable>
 <source> </source>
 </ignorable>
 <segment>
 <source>Second sentence.</source>
 </segment>
</unit>

4.8.2 Segments Order
Some Agents (e.g. aligner tools) can segment content, so that the target segments are not in the same
order as the source segments.

To be able to map order differences, the <target> element has an optional order attribute that indicates
its position in the sequence of segments (and inter-segments). Its value is an integer from 1 to N, where
N is the sum of the numbers of the <segment> and <ignorable> elements within the given enclosing
<unit> element.

Warning

When Writers set explicit order on <target> elements, they have to check for conflicts with
implicit order, as <target> elements without explicit order correspond to their sibling
<source> elements. Beware that moving one <target> element is likely to cause a renum-
bering domino effect throughout the enclosing <unit> element.

For example, the following HTML documents have the same paragraph with three sentences in different
order:

3 December 2021xliff-core-v2.2-wd
Page 65 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

<p lang='en'>Sentence A. Sentence B. Sentence C.</p>

<p lang='fr'>Phrase B. Phrase C. Phrase A.</p>

The XLIFF representation of the content, after segmentation and alignment, would be:

<unit id="1">
 <segment id="1">
 <source>Sentence A.</source>
 <target order="5">Phrase A.</target>
 </segment>
 <ignorable>
 <source> </source>
 </ignorable>
 <segment id="2">
 <source>Sentence B.</source>
 <target order="1">Phrase B.</target>
 </segment>
 <ignorable>
 <source> </source>
 </ignorable>
 <segment id="3">
 <source>Sentence C.</source>
 <target order="3">Phrase C.</target>
 </segment>
</unit>

4.8.3 Segmentation Modification
When Modifying segmentation of a <unit>, Modifiers must meet the Constraints and follow the Pro-
cessing Requirements defined below:

Constraints

• Integrity of the inline codes must be preserved. See the section on Inline Codes and on Annotations
for details.

• The entire source content of any one <unit> element must remain logically unchanged: <segment>
elements or their data must not be moved or joined across units.

Warning

Note that when splitting or joining segments that have both source and target content it is advis-
able to keep the resulting segments linguistically aligned, which is likely to require human lin-
guistic expertise and hence manual re-segmentation. If the linguistically correct alignment cannot
be guaranteed, discarding the target content and retranslating the resulting source segments
is worth considering.

Processing Requirements

• When the Modifiers perform a split operation:

• Only <segment> or <ignorable> elements that have their canResegment value resolved to
yes may be split.

3 December 2021xliff-core-v2.2-wd
Page 66 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

• All new <segment> or <ignorable> elements created and their <source> and <target>
children must have the same attribute values as the original elements they were created from,
as applicable, except for the id attributes and, possibly, for the order, state and subState
attributes.

• Any new id attributes must follow the <segment> or <ignorable> id constraints.

• If there was a target content in the original segment and if the state attribute of the original
segment was not initial, the state attributes of the segments resulting from the split (and
possibly their corresponding subState attributes) may be changed to reflect the fact that the
target content may need to be verified as the new segmentation may have desynchronized the
alignment between the source and target contents.

• When the Modifiers perform a join operation:

• Only <segment> or <ignorable> elements that have their canResegment value resolved to
yes may be join with other elements.

• When the Modifiers or Mergers perform a join operation:

• Two elements (<segment> or <ignorable>) must not be joined if their <target> have resolved
order values that are not consecutive.

• The attributes of the elements to be joined (<segment> or <ignorable>) and the attributes of
their <source> and <target> must be carried over in the resulting joined elements.

• If attributes of elements to be joined (<segment> or <ignorable>) differ, or if the attributes of
their <source> or <target> differ, the resulting joined elements must comply with following
rules:

• If the state attributes of the <segment> elements differ: the state attribute of the joined
<segment> must be set to the "earliest" of the values specified in the original <segment>
elements. The sequence of state values are defined in the following order: 1: initial, 2:
translated, 3: reviewed, and 4: final.

• The subState attribute must be the one associated with the state attribute selected to be
used in the joined <segment>. If no subState attribute is associated with that state, the
joined <segment> must not have a subState.

• If the xml:space attributes differ: The <source> and <target> of the joined element must
be set to xml:space="preserve".

• When the Modifiers or Mergers perform a join or a split operation:

• If any <segment> or <ignorable> element of the <unit> had a <target> child with an order
attribute prior to the segmentation modification, the <target> child of all <segment> and
<ignorable> elements in the <unit>must be examined and if necessary their order attributes
updated to preserve the ordering of the target content prior the segmentation modification.

4.8.4 Best Practice for Mergers (Informative)
Since a typical simple corporate implementation of XLIFF 2 is a localization tool that is at the same time
an Extractor and a Merger with the full knowledge of the Extraction mechanism, the community requested
a non-normative best practice for Merging after an XLIFF Round-trip.

First of all, it needs to be noted that Mergers are not advised to rely on their knowledge of the Extraction
mechanism in terms of segmentation. Modifiers are free to change segmentation during the roundtrip
and even to change order of target content held in different segments of the same unit. Therefore, it can

3 December 2021xliff-core-v2.2-wd
Page 67 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

be advised as a best practice before Merging to look for all segments within each unit, even and especially
when the Extractor had created only one segment per unit.

When joining segments, Mergers need to observe all Processing Requirements for joining segments
and joining or splitting segments

When joining segments it can happen that not all <segment> or <ignorable> elements actually have
their <target> element children. This situation can be legal depending on a specific workflow set up.
The <target> child within an <ignorable> element is always optional, but at the same can be created
any time by simply copying the content of the sibling <source>, see Content Modification Without
Target. The presence of <target> children can be better governed in <segment> elements that have
the state attribute. The state attribute is strictly optional with the default initial, yet it is advisable
for a corporate localization operation to request that their service providers progress that attribute through
translated and reviewed to final. This attribute cannot be progressed from the initial state
without a <target> child and all violations of Editing Hints will become validation errors only in the
final state. Usage of state also allows for fine-tuning of a specific workflow State Machine with the
dependent subState attribute. With the attribute subState, implementers can create an arbitrary
number of private state machine under their prefix authorities. It is advisable to register such authority
prefixes with the XLIFF TC and publish their documentation.

When Mergers need to perform the Merge in a non-final state, when the presence of targets cannot be
guaranteed, they are free to create preliminary targets again following the Processing Requirements for
Content Modification Without Target

4.9 Extension Mechanisms
XLIFF 2.0 offers two mechanisms for storing custom data in an XLIFF document:

1. Using the Metadata module for storing custom data in elements defined by the official XLIFF spe-
cification.

2. Using the standard XML namespace mechanism for storing data in elements or attributes defined
in a custom XML Schema.

Both mechanisms can be used simultaneously.

4.9.1 Extension Points
The following XLIFF Core elements allow storing custom data in <mda:metadata> elements or in
elements from a custom XML namespace:

- <file>
- <group>
- <unit>

The following XLIFF Core elements accept custom attributes:

- <xliff>
- <file>
- <group>
- <unit>
- <note>
- <mrk>
- <sm>

4.9.1.1 Extensibility of XLIFF Modules
For extensibility of XLIFF Modules please refer to the relevant Module Sections.

3 December 2021xliff-core-v2.2-wd
Page 68 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

4.9.2 Constraints
• When using identifiers, an extension must use either an attribute named id or the attribute xml:id

to specify them.

• Extensions identifiers must be unique within their immediate <file>, <group> or <unit> enclosing
element.

• Identifier values used in extensions must be of type xs:NMTOKEN or compatible with xs:NMTOKEN
(e.g. xs:NAME and xs:ID are compatible).

These constraints are needed for the fragment identification mechanism.

4.9.3 Processing Requirements
• A user extension, whether implemented using <mda:metadata> or using a custom namespace,

must not provide the same functionality as an existing XLIFF core or module feature, however it may
complement an extensible XLIFF core feature or module feature or provide a new functionality at
the provided extension points.

• Mergers must not rely on custom namespace extensions, other than the ones possibly defined in
<skeleton>, to create the Translated version of the original document.

• Writers that do not support a given custom namespace based user extension should preserve that
extension without Modification.

3 December 2021xliff-core-v2.2-wd
Page 69 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Appendix A Media Type Registration Tem-
plate for XLIFF Version 2.0 and higher Ver-
sions (Normative)
This Appendix is based on the Committee Specification 01 of the Media Type Registration Template for
XLIFF Version 2.0 published on 22 September 2014, which is also the latest version of the Registration
Template, as the TC decided to merge the template (with some necessary editorial updates) with this
XLIFF Version 2.2 specification. Additionally, the Security Considerations have been substantially ex-
panded based on an IESG Expert feedback, as per this archived conversation https://lists.oasis-
open.org/archives/xliff/201502/msg00004.html. XLIFF 2.1 was provisionally registered as
application/xliff+xml in the IANA Provisional Standard Media Type Registry.

This Appendix content will be used to seek final media type registration for XLIFF Version 2.1 and
higher Versions (including this XLIFF Version 2.2).

A.1 Registration Template
• Type name: application

• Subtype name: xliff+xml

• Required parameters: N/A

• Optional parameters: N/A

• Encoding considerations:

Same as encoding considerations of application/xml as specified in [RFC 7303]

• Security considerations:

Apart from all of the security considerations described in [RFC 7303], XLIFF Version 2.1 and higher
has the following Security considerations:

Extensibility: XLIFF permits extensions. Hence it is possible that application xliff+xml may describe
content that has security implications beyond those described here.

Direct external reference mechanisms: An XLIFF document has a number of attributes of the type
URI or IRI, all of which may be dereferenced and some of them should be dereferenced. Therefore,
the security issues of [RFC 3987] Section 8 should be considered. In addition, the contents of re-
sources identified by file:URIs can in some cases be accessed, processed and returned as results.

More details can be found in the Detailed Security Considerations section of this Appendix.

• Interoperability considerations:

Same as interoperability considerations described in [RFC 7303]

Also, interoperability requirements are specified throughout the specification and summarized in its
Conformance Section.

• Published specification:

XLIFF Version 2.1 (OASIS Standard) http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-
os.html will be superseded by XLIFF Version 2.2 (OASIS Standard) http://docs.oasis-open.org/xliff/xliff-
core/v2.1/os/xliff-core-v2.1-os.html that was last published on 3 December 2021 in the Specification

3 December 2021xliff-core-v2.2-wd
Page 70 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://docs.oasis-open.org/xliff/xliff-media/v2.0/cs01/xliff-media-v2.0-cs01.html
http://docs.oasis-open.org/xliff/xliff-media/v2.0/cs01/xliff-media-v2.0-cs01.html
https://lists.oasis-open.org/archives/xliff/201502/msg00004.html
https://lists.oasis-open.org/archives/xliff/201502/msg00004.html
https://www.iana.org/assignments/provisional-standard-media-types/provisional-standard-media-types.xhtml
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html

Draft (wd) stage at https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html and is backwards
compatible with XLIFF Version 2.1.

• Applications that use this media type:

XLIFF conformant applications, according to the Conformance Section of this specification

• Fragment identifier considerations:

Generic XML processors won't be able to resolve XLIFF fragment identifiers, as the fragment identi-
fication syntax is specific for XLIFF and has been defined in its Fragment Identification section as of
csd03/csprd03 of XLIFF Version 2.1.

• Intended usage: COMMON

• Restrictions on usage: N/A

• Author:

OASIS XML Localisation Interchange File Format (XLIFF) TC Editors: Tom Comerford,
<tom@supratext.com>; David Filip, <david.filip@adaptcentre.ie>; Yves Savourel,
<ysavourel@enlaso.com>

• Change controller:

OASIS XML Localisation Interchange File Format (XLIFF) TC https://www.oasis-open.org/commit-
tees/xliff/

Bryan Schnabel, <bryan.s.schnabel@tektronix.com>, Chair

Tom Comerford, <tom@supratext.com>, Secretary

David Filip, <david.filip@adaptcentre.ie>, Secretary

• Provisional registration? (standards tree only): NO

• Additional information:

• Deprecated alias names for this type: N/A

• Magic number(s): N/A

• File extension(s): xlf

• Macintosh file type code(s): "TEXT"

• Person & email address to contact for further information:

OASIS Technical Committee administration <tc-admin@oasis-open.org>

A.1.1 Detailed Security Considerations
A.1.1.1 Privacy, trust and integrity
XLIFF is a format for localization and translation, privacy, trust and integrity requirements will widely
depend on the type of content that is being exchanged translating end user manuals for a dishwasher
will have lower privacy requirements than translating clinical tests results for a pharma company.

The XLIFF format does not offer any internal mechanisms to provide privacy, convey trust or verify the
integrity of XLIFF documents. If such features are needed varies from case to case. Implementations
that will process documents in cases where one or more of these features are required need to implement

3 December 2021xliff-core-v2.2-wd
Page 71 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/xliff-core-v2.2.html
mailto:tom@supratext.com
mailto:david.filip@adaptcentre.ie
mailto:ysavourel@enlaso.com
https://www.oasis-open.org/committees/xliff/
https://www.oasis-open.org/committees/xliff/
mailto:bryan.s.schnabel@tektronix.com
mailto:tom@supratext.com
mailto:david.filip@adaptcentre.ie
mailto:tc-admin@oasis-open.org

that outside of the XLIFF format. Transport privacy may for example be provided by SSL/TLS. Storage
privacy could be implemented by encrypting the XLIFF content using XML encryption or some other
appropriate means. Likewise the trust and integrity checks could be implemented using XML signatures
or by some other technology that is appropriate for the particular implementation.

A.1.1.2 Core
<skeleton> via attribute href

There is no requirement that an implementation dereference and load the skeleton. But it must be as-
sumed that some do. An implementation is free to provide any type of resource as the skeleton including
executables.

<mrk> via attribute ref for Term Annotations and some custom annotations

For term annotations there may be a risk by downloading or directing the user to access an external
resource. For custom annotations the same applies but an implementation is not required to process
the ref attribute on custom annotations but it must be expected that some will. Especially the term an-
notation one may be an issue as a reasonable implementation may just launch the URI expecting a web
browser or viewer application to handle it.

A.1.1.3 Resource Data Module
<res:source> via attribute href

<res:target> via attribute href

Both of these may reference executable or otherwise unsafe external data. Either as a resource that
need processing or to present additional information to the user from a resource of arbitrary type. Essen-
tially the same considerations as for the term annotation in core applies here especially for reference
material. The intent is to present arbitrary typed data to the user.

A.1.1.4 ITS Module
As the ITS Module brings a large number of ITS features natively to XLIFF, Security considerations of
application/its+xml, as described in [ITS] https://www.w3.org/TR/its20/#its-mime-type should be
taken into consideration, albeit largely overlapping with XLIFF general Security considerations described
above.

A.1.1.5 Other potentially security sensitive constructs

A.1.1.5.1 Extension by arbitrary XML on <file>, <group> and <unit>

Allows embedding of arbitrary XML structures at these points.

A.1.1.5.2 Extension by customattributes on <xliff>, <file>, <group>, <unit>,<note>,<mrk>

and <sm>

Custom attribute extension is likely not as sensitive as embedding of arbitrary XML structures and will
not in itself pose any threat except potentially for the implementers of the extension.

A.1.1.5.3 Format Style Module

Uses HTML element names as values of the attribute fs

Validating allowed element names may decrease risk, but due to the attribute subFs cannot eliminate
it. Attribute subFs allows arbitrary additional attributes for injection into HTML elements defined in the
fs attributes. This could be used to inject active content such as JavaScript into the preview HTML
document or reference external resources. Implementations need to take normal precautions when

3 December 2021xliff-core-v2.2-wd
Page 72 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://www.w3.org/TR/its20/#its-mime-type

rendering, as if rendering an arbitrary page on the web unless it can know for sure it can trust the docu-
ment. XLIFF itself does not provide a facility to communicate trust or protect a document from modification.
If such features are needed they must be implemented external the XLIFF format.

Actual consumable HTML is only produced by implementers of this modules via XSLT or similar.

3 December 2021xliff-core-v2.2-wd
Page 73 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

Appendix B Machine Readable Validation
Artifacts (Informative)
This appendix summarizes information on machine readable validation artifacts for XLIFF Version 2.2

1. XLIFF Core [XML Schema],

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd

2. [XML Catalog] of XLIFF Defined XML Schemas,

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/catalog.xml

3. Master [NVDL] file governing validation of all XLIFF Defined namespaces by XML Schemas,
Schematron Schemas and other rules if and as required,

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_2_advanced_validation.nvdl

4. XLIFF Core [Schematron] Schema,

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.sch

5. XML and Schematron Schemas of XLIFF Modules are referenced from those modules.

The basic grammar and structure of XLIFF 2.2 is defined using ten (10) XML Schemas and one (1) XML
catalog. The module schemas are specifically referenced from their respective modules.

Advanced static Constraints and dynamic Processing Requirements that could not be expressed using
[XML Schema] 1.0 are expressed in nine (9) Schematron schemas.

Relationships among all of the above mentioned machine readable validation artifacts provided as part
of this multipart product is expressed using one (1) NVDL schema.

Warning

Albeit the TC has made effort to cover the prose specification with standardized declarative
validation artifacts to the maximum possible extent, there are some inherent limitations to the
Schema languages employed to perform the validation. The informative Test Suite provided
through the XLIFF TC SVN does contain a number of invalid files that cannot be caught using
only the normative validation artifacts that are distributed as part of this multipart Standard
product. For instance [BCP47] compliance of srcLang, trgLang, or xml:lang cannot be fully
validated by either W3C XML Schema or Schematron. Custom code is required to check this.

Warning

NVDL is not capable of discerning Schemtaron Warnings from Schematron Errors. Therefore
all Schematron Warnings will be reported as Errors when initiating the validation from the NVDL
schema. Also most of the existing Schematron implementations are not capable of discerning
Warnings from Errors, thus implementers are encouraged to re-use the provided Schematron
schemas in custom made validation services that can make this distinction. Currently, the
Warning/Error distinction is only important when evaluating adherence to Processing Require-
ments for Editing Hints in relation to segment state. It will be also beneficial for implementers
who want to add project specific rules based on the Validation Module.

3 December 2021xliff-core-v2.2-wd
Page 74 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/catalog.xml
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_2_advanced_validation.nvdl
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.sch
http://tools.oasis-open.org/version-control/browse/wsvn/xliff/trunk/xliff-21/test-suite/#_trunk_xliff-21_test-suite_

B.1 XML Schemas Tree

Master NVDL Schema
 | |
 | Core XML Schema|
 | |
 | +---Candidates Module XML Schema
 | |
 | +---Glossary Module XML Schema
 | |
 | +---Format Style Module XML Schema
 | |
 | +---Metadata Module XML Schema
 | |
 | +---Resource Data Module XML Schema

 | |
 | +---Size and Length Restriction Module XML Schema
 | |
 | +---Validation Module XML Schema
 | |
 | +---ITS Module XML Schema (W3C namespace subset)
 | |
 | +---ITS Module XML Schema (additional attributes)
 |
 +---Core constraints
 |
 +---Candidates Module Constraints
 |
 +---Glossary Module Constraints
 |
 +---Format Style Module Constraints
 |
 +---Resource Data Module Constraints
 |
 +---Size and Length Restriction Module Constraints

 |
 +---Metadata Module Constraints
 |
 +---Validation Module Constraints
 |
 +---ITS Module Constraints

B.2 Support Schemas
Third party support schemas that are normatively referenced from this specification or from the machine
readable artifacts that are a part of this multipart product are distributed along with the XLIFF-defined
schemas in a subfolder named informativeCopiesOf3rdPartySchemas and further subdivided
in folders according to the owner/maintainer of the schema.

3 December 2021xliff-core-v2.2-wd
Page 75 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_2_advanced_validation.nvdl
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/matches.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/glossary.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/fs.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/metadata.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/resource_data.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/size_restriction.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/validation.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/its.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/itsm.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/matches.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/glossary.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/fs.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/resource_data.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/size_restriction.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/metadata.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/validation.sch
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/its.sch

Warning

Schema copies in this sub-folder are provided solely for implementers convenience and are
NOT a part of the OASIS multipart product. These schemas belong to their respective owners
and their use is governed by their owners' respective IPR policies. The support schemas are
organized in folders per owner/maintainer. It is the implementer's sole responsibility to ensure
that their local copies of all schemas are the appropriate up to date versions.

Currently the only included third party support schema is http://www.w3.org/2001/xml.xsd [ht-
tp://www.w3.org/2009/01/xml.xsd] at https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/inform-
ativeCopiesOf3rdPartySchemas/w3c/xml.xsd in this distribution.

3 December 2021xliff-core-v2.2-wd
Page 76 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://www.w3.org/2001/xml.xsd
http://www.w3.org/2009/01/xml.xsd
http://www.w3.org/2009/01/xml.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/informativeCopiesOf3rdPartySchemas/w3c/xml.xsd
https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/informativeCopiesOf3rdPartySchemas/w3c/xml.xsd

Appendix C Specification Change Tracking
(Informative)
C.1High Level Summary of Changesmade in Compar-
ison to XLIFF Version 2.1
This is to facilitate human tracking of changes between XLIFF Versions 2.2 and 2.1.

1. Two major features are being added in XLIFF Version 2.2:

a. Advanced Validation methods

b. Native Support for ITS 2.0

2. The Change Tracking Module was demoted to an extension to free hands of the TC and other im-
plementers while working on a new version of the Change Tracking Module for XLIFF 2.2.

3. A major bug fix was performed on the core xsd. The core xsd now enforces the xs:language data
type on the srcLang and trgLang attributes. It was critical to make this fix, because -- as per
OASIS policy -- validation artifacts would prevail over the prose provisions that are correct in both
XLIFF 2.2 and XLIFF 2.1.

4. Also an erroneously omitted Constraint of the xml:lang attribute on the <source> element has
been added/restored in the normative text.

5. Apart from the five (5) major changes mentioned above, numerous editorial bugfixes were made
to secure greater clarity, either by fixing example errors or omissions, or by reorganizing normative
content, so that the intent becomes clear and unequivocal at some troublesome places highlighted
by XLIFF 2.1 implementers.

6. Importantly, the TC decided to drop informative listings of the validation artifacts that had bloated
the spec extent unnecessarily, were hard to keep in sync with the actual normative artifacts, while
their actual usability proved rather limited -- readers who were able to read schema languages
would not actually read them as printed listings and would anyways refer to the actual validation
artifacts that are now referenced more prominently.

In spite of the above mentioned changes, fixes, clarifications, and additions, the practical workings of
the XLIFF Core hasn't been affected and none of the changes (except the bugfixes under 3 and 4) have
affected the core namespace "urn:oasis:names:tc:xliff:document:2.0" or the XLIFF Core
[XML Schema], https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd that ex-
presses its basic grammar and structure.

C.2 Tracking of changes made in response to Public
Reviews
This is to facilitate human tracking of changes in the specification made since the first Public Review
publication on 26th October 2016.

3 December 2021xliff-core-v2.2-wd
Page 77 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://docs.oasis-open.org/xliff/xliff-core/v2.2/wd/schemas/xliff_core_2.0.xsd

C.2.1 Tracking of changes in response to the Public Review of
the Candidate OASIS Standard 01
This section tracks all changes made to this specification compared to the Candidate OASIS Standard
01 http://docs.oasis-open.org/xliff/xliff-core/v2.1/cos01/xliff-core-v2.1-cos01.html. This Public Review
took place from 20th October 2017 until 19th December 2017.

1. An important typo in several occurrences of the W3C ITS namespace has been fixed in response
to Comment/Issue https://issues.oasis-open.org/browse/XLIFF-73. The typo did confuse implementers
although the correct namespace had been used throughout the validation artifacts.

2. A minor editorial improvement was made in response to Comment/Issue https://issues.oasis-
open.org/browse/XLIFF-72.

C.2.2 Tracking of changes in response to the 4th Public Review
This section tracks all changes made to this specification compared to the Committee Specification Draft
04 / Public Review Draft 04 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd04/xliff-core-v2.1-
csprd04.html. This subsequent Public Review took place from 5th June 2017 until 20th June 2017.

1. Xpath expressions have been fixed in ITS Rules in response to Comment/Issue https://issues.oasis-
open.org/browse/XLIFF-58.

2. Minor editorial fixes and improvements were made in response to Comments/Issues https://is-
sues.oasis-open.org/browse/XLIFF-57, https://issues.oasis-open.org/browse/XLIFF-62, https://is-
sues.oasis-open.org/browse/XLIFF-63, https://issues.oasis-open.org/browse/XLIFF-64, https://is-
sues.oasis-open.org/browse/XLIFF-65, https://issues.oasis-open.org/browse/XLIFF-66, and https://is-
sues.oasis-open.org/browse/XLIFF-70.

3. Trivial editorial fixes and improvements were made in response to Comments/Issues https://is-
sues.oasis-open.org/browse/XLIFF-59, https://issues.oasis-open.org/browse/XLIFF-60, and https://is-
sues.oasis-open.org/browse/XLIFF-61.

C.2.3 Tracking of changes in response to the 3rd Public Review
This section tracks all changes made to this specification compared to the Committee Specification Draft
03 / Public Review Draft 03 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd03/xliff-core-v2.1-
csprd03.html. This subsequent Public Review took place from 17th April 2017 until 1st May 2017.

1. Major bug fix of the core Schematron Schema has been made in response to Comment/Issue ht-
tps://issues.oasis-open.org/browse/XLIFF-48. The core Schematron now enforces that non-reorder-
able sequences start with a code with canReorder set to firstNo and also enforces the repetition
of non-reorderable sequences in <target> elements. In connection with this issue, issues https://is-
sues.oasis-open.org/browse/XLIFF-10 and https://issues.oasis-open.org/browse/XLIFF-11 were
reopened and changes in core Schematron made to ensure that the rules for enforcing of editing
hints compliance in target elements worked properly in concert with reporting of invalid <segment>
state.

2. Another major bug fix was due reopened https://issues.oasis-open.org/browse/XLIFF-38, validation
methods had to be adjusted for core and core reused in modules in the NVDL.

3. An erroneously omitted Constraint of the xml:lang attribute on the <source> element has be
added/restored in the normative text and check therefore introduced in the Core Schematron Schema
in response to Issue/Comment https://issues.oasis-open.org/browse/XLIFF-55.

4. its:version attribute was introduced in response to Issue/Comment https://issues.oasis-
open.org/browse/XLIFF-54.

3 December 2021xliff-core-v2.2-wd
Page 78 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://docs.oasis-open.org/xliff/xliff-core/v2.1/cos01/xliff-core-v2.1-cos01.html
https://issues.oasis-open.org/browse/XLIFF-73
https://issues.oasis-open.org/browse/XLIFF-72
https://issues.oasis-open.org/browse/XLIFF-72
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd04/xliff-core-v2.1-csprd04.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd04/xliff-core-v2.1-csprd04.html
https://issues.oasis-open.org/browse/XLIFF-58
https://issues.oasis-open.org/browse/XLIFF-58
https://issues.oasis-open.org/browse/XLIFF-57
https://issues.oasis-open.org/browse/XLIFF-57
https://issues.oasis-open.org/browse/XLIFF-62
https://issues.oasis-open.org/browse/XLIFF-63
https://issues.oasis-open.org/browse/XLIFF-63
https://issues.oasis-open.org/browse/XLIFF-64
https://issues.oasis-open.org/browse/XLIFF-65
https://issues.oasis-open.org/browse/XLIFF-65
https://issues.oasis-open.org/browse/XLIFF-66
https://issues.oasis-open.org/browse/XLIFF-70
https://issues.oasis-open.org/browse/XLIFF-70
https://issues.oasis-open.org/browse/XLIFF-59
https://issues.oasis-open.org/browse/XLIFF-59
https://issues.oasis-open.org/browse/XLIFF-60
https://issues.oasis-open.org/browse/XLIFF-61
https://issues.oasis-open.org/browse/XLIFF-61
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd03/xliff-core-v2.1-csprd03.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd03/xliff-core-v2.1-csprd03.html
https://issues.oasis-open.org/browse/XLIFF-48
https://issues.oasis-open.org/browse/XLIFF-48
https://issues.oasis-open.org/browse/XLIFF-10
https://issues.oasis-open.org/browse/XLIFF-10
https://issues.oasis-open.org/browse/XLIFF-11
https://issues.oasis-open.org/browse/XLIFF-38
https://issues.oasis-open.org/browse/XLIFF-55
https://issues.oasis-open.org/browse/XLIFF-54
https://issues.oasis-open.org/browse/XLIFF-54

5. Due to reopening of https://issues.oasis-open.org/browse/XLIFF-8, mapping of
locQualityRatingScore was removed from matchQuality. This eased the implementation
of both ITS MT Confidence end Localization Quality Rating considerably.

6. Changes were made to validation of annotatorsRef attribute in response to Issue/Comment ht-
tps://issues.oasis-open.org/browse/XLIFF-52. Examples using annotatorsRef had be reformatted
not to suggest a wrong interpretation of the attribute.

7. Editorial fixes were made in response to Comments/Issues: https://issues.oasis-
open.org/browse/XLIFF-47, https://issues.oasis-open.org/browse/XLIFF-50, https://issues.oasis-
open.org/browse/XLIFF-51, https://issues.oasis-open.org/browse/XLIFF-53 and https://issues.oasis-
open.org/browse/XLIFF-56.

C.2.4 Tracking of changes in response to the 2nd Public Review
This section tracks major changes made to this specification compared to the Committee Specification
Draft 02 / Public Review Draft 02 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-
csprd02.html. This subsequent Public Review took place from 10th February 2017 until 24th February
2017.

1. The Change Tracking Module has been demoted to an Extension and the update of the Change
Tracking Module has been postponed for XLIFF 2.2 in response to the Comment/Issue https://is-
sues.oasis-open.org/browse/XLIFF-32. This radical move obsoleted the dependent Comments/Issues:
https://issues.oasis-open.org/browse/XLIFF-21 https://issues.oasis-open.org/browse/XLIFF-22, ht-
tps://issues.oasis-open.org/browse/XLIFF-30, and https://issues.oasis-open.org/browse/XLIFF-44.

2. Major bugfix of the core XML Schema has been made in response to Comment/Issue https://is-
sues.oasis-open.org/browse/XLIFF-46. The core xsd now enforces the xs:language type on the
srcLang and trgLang attributes.

3. Major fix to the NVDL Schema has been made in response to Comment/Issue https://issues.oasis-
open.org/browse/XLIFF-38.

4. Erroneous namespace, data type, and/or rules provisions have been fixed in the ITS Module prose
and validation artifacts in response to Comments/Issues: https://issues.oasis-open.org/browse/XLIFF-
33, https://issues.oasis-open.org/browse/XLIFF-34, https://issues.oasis-open.org/browse/XLIFF-35
and https://issues.oasis-open.org/browse/XLIFF-45.

5. Material changes have been made to the Locale Filter data category in the ITS Module in response
to Comment/Issue https://issues.oasis-open.org/browse/XLIFF-43.

6. Major editorial changes have been made in response to Comments/Issues: https://issues.oasis-
open.org/browse/XLIFF-23, https://issues.oasis-open.org/browse/XLIFF-24, https://issues.oasis-
open.org/browse/XLIFF-37, and https://issues.oasis-open.org/browse/XLIFF-42.

7. Minor editorial changes have been made in response to Comments/Issues: https://issues.oasis-
open.org/browse/XLIFF-26, https://issues.oasis-open.org/browse/XLIFF-28, https://issues.oasis-
open.org/browse/XLIFF-31, https://issues.oasis-open.org/browse/XLIFF-36, https://issues.oasis-
open.org/browse/XLIFF-39, https://issues.oasis-open.org/browse/XLIFF-40, and https://issues.oasis-
open.org/browse/XLIFF-41.

8. Trivial editorial changes have been made in response to Comments/Issues: https://issues.oasis-
open.org/browse/XLIFF-25, https://issues.oasis-open.org/browse/XLIFF-27, and https://issues.oasis-
open.org/browse/XLIFF-29.

3 December 2021xliff-core-v2.2-wd
Page 79 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

https://issues.oasis-open.org/browse/XLIFF-38
https://issues.oasis-open.org/browse/XLIFF-52
https://issues.oasis-open.org/browse/XLIFF-52
https://issues.oasis-open.org/browse/XLIFF-47
https://issues.oasis-open.org/browse/XLIFF-47
https://issues.oasis-open.org/browse/XLIFF-50
https://issues.oasis-open.org/browse/XLIFF-51
https://issues.oasis-open.org/browse/XLIFF-51
https://issues.oasis-open.org/browse/XLIFF-53
https://issues.oasis-open.org/browse/XLIFF-56
https://issues.oasis-open.org/browse/XLIFF-56
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
https://issues.oasis-open.org/browse/XLIFF-32
https://issues.oasis-open.org/browse/XLIFF-32
https://issues.oasis-open.org/browse/XLIFF-22
https://issues.oasis-open.org/browse/XLIFF-22
https://issues.oasis-open.org/browse/XLIFF-22
https://issues.oasis-open.org/browse/XLIFF-22
https://issues.oasis-open.org/browse/XLIFF-44
https://issues.oasis-open.org/browse/XLIFF-46
https://issues.oasis-open.org/browse/XLIFF-46
https://issues.oasis-open.org/browse/XLIFF-38
https://issues.oasis-open.org/browse/XLIFF-38
https://issues.oasis-open.org/browse/XLIFF-33
https://issues.oasis-open.org/browse/XLIFF-33
https://issues.oasis-open.org/browse/XLIFF-34
https://issues.oasis-open.org/browse/XLIFF-34
https://issues.oasis-open.org/browse/XLIFF-45
https://issues.oasis-open.org/browse/XLIFF-43
https://issues.oasis-open.org/browse/XLIFF-23
https://issues.oasis-open.org/browse/XLIFF-23
https://issues.oasis-open.org/browse/XLIFF-24
https://issues.oasis-open.org/browse/XLIFF-37
https://issues.oasis-open.org/browse/XLIFF-37
https://issues.oasis-open.org/browse/XLIFF-42
https://issues.oasis-open.org/browse/XLIFF-26
https://issues.oasis-open.org/browse/XLIFF-26
https://issues.oasis-open.org/browse/XLIFF-28
https://issues.oasis-open.org/browse/XLIFF-31
https://issues.oasis-open.org/browse/XLIFF-31
https://issues.oasis-open.org/browse/XLIFF-36
https://issues.oasis-open.org/browse/XLIFF-39
https://issues.oasis-open.org/browse/XLIFF-39
https://issues.oasis-open.org/browse/XLIFF-40
https://issues.oasis-open.org/browse/XLIFF-41
https://issues.oasis-open.org/browse/XLIFF-41
https://issues.oasis-open.org/browse/XLIFF-25
https://issues.oasis-open.org/browse/XLIFF-25
https://issues.oasis-open.org/browse/XLIFF-27
https://issues.oasis-open.org/browse/XLIFF-29
https://issues.oasis-open.org/browse/XLIFF-29

C.2.5 Tracking of changes in response to the 1st Public Review
This section tracks major changes made to this specification compared to the Committee Specification
Draft 01 / Public Review Draft 01 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-
csprd01.html. The initial Public Review took place from 26th October 2016 until 25th November 2016.

1. Major changes were made in the ITS Module and validation artifacts in response to Comment/Issues
https://issues.oasis-open.org/browse/XLIFF-5 and most importantly https://issues.oasis-
open.org/browse/XLIFF-9 and its child issues: https://issues.oasis-open.org/browse/XLIFF-6, ht-
tps://issues.oasis-open.org/browse/XLIFF-18, and https://issues.oasis-open.org/browse/XLIFF-19.

2. Major changes were made in the Change Tracking Module and validation artifacts in response to
Comment/Issue https://issues.oasis-open.org/browse/XLIFF-4

3. Clarifications to Core with Advanced Validation impact, non-of which were normative changes were
provided in response to Comments/Issues: https://issues.oasis-open.org/browse/XLIFF-10, https://is-
sues.oasis-open.org/browse/XLIFF-11, https://issues.oasis-open.org/browse/XLIFF-12, https://is-
sues.oasis-open.org/browse/XLIFF-13, https://issues.oasis-open.org/browse/XLIFF-14

4. Material clarification with Advanced Validation Impact was provided for the Translation Candidate
Module in response to Issue https://issues.oasis-open.org/browse/XLIFF-20.

5. Editorial changes have been made in response to Comments/Issues: https://issues.oasis-
open.org/browse/XLIFF-1, https://issues.oasis-open.org/browse/XLIFF-2, https://issues.oasis-
open.org/browse/XLIFF-3, https://issues.oasis-open.org/browse/XLIFF-7, https://issues.oasis-
open.org/browse/XLIFF-15, and https://issues.oasis-open.org/browse/XLIFF-17.

3 December 2021xliff-core-v2.2-wd
Page 80 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html
https://issues.oasis-open.org/browse/XLIFF-5
https://issues.oasis-open.org/browse/XLIFF-9
https://issues.oasis-open.org/browse/XLIFF-9
https://issues.oasis-open.org/browse/XLIFF-6
https://issues.oasis-open.org/browse/XLIFF-18
https://issues.oasis-open.org/browse/XLIFF-18
https://issues.oasis-open.org/browse/XLIFF-19
https://issues.oasis-open.org/browse/XLIFF-4
https://issues.oasis-open.org/browse/XLIFF-10
https://issues.oasis-open.org/browse/XLIFF-11
https://issues.oasis-open.org/browse/XLIFF-11
https://issues.oasis-open.org/browse/XLIFF-12
https://issues.oasis-open.org/browse/XLIFF-13
https://issues.oasis-open.org/browse/XLIFF-13
https://issues.oasis-open.org/browse/XLIFF-14
https://issues.oasis-open.org/browse/XLIFF-20
https://issues.oasis-open.org/browse/XLIFF-1
https://issues.oasis-open.org/browse/XLIFF-1
https://issues.oasis-open.org/browse/XLIFF-2
https://issues.oasis-open.org/browse/XLIFF-3
https://issues.oasis-open.org/browse/XLIFF-3
https://issues.oasis-open.org/browse/XLIFF-7
https://issues.oasis-open.org/browse/XLIFF-15
https://issues.oasis-open.org/browse/XLIFF-15
https://issues.oasis-open.org/browse/XLIFF-17

AppendixDAcknowledgements (Informative)
The following individuals have participated in the creation of this specification and are gratefully acknow-
ledged:

• Comerford, Tom - Individual
• Estreen, Fredrik - Lionbridge
• Filip, David - TCD, ADAPT Centre (formerly Localisation Research Centre)
• King, Ryan - Microsoft
• Loomis, Steven - IBM
• Morado Vázquez, Lucía - University of Geneva
• Ritchie, Phil - Vistatec
• Soroush Saadatfar, Localisation Research Centre
• Felix Sasaki - Individual
• Savourel, Yves - ENLASO Corporation
• Schnabel, Bryan - Individual
• Tingley, Chase - Spartan Software Inc.

3 December 2021xliff-core-v2.2-wd
Page 81 of 81Copyright © OASIS Open 2021. All rights reserved.Standards Track Work Product

	XLIFF Core Version 2.2
	Table of Contents
	1 Introduction
	1.1 Terminology
	1.1.1 Key words
	1.1.2 Definitions
	1.1.3 Key concepts

	1.2 Normative References
	

	1.3 Non-Normative References
	

	2 Conformance
	3 Fragment Identification
	3.1 Selectors for Core Elements
	3.2 Selectors for Modules and Extensions
	3.3 Relative References
	3.4 Examples

	4 The Core Specification
	4.1 General Processing Requirements
	4.2 Elements
	4.2.1 Tree Structure
	4.2.2 Structural Elements
	4.2.2.1 xliff
	4.2.2.2 file
	4.2.2.3 skeleton
	4.2.2.4 group
	4.2.2.5 unit
	4.2.2.6 segment
	4.2.2.7 ignorable
	4.2.2.8 notes
	4.2.2.9 note
	4.2.2.10 originalData
	4.2.2.11 data
	4.2.2.12 source
	4.2.2.13 target

	4.2.3 Inline Elements
	4.2.3.1 cp
	4.2.3.2 ph
	4.2.3.3 pc
	4.2.3.4 sc
	4.2.3.5 ec
	4.2.3.6 mrk
	4.2.3.7 sm
	4.2.3.8 em

	4.3 Attributes
	4.3.1 XLIFF Attributes
	4.3.1.1 appliesTo
	4.3.1.2 canCopy
	4.3.1.3 canDelete
	4.3.1.4 canOverlap
	4.3.1.5 canReorder
	4.3.1.6 canResegment
	4.3.1.7 category
	4.3.1.8 copyOf
	4.3.1.9 dataRef
	4.3.1.10 dataRefEnd
	4.3.1.11 dataRefStart
	4.3.1.12 dir
	4.3.1.13 disp
	4.3.1.14 dispEnd
	4.3.1.15 dispStart
	4.3.1.16 equiv
	4.3.1.17 equivEnd
	4.3.1.18 equivStart
	4.3.1.19 hex
	4.3.1.20 href
	4.3.1.21 id
	4.3.1.22 isolated
	4.3.1.23 name
	4.3.1.24 order
	4.3.1.25 original
	4.3.1.26 priority
	4.3.1.27 ref
	4.3.1.28 srcDir
	4.3.1.29 srcLang
	4.3.1.30 startRef
	4.3.1.31 state
	4.3.1.32 subFlows
	4.3.1.33 subFlowsEnd
	4.3.1.34 subFlowsStart
	4.3.1.35 subState
	4.3.1.36 subType
	4.3.1.37 trgLang
	4.3.1.38 translate
	4.3.1.39 trgDir
	4.3.1.40 type
	4.3.1.41 value
	4.3.1.42 version

	4.3.2 XML namespace
	4.3.2.1 xml:lang
	4.3.2.2 xml:space

	4.4 CDATA sections
	4.5 XML Comments
	4.6 XML Processing Instructions
	4.7 Inline Content
	4.7.1 Text
	4.7.1.1 Characters invalid in XML

	4.7.2 Inline Codes
	4.7.2.1 Representation of the codes
	4.7.2.2 Usage of <pc> and <sc>/<ec>
	4.7.2.3 Storage of the original data
	4.7.2.3.1 No storage of the original data
	4.7.2.3.2 Storage of the original data

	4.7.2.4 Adding Codes
	4.7.2.4.1 Duplicating an existing code
	4.7.2.4.2 Creating a brand-new code
	4.7.2.4.3 Converting text into a code

	4.7.2.5 Removing Codes
	4.7.2.5.1 Deleting a code
	4.7.2.5.2 Converting a code into text

	4.7.2.6 Editing Hints

	4.7.3 Annotations
	4.7.3.1 Type of Annotations
	4.7.3.1.1 Translate Annotation
	4.7.3.1.2 Term Annotation
	4.7.3.1.3 Comment Annotation
	4.7.3.1.4 Custom Annotation

	4.7.3.2 Splitting Annotations

	4.7.4 Sub-Flows
	4.7.5 White Spaces
	4.7.6 Bidirectional Text
	4.7.7 Target Content Modification
	4.7.7.1 Without an Existing Target
	4.7.7.2 With an Existing Target

	4.7.8 Content Comparison

	4.8 Segmentation
	4.8.1 Segments Representation
	4.8.2 Segments Order
	4.8.3 Segmentation Modification
	4.8.4 Best Practice for Mergers (Informative)

	4.9 Extension Mechanisms
	4.9.1 Extension Points
	4.9.1.1 Extensibility of XLIFF Modules

	4.9.2 Constraints
	4.9.3 Processing Requirements

	Appendix A Media Type Registration Template for XLIFF Version 2.0 and higher Versions (Normative)
	A.1 Registration Template
	A.1.1 Detailed Security Considerations
	A.1.1.1 Privacy, trust and integrity
	A.1.1.2 Core
	A.1.1.3 Resource Data Module
	A.1.1.4 ITS Module
	A.1.1.5 Other potentially security sensitive constructs
	A.1.1.5.1 Extension by arbitrary XML on <file>, <group> and <unit>
	A.1.1.5.2 Extension by custom attributes on <xliff>, <file>, <group>, <unit>,<note>,<mrk> and <sm>
	A.1.1.5.3 Format Style Module

	Appendix B Machine Readable Validation Artifacts (Informative)
	B.1 XML Schemas Tree
	B.2 Support Schemas

	Appendix C Specification Change Tracking (Informative)
	C.1 High Level Summary of Changes made in Comparison to XLIFF Version 2.1
	C.2 Tracking of changes made in response to Public Reviews
	C.2.1 Tracking of changes in response to the Public Review of the Candidate OASIS Standard 01
	C.2.2 Tracking of changes in response to the 4th Public Review
	C.2.3 Tracking of changes in response to the 3rd Public Review
	C.2.4 Tracking of changes in response to the 2nd Public Review
	C.2.5 Tracking of changes in response to the 1st Public Review

	Appendix D Acknowledgements (Informative)

