
 1

Introduction
I voted yes on the ballot to promote XRI Resolution WD11 to OASIS committee draft because I feel that the
specification (the “spec”) captures enough of the underlying resolution model that conformance among
implementations can be achieved in practice. However I am in disagreement with the spec in some key
architectural areas, and I thus present this document as a way to capture these disagreements.

My positions on these matters are well known among the spec editors, and this document does not attempt
to formalize arguments. Rather, it serves as a rough compilation of arguments I have presented earlier to
the TC. This is done in the event that it may help others to formalize and improve the spec architecturally as
it moves through standardization process.

This document is structured as a simple list of two primary “disagreements” followed by a set of appendixes
that contain versions of arguments previously submitted to the TC.

Disagreements

1. The Resolver functional interface is overloaded by URI resolution.

Until recently, the functional interface for XRI resolution (the XRI Resolver’s functional interface) defined
a mapping from an XRI (identifier) to a node in the XRI authority graph. This interface has now been
overloaded with the new functionality of mapping a URI to … well, to some other abstraction. (See
section 5.1 of the spec.)

The XRI resolution spec should be about—just that—XRI resolution. Functional interfaces for URI
resolution should be left to other specifications. (Note that an XRI resolver, such as the OpenXRI
resolver implemation, may indeed implement multiple interfaces. It seems that we have lost this basic
architectural consideration.)

This overloading has led to the relatively recent introduction of constructs EquivID and
CanonicalEquivID whose genesis evolved from requirements in the URI resolution space (specifically,
the OpenID “recycling” problem.) Since XRI resolution should not be overloaded by URI resolution in
the first place, these constructs also represent a fundamental overloading and should be removed. XRI
Resoution already has a means of traversing polyarchical edges in an authority graph, and that is the
Ref construct. (See appendix C below.) This construct is sufficient.

2. The resolution model’s fundamental abstractions are misrepresented.

XRI resolution has an elegant underlying model, and that model is captured and enforced by existing
reference implementations such as the OpenXRI and Barx resolvers. Ironically, the model is not
represented well by the spec.

I discuss these abstractions in appendix A below. There is an important distinction between (1) the
mapping of an identifier “to an XRD” and (2) the mapping of an identifier to an entity defined within a
formalized model—such as the XRI authority node. The spec consistently represents XRI resolution as
the former, and this leads to erroneous concepts such as “distributed XRDS management” being used
throughout the text (section 12.)

Appendix B below discusses why the term “synonym” should be used in the context of identifiers, such
as: I want to treat identifier A to be synonymous with identifier B because they both refer to the same
identity. The spec incorrectly tries to use the term synonym to categorize attributes of the identity itself
(sections 5, 14, etc.)

Finally, appendix C introduces the XRI authority graph itself and explains the notions of polyarchical
relationships and CanonicalID as an attribute that can be used to distinguish identity. These
fundamentation concepts are not captured in the spec.

By Steven Churchill
Nov. 25, 2007
steven.churchll@ootao.com

 2

Appendix A: On Identifiers and Identity

This is from an email I sent to the XRI list August 21, 2007. I have edited it here for context.

Introduction

Much of the continuing delays and confusion in the XRI Resolution Specification stem from a fundamental
lack of understanding of the underlying identity model. Much of this arises from the failure to make the
important distinction between the notions of identifier and identity.

The truly amazing thing is that despite these attempts, the XRI Resolution Specification today still stands
strong upon the foundation of its identity model. This makes XRI resolution an elegant and exceptionally
strong framework for solving many real-world problems for years to come.

In this email, I will lay out the core constructs of the identity model that underlies XRI resolution.

Identifiers and identity

The identity model of which I speak is quite simple: identifiers have a means of associating them with
some entity, where identity is the set of characteristics which distinguish one entity from another.

For example, the two identifiers “Steven Churchill” and “Steve Churchill” can be associated with the entity
(the human being) who is typing out this email. My identity is the set of characteristics which distinguish
one human being from another (my DNA, my “soul”). The means of associating my names to my identity
might simply be a social convention where people refer to me using these names (my social identity model),
or it might me a more formal means, such as that used by my bank (the bank’s identity model.)

XRI has an identity model illustrated in this example: the two identifiers =steven.churchill and
@ootao*steven can be associated with the XRI authority that has the CanonicalID value of
=!C5FB.53B6.6E94.824. The identity under this model is determined by the value of the CanonicalID—
this is the characteristic of the XRI authority that distinguishes it from all other XRI authorities. The means
of associating the identifiers to the identity is that of XRI Resolution—or more specifically, the act of
performing XRI resolution with a given set of input parameters.

For example, if you click on the first two links below, you will be using XRI resolution as the means of
associating the two identifiers to an identity (an XRI authority.) You can see here that the two identifiers
=steven.churchill and @ootao*steven have been associated with an XRI authority with the CanonicalID
value (identity) of =!C5FB.53B6.6E94.824. The third link is to show that, indeed, the means of
association is tied to the resolution input parameters—clicking on it renders a different identity than does
clicking on the second link. Same identifier, different identity.

http://beta.xri.net/=steven.churchill?_xrd_t=http://openid.net/signon/1.0&&_xrd_r=application/xrd+xml;sep=true;
http://beta.xri.net/@ootao*steven?_xrd_t=http://openid.net/signon/1.0&&_xrd_r=application/xrd+xml;sep=true;
http://beta.xri.net/@ootao*steven?_xrd_t=xri://+iservice*(+contact)*($v*1.0)&&_xrd_r=application/xrd+xml;sep=true;

(See the article at http://dev.inames.net/wiki/XRI_CanonicalID_Verification for more information about why
this is so.)

So what?

The important thing to take away from this discussion is this “precious distinction” between identifier and
identity. “=steven.churchill” and “@ootao*steven” are both identifiers. XRI resolution provides a means of
associating them with an entity that we call an XRI authority. Each XRI authority has an identity which is

 3

the characteristic that separates it from all other XRI authorities—in our case, it is the value of its
CanonicalID.

I have been told that this “precious distinction” does not exist. Here’s how Drummond puts it: “but a
CanonicalID is itself an identifier… thus there is really not a distinction between identifier and identity.” I
would advise not to allow yourself to fall prey to this thinking. The fact that the CanonicalID also happens to
be used as an identifier in some contexts does not in any way alter the fact that the CanonicalID is the
characteristic that distinguishes one XRI authority from another. The model has a clear and real notion of
identity and thus a clear and real distinction between identifier and identity. [I know that Drummond still
strenuously disagrees with me on this fundamental precept.]

By formalizing the CanonicalID (and its verification), XRI Resolution can be said to formally support only
a single identity model. This is the identity model that uses CanonicalIDs to distinguish the identity of XRI
authorities. It should be stressed, however, that this identity model (where CanonicalID determines identity)
is only one of a multitude of identity models allowed (although not formally supported) by XRI resolution.
XRI clients need not ever care about CanonicalIDs, and conformant authority resolution services may not
ever return a CanonicalID—yet this does not prevent a client from using other quite valuable and
meaningful ways of associating XRI identifiers with some notion of identity.

Authorities, XRDs, Resources, Registries

Unfortunately, the XRI TC still suffers confusion regarding these concepts.

What is an XRI authority? It is the entity in the above XRI identity model to which we ascribe identity. It is
the real-world entity (living in a real namespace registry) encapsulating the data for local identifiers, Refs,
service endpoints, and so forth—those things that often appear as metadata in an XRD. It is the record in
Les’ “global database” and the node in my hierarchical graph. (These are metaphors discussed in previous
emails.) Whereas the XRI authority encapsulates the actual data, metadata about the XRI authority is
described using an XRD as explained next.

What is an XRD? It is a bit of XML used to describe metadata about some “resource”. Under XRI
Resolution, the XRD provides metadata describing the actual data of the XRI authority. (So I guess this
makes an XRI authority a type of resource.) But an XRD is also used to describe other types of resources:
consider its usage under YADIS.

So when I go to provision the data for my XRI authority that is distinguished by the CanonicalID
=!C5FB.53B6.6E94.824 (that entity for which I shell out a few bucks every year) I know that my
provisioning will show up as metadata in an XRD used to describe my authority under XRI resolution. (To
be sure, not all my authority’s data will show up in the metadata. For example if I provision my authority with
a new local identifier *steve.churchill, and if I obtain an XRD by resolving =steven.churchill, then I will not
see that new local identifier, even though that is a real part of my authority’s data.)

Like failing to make the distinction between identifier and identity, the TC also commonly fails to make the
clear distinction between an authority’s actual data and an XRD’s metadata.

A final important construct is what I refer to as the XRI namespace registry. Each non-leaf node in my
hierarchical graph represents such a registry—a namespace for its child authorities. Les’ global database
metaphor can be thought of as being partitioned into these namespace registries. For example, the = and
@ namespace registries are hosted at NeuStar. The following diagram explains the role of the namespace
registry in relation to the other model constructs already presented above.

 4

XRI Resolution:

Understanding the difference between identifier and identity

The land of identifiers The land of identity

XRI Resolution (via XRI Resolver)

• Implements the association between an
XRI identifier (given a set of input
parameters) and an XRI Authority.

• Note that the only identity model formally
supported by XRI resolution is that
where the authority’s identity is
distinguished by its CanonicalID.

XRI Resolution Client

• Invokes the Resolver to establish an
association between a given identifier
and an XRI authority.

• May wish to use the “supported” identity
model—that is, the one where
CanonicalID distinguishes identity.

For example, it could treat XRI identifiers
that resolve to a given CanonicalID as
synonyms to the XRI authority using that
CanonicalID to distinguish its identity.

• May instead wish to use another model
of identity and synonymity. May in fact
wish not to support the notion of identifier
synonymity at all.

XRI Namespace Registry

• Stores XRI authorities within the same
XRI namespace. This can be modeled
as a node in the hierarchical authority
graph.

• Assigns (local) CanonicalDs to newly
created XRI authorities. Well-behaved
registries will never re-assign a
CanonicalID to a second authority.

• Provisions XRI authorities—that is,
allows the data associated with the
authority to be modified.

• Provides the authority resolution service
for the namespace: given a local
identifier for an authority, this returns a
metadata description of the authority in
the form of an XRD.

XRI Authority

• Contains provisionable data, such as
service endpoints, Refs, local
identifiers (for example, *steve and
*steven), contact agent (for GRS
global authorities), etc.

• Contains non-provisionable data,
such as the CanonicalID. (This
determines the authority’s identity!)

• Is managed by a namespace
registry.

 5

Appendix B: Use of term “synonym”

This is from another email I sent to the XRI list August 21, 2007. I have edited it here for context.

Appendix A explains that our identity model contains a means of associating an identifier with an entity,
where identity is the set of characteristics that distinguish one entity from another. In XRI land, the entity is
the XRI authority, where the single characteristic that distinguishes one authority from another is the
CanonicalID. The identifier is the XRI that is passed to an XRI resolver as the means for associating that
identifier with its authority.

If you examine the diagram above, you will notice that the concept of synonymity appears only on the left
side of the diagram (in identifier land.) This is because the concept exists only within the framework—the
identity model—of the XRI client application. For example, if a client gets back the same CanonicalID when
resolving =steven.churchill and @ootao*steven then the client is free to use an identity model that
considers these identifiers as synonyms for a single identity. (And thus, for example, the client is free to
store the CanonicalID as the PK for its user account.) But many client applications might consider this
notion absurd and instead have different notions of identity and synonymity—or none at all.

The Resolution Specification makes the conceptual error of using the term “synonym” in regard to the right
side of the diagram (in identity land). This is in an attempt to categorize a set of the authority’s data
elements and call them “synonyms”. The spec incorrectly refers to CanonicalIDs, LocalIDs, Refs, EquivIDs,
and the like, as synonyms. The terms use in this context is arbitrary and obfuscating.

Like beauty, synonymity is in the eye of the beholder. Only the client application can determine the
synonymity model, and the client application only applies this notion to identifiers.

(Okay, there is one exception to this rule. It is okay to think of a “local identifiers” such as *steve and
*steven” as being “local synonyms” within the same registry namespace. This notion occurs on the right
side of the diagram.)

Appendix C: The XRI Authority Graph model for
CanonicalID verification.

This following is text that I had proposed for the spec in June 2007 that describes the underlying authority model, the
meaning of Refs, and polyarchical relationships. For another article on these topics, see
http://dev.inames.net/wiki/XRI_CanonicalID_Verification.

 6

1.1 Canonical ID Verification Graph Model

The Canonical ID Verification Graph Model establishes the foundation of identity required for the Canonical
ID verification of XRI synonyms.

1.1.1 Synonyms and absolute identity

XRI synonymity is one of the most important features of XRI Resolution. Identifier synonymity cannot exist
outside of an abstract model that formalizes the absolute identity of the object for which two identifiers
purport to be synonyms. In the Canonical ID Verification Graph Model, this object is the authority node
within the graph. Its absolute identity is defined by its canonical identifier path, which is represented using
the xrd:CanonicalID element of its XRD. (Definitions of italicized terms such as canonical identifier path
are given in section 1.1.7.)

Applications that support XRI synonyms may require a mechanism to safely verify that a given XRI is truly
synonymous with the object (the authority node) to which it purports synonymity. Otherwise, the XRD
returned for the purported synonym may contain illegitimate XRD metadata, such as a spoofed endpoint for
an authentication service. Canonical ID verification provides this mechanism for safely binding the XRI
synonym to the authority node’s canonical identifier path.

XRI Resolution does not preclude alternative models of XRI synonymity and/or object identity, however the
XRI Resolution Specification provides no mechanism for synonym verification under such alternative
models.

IMPORTANT: The graph model presented in this section describes relationships that validate under
Canonical ID verification. The model and its terminology are not intended for use outside of this constraint.

1.1.2 Graph Notation and Conventions

When an XRI is resolved, the authority segment of the XRI represents a path through the Canonical ID
Verification Graph. Each XRI subsegment traverses an edge to the next child authority node within the
graph as shown in Figure 0-1.

[@]

[@example]

*jane
{!1}

*john
{!1}

[@example*west*john]
[{@!1!1!1}]

*example
{!1}

*west
{!1}

*east
{!2}

[@example*east]

[@example*east*jane]
[{@!1!2!1}]

[@example*west]

Figure 0-1. Canonical ID Verification Graph diagram.

 7

1.1.3 Edges and local synonyms

The solid-line edges of the graph represent hierarchical parent-child relationships. (Under a hierarchy, a
given child node has at most a single parent.) Polyarchical parent-child relationships (where a child node
can have multiple parents) are denoted by dashed lines and are covered in section 1.1.5.

The hierarchical edges are labeled with one or more local synonyms. Local synonyms establish the naming
relationship between a parent authority node (in its context as an Authority Resolution Service) and the
child authority nodes within its namespace. Under XRI Resolution, each local synonym is addressed by the
names of the subsegments in the authority segment of the XRI providing the path through the graph. For
example, resolving the XRI @example*east*jane will result in traversing the edges containing the local
synonyms *example, *east, and *jane, and will produce the XRD for the node in the lower right corner of
Figure 0-1.

In the graph diagram, the labeled local synonyms may include one or more local canonical identifiers.
These are surrounded in the diagram with curly braces, as in {!1}, and they are represented using the
highest priority xrd:LocalId element(s) of the child node’s XRD.

The Resolver “queries” an Authority Resolution Service with the name of the local synonym in order to
obtain an XRD describing the given child. The local synonym may be returned in the xrd:Query element
of the resulting XRD.

1.1.4 Nodes

Nodes in the graph represent the “absolute identity” of the XRI authority, which, as stated above, is a
required property for verifying the synonymity of two XRIs. Under the constraints of the Canonical ID
Verification Graph Model, the local synonyms of each hierarchical edge must contain at least one local
canonical identifier. Thus authority nodes can be absolutely identified by a canonical identifier path
containing one local identifier subsegment for each edge up to the root. The identifier {@!1!2!1} in Figure
0-1 is an example of such a canonical identifier path.

Note that nodes in the diagram may be labeled with square brackets containing XRI synonyms that resolve
to the given node.

1.1.5 Polyarchical parent-child relationships

Figure 11-2 shows both hierarchical and polyarchical parent-child relationships. Polyarchical relationships
are represented in the diagram with dashed-line edges.

[@]

[@example]

[@example*john]
[{@!1!1}]

*example

*john
{!1}

*jane

[=]

[=jane.doe]
[@example*jane]
[{=!1}]

*jane.doe
{!1}

Figure 0-2: Polyarchical parent-child relationship.

This diagram indicates that @example*jane and =jane.doe are both verifiable synonyms for the authority
node with canonical identifier path {=!1}.

 8

Because the Canonical ID Verification Graph Model is constrained to those relationships that validate under
Canonical ID verification, any mechanism for establishing a polyarchical relationship must be subject to this
verification. The only mechanism for defining such verifiable polyarchical parent-child relationships is the
xrd:Ref element.

An xrd:Ref element forms a relationship from one authority node to another, however it is not a parent-
child relationship—its semantics are different. In essence, a Ref tells the Resolver, “if you cannot find the
service you’re looking for in my XRD, then replace my XRD by following this Ref, and look there.” [N.B. these

are the “old” Ref semantics. The Ref semantics have changed under the final WD11 with the addition of service-level

Refs.] Whereas these “replacement” semantics are clearly not “parent-child semantics” they effectively
create a parent-child relationship between the parent of the node containing the Ref and the Ref’s target.

Figure 0-3 uses the dotted line to represent the Ref for the polyarchical parent-child relationship “created”
by the Ref in Figure 11-2.

Note that the relationship denoted by the dotted line (the Ref relationship) does not exist within the
Canonical ID Verification Graph. The Ref is shown in

Figure 0-3 only to illustrate how the polyarchical edge of Figure 11-2 was created. Instead, only parent-child
relationships exist within the graph model. (Recall that edges in the graph represent subsegment traversal,
as explained in section 1.1.3.)

[@]

[@example]

[@example*john]
[{@!1!1}]

*example

*john

[@example*jane]
[{@!1!2}]

[=]

[=jane.doe]
[@example*jane]
[{=!1}]

*jane.doe

*jane

(Ref)

Figure 0-3. Showing the Ref that creates the polyarchical edge of Figure 11-2.

Under CanonicalID verification, a canonical identifier path is not valid unless it satisfies the rules presented
in section Error! Reference source not found.. During Ref processing, the Resolver applies these
verification rules to any XRI constituting the target of a Ref. Therefore, XRI synonyms that contain
polyarchical edges as created by Refs are verifiable within the model.

1.1.6 Resolver input parameters

Under XRI resolution, the synonymity of two XRIs is defined only with respect to Resolver input parameters.
That is, two XRIs can be synonymous with respect to one set of input parameters whereas they are not
synonymous with respect to another set of input parameters. This is because an xrd:Ref may be followed
under one set of parameters—establishing a given polyarchical parent-child relationship—whereas a
different Ref (or no Ref at all) may be followed under a different set of parameters (establishing a different
relationship.)

For example, under one set of Resolver input parameters, the XRI @example*jane may resolve to the
authority node with canonical identifier path {=!1} shown in Figure 11-2, whereas under another set of
input parameters it may resolve to the authority node with path {@!1!2} shown in

 9

Figure 0-3. The difference in input parameters may be something as simple as a difference in the requested
service type (xrd_t).

1.1.7 Definitions and Constraints

1.1.7.1 Local synonym

Local synonyms establish the naming relationship between a parent authority node (in its context as an
Authority Resolution Service) and the child authority nodes within its namespace. There must be at least
one local synonym for each parent-child relationship, and all local synonyms must be unique across the
given authority node’s children. When the Resolver queries an Authority Resolution Service with a local
synonym, the local synonym is returned within the xrd:Query element of the XRD. Local synonyms must be
a single XRI subsegment. Local canonical identifiers (section 1.1.7.2) are local synonyms.

1.1.7.2 Local canonical identifier

Local canonical identifiers are types of local synonyms that establish the canonical identity relationship
between a parent authority node (in its context as an Authority Resolution Service) and the child authority
nodes within its namespace. There must be at least one local canonical identifier for each parent-child
relationship, and all local canonical identifiers must be unique across the given authority node’s children.
When the Resolver queries an Authority Resolution Service with any local synonym, the local canonical
identifiers are returned in the XRD’s highest priority xrd:LocalID elements.

1.1.7.3 Canonical identifier path

An authority node’s absolute identity is established by one or more canonical identifier paths. When the
Resolver queries an Authority Resolution Service with any local synonym, the canonical identifier paths are
returned within the XRD’s highest priority xrd:CanonicalID elements. A canonical identifier path is valid
only under the rules defined in section Error! Reference source not found..

An authority node may have multiple canonical identifier paths (multiple highest priority xrd:CanonicalID
elements) but, because the authority node has only one absolute identify, each canonical identifier path
must be a proper synonymous path, as described in section 1.1.7.5. Lower priority xrd:CanonicalID
elements represent legacy canonical identifier paths resulting from the merging of two XRI authorities.
These are not validated under Canonical ID verification and are thus not represented in the graph.

[N.B. The above is no longer true, since in the final WD11 the cardinality of CanonicalID has been changed
from n to 1.]

1.1.7.4 Synonymous paths

Paths that lead to the same to the same node. These paths may include hierarchical and/or polyarchical
edges.

1.1.7.5 Proper synonymous paths

Hierarchical paths with the same number of edges that traverse the same nodes in the same order. These
include hierarchical edges only.

