Interposition

Description

A participant takes part in the termination protocol of a cohesion, i.e., receives the do/undo calls. When it receives these calls it applies them appropriately to the work it has done on behalf of that cohesion. A coordinator issues the termination protocol messages to the registered participants. It must make durable sufficient information to ensure that the protocol can be completed in the event of a failure of either itself or the participant(s).

When a service receives a context from an initiator (or indirectly from some other entity) that context essentially identifies a coordinator. The service may enlist itself (or some other distinct entity) as a participant in the cohesion using this addressing information.

A (BTP-aware) service can then fall into one of the following categories:

1) it only does work in a “contained” manner which does not involve any (BTP) calls outside of the service.

2) in addition to using and manipulating resources locally, in order to fulfill the request it may require to call out of itself to other BTP-aware services.

3) it is a “router” BTP-aware service, which does no work on behalf of the imported transaction but does call out of itself to other BTP-aware services.

[image: image1.wmf]

Atom coordinator C1

Client

Service A

Service B

Message +

Context [C1]

Message +

Context [??]

Participant P

A

Participant P

B

Case (1) has already been considered in the previous sections of this document. However, considering the diagram above, as soon as a BTP-aware service (A) calls out to another BTP-aware service (B), it is required to propagate a context to it in order that B can also take part in the cohesion. The simplest solution to this is that whatever context A received it propagates “as is” to B; therefore, whichever coordinator A enlists a participant (PA) with (C1 in the diagram), B will also enlist its participant with.

However, for a number of reasons (e.g., security, no direct route from C1 to B) it may be necessary or desirable for PA to interpose itself between the coordinator it deals with and for it to handle the enlistment of PB and its associated termination protocol (it becomes a subordinate-coordinator). In this case PA on behalf of A becomes a sub-coordinator for B (and for any locally enlisted participants for A), and the context that A sends to B will contain PA as the coordinator. The fact that the coordinator in the context has changed is transparent to B, and C1 does not see PB at all. Therefore, interposition sets up a superior/inferior relationship between C1 and PA, and between PA and PB. Note, if B subsequently sends other downstream messages it may also do interposition itself, thus forming a transaction tree structure of coordinators.
The work that PA must now do when it receives the termination message from C1 is different from when it was a “true” participant: it must act as a coordinator, forwarding the termination protocol messages to its enlisted participants, and acting upon their responses.

PREPARE

· If all of the responses indicate that the transaction can prepare, then PA must make this information durable along with data that it requires to complete the protocol in the event of a failure, i.e., the coordinator reference so that it may call back upon recovery to determine the final outcome.

· If all of the responses indicate that the transaction cannot prepare, then PA should send those participants a CANCEL message before CANCEL-ing itself. The outcome of performing CANCEL should then be propagated back to C1. Note, as soon as a single participant cannot PREPARE then it is safe for PA to stop sending PREPARE messages, and begin sending CANCEL messages.

CANCEL

· PA should send CANCEL messages to all of its enlisted participants and then CANCEL itself. The result of CANCEL-ing must then be propagated back to C1.

CONFIRM

· PA should send CONFIRM to all of its enlisted participants. Any participant responses that do not indicate success should be recorded for later propagation back to C1. However, participants that do respond favourably may be removed from the durable list of participants that PA maintains, since they will not need to be contacted again in the event of a failure. Note, this is not a requirement, but upon failure recovery the coordinator may find that it can no longer contact these participants. [Do we have an equivalent of OBJECT_NOT_EXIST to solve this problem?] Once the participants have CONFIRM-ed, it can also CONFIRM itself. The final outcome should then be propagated back to C1.

Therefore, it is impossible for a normal participant to simply be a sub-coordinator because the roles are distinctly different. A sub-coordinator may be a participant though. As such, it is not possible for a participant alone (and spontaneously) to do sub-coordination for other services; it is a decision of the service/participant implementer to imbue the coordination logic on a participant and turn it into a sub-coordinator.

Failure of a subordinate coordinator is treated as a participant failure as far as its superior is concerned, and as a coordinator failure as far as its enlisted participants are concerned.

When to interpose?

There are a number of reasons why a service/participant may want to use interposition:

· performance: if a number of participants reside on the same node, or are located physically close to one another (e.g., reside in the same LAN domain) then it can be more performant for a remote coordinator to send a single message to a sub-coordinator that is co-located with those participants and for that sub-coordinator to disseminate the message locally, rather than for it to send each participant the same message.

· security & trust: a coordinator may not trust indirect participants, and neither may indirect participants trust a remote coordinator. This makes direct registration impossible. Concentrating security and trust at coordinators can make it easier to reason about such issues in a large scale, loosely coupled environment.

· connectivity: some participants may not have direct connectivity with a specific coordinator, requiring a level of indirection.

· separation of concerns: many domains and web services may simply not want to export (possibly sensitive) information about their implementations to the outside world.

Therefore whether or not to do interposition is necessarily a decision that may need to be made by the implementer of the web service, the deployment environment, etc. Some of the factors that may affect such a decision may be dynamic (e.g., different qualities of service for specific users, or to reflect observed performance characteristics of the distributed environment). For example, just because an implementer may wish to use interposition for the web service, does not mean that the controller of the environment in which it will ultimately be deployed will agree.

Protocol considerations

[At this point I’m not sure what we actually agreed on finally in terms of meta-attributes for controlling this.]

A MustNotInterpose attribute is provided within the transaction context that is sent from superior to inferior.

· If this attribute is set to TRUE then the receiving service should not do interposition, and any context that it propagates to downstream services should contain the same coordinator information that was imported.

· If the attribute value is set to FALSE, or is not present in the context, then a service is free to interpose if it wants to.

An interposed coordinator (sub-coordinator) is created using the BEGIN message on a coordinator service. The caller may pass the identity of the superior coordinator in the BEGIN, and in which case the subordinate coordinator will be automatically enlisted with the superior. Alternatively it may be enlisted later.

When to enlist an interposed coordinator in the flow of application messages is an implementation choice. There are essentially two choices:

1) As soon as the first application message is received by a service communicator it creates an interposed coordinator with BEGIN<superior coordinator>, causing the sub-coordinator to be enlisted with the superior before BEGIN returns. The service work can then be conducted in the scope of the inferior coordinator. If the BEGIN fails, then application work should not be performed [and which fail response should be returned?]

2) As soon as the first application message is received by a service communicator it creates an interposed coordinator with BEGIN, leaving the created sub-coordinator un-enlisted with the superior. The service work can then be conducted in the scope of the inferior coordinator. If the service work completes successfully the communicator must then ENLIST the subordinate coordinator with the superior coordinator prior to returning the application message response. If enrollment of the subordinate coordinator with the superior fails then the subordinate should be CANCEL-ed, automatically undoing the application work; a fail response [which?] should be returned.

_1062487760.doc

Atom coordinator C1

Client

Service A

Service B

Message + Context [C1]

Message + Context [??]

Participant PA

Participant PB

