Web Services Security Policy Language
(WS-SecurityPolicy)

July 2005
Version 1.1

Authors
Giovanni Della-Libera, Microsoft
Martin Gudgin, Microsoft
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM

Hans Grangvist, VeriSign
Chris Kaler, Microsoft (editor)

Hiroshi Maruyama, 1BM

Michael MclIntosh, IBM

Anthony Nadalin, IBM (editor)
Nataraj Nagaratnam, IBM

Rob Philpott, RSA Security
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft

Doug Walter, Microsoft

Riaz Zolfonoon, RSA Security

Copyright Notice

(c) 2001-2005 International Business Machines Corporation, Microsoft Corporation, RSA
Security Inc., and VeriSign Inc. All rights reserved. Permission to copy and display the
WS-SecurityPolicy Specification (the “Specification”, which includes WSDL and schema
documents), in any medium without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the Specification, that you make:

1. Alink or URL to the Specification at one of the Authors’ websites
2. The copyright notice as shown in the Specification.

IBM, Microsoft, RSA and VeriSign (collectively, the "Authors") each agree to grant you a
license, under royalty-free and otherwise reasonable, non-discriminatory terms and
conditions, to their respective essential patent claims that they deem necessary to
implement the Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION

Page 1 of 90

OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Specification will at all times remain
with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract

This document indicates the policy assertions for use with WS-Policy which apply to
WSS: SOAP Message Security, WS-Trust and WS-SecureConversation.

Composable Architecture

By using the XML, SOAP and WSDL extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services environment.
WS-SecurityPolicy by itself does not provide a complete security solution for Web
services. WS-SecurityPolicy is a building block that is used in conjunction with other
Web service and application-specific protocols to accommodate a wide variety of security
models.

Status

This is a public consultation draft release of this specification for community evaluation
and review. Feedback on this specification is handled through the WS-* Workshop
process.

Table of Contents

1. Introduction
1.1 Example

2. Terminology and Notation
2.1 Terminology
2.2 Namespaces
2.3 Notational Conventions
2.4 Schema Files
2.5 Compliance

3. Security Policy Model
3.1 Security Assertion Model
3.2 Nested Policy Assertions
3.3 Security Binding Abstraction

Page 2 of 90

4. Policy Considerations
4.1 Nested Policy
4.1.1 Nesting Policy Elements
4.1.2 Nested Policy Assertions
4.1.3 Nesting Policy Processing Rules
4.1.4 Nested Policy Normalization Worked Example
4.1.5 Nested Policy Intersection Worked Example
4.2 Policy Subjects
5. Protection Assertions
5.1 Integrity Assertions
5.1.1 SignedParts Assertion
5.1.2 SignedElements Assertion
5.2 Confidentiality Assertions
5.2.1 EncryptedParts Assertion
5.2.2 EncryptedElements Assertion
5.3 Required Elements Assertion
5.3.1 RequiredElements Assertion
6. Token Assertions
6.1 Token Inclusion
6.1.1 Token Inclusion Values
6.2 Token Properties
6.2.1 [Derived Keys] Property
6.3 Token Assertions
6.3.1 UsernameToken Assertion
6.3.2 IssuedToken Assertion
6.3.3 X509Token Assertion
6.3.4 KerberosToken Assertion
6.3.5 SpnegoContextToken Assertion
6.3.6 SecurityContextToken Assertion
6.3.7 SecureConversationToken Assertion
6.3.8 SamlToken Assertion
6.3.9 RelToken Assertion
6.3.10 HttpsToken Assertion
7. Security Binding Properties
7.1 [Algorithm Suite] Property
7.2 [Timestamp] Property
7.3 [Protection Order] Property
7.4 [Signature Protection] Property
7.5 [Token Protection] Property
7.6 [Entire Header and Body Signatures] Property

Page 3 of 90

7.7 [Security Header Layout] Property
7.7.1 Strict Layout Rules
8. Security Binding Assertions
8.1 AlgorithmSuite Assertion
8.2 Layout Assertion
8.3 TransportBinding Assertion
8.4 SymmetricBinding Assertion
8.5 AsymmetricBinding Assertion
9. Supporting Tokens
9.1 SupportingTokens Assertion
9.2 SignedSupportingTokens Assertion
9.3 EndorsingSupportingTokens Assertion
9.4 SignedEndorsingSupportingTokens Assertion
9.5 Example
10. WSS: SOAP Message Security Options
10.1 Wss10 Assertion
10.2 Wss11 Assertion
11. WS-Trust Options
11.1 TrustlO Assertion
12. Security Considerations
13. Acknowledgements
14. References
Appendix A - Assertions and WS-PolicyAttachment
A.1 Endpoint Policy Subject Assertions
A.1.1 Security Binding Assertions
A.1.3 Token Assertions
A.1.4 WSS: SOAP Message Security 1.0 Assertions
A.1.5 WSS: SOAP Message Security 1.1 Assertions
A.1.6 Trust 1.0 Assertions
A.2 Operation Policy Subject Assertions
A.2.1 Supporting Token Assertions
A.3 Message Policy Subject Assertions
A.3.1 Supporting Token Assertions
A.3.2 Protection Assertions
A.4 Assertions With Undefined Policy Subject
A.4.1 General Assertions
A.4.2 Token Usage Assertions
A.4.3 Token Assertions
A.4.4 WSS: SOAP Message Security 1.0 Assertions
A.4.5 WSS: SOAP Message Security 1.1 Assertions
A.4.6 Trust 1.0 Assertions

Page 4 of 90

Appendix B — Issued Token Policy
Appendix C — Strict Security Header Layout Examples
C.1 Transport Binding
C.1.1 Policy
C.1.2 Initiator to Recipient Messages
C.1.3 Recipient to Initiator Messages
C.2 Symmetric Binding
C.2.1 Policy
C.2.2 Initiator to Recipient Messages
C.2.3 Recipient to Initiator Messages
C.3 Asymmetric Binding
C.3.1 Policy
C.3.2 Initiator to Recipient Messages
C.3.3 Recipient to Initiator Messages

1. Introduction

WS-Policy defines a framework for allowing web services to express their constraints and
requirements. Such constraints and requirements are expressed as policy assertions.
This document defines a set of security policy assertions for use with the WS-Policy
framework with respect to security features provided in WSS: SOAP Message Security,
WS-Trust and WS-SecureConversation. This document takes the approach of defining a
base set of assertions that describe how messages are to be secured. Flexibility with
respect to token types, cryptographic algorithms and mechanisms used, including using
transport level security is part of the design and allows for evolution over time. The
intent is to provide enough information for compatibility and interoperability to be
determined by web service participants along with all information necessary to actually
enable a participant to engage in a secure exchange of messages.

Section 12, all examples and all Appendices are non-normative.

1.1 Example

Table 1 shows an "Effective Policy" example, including binding assertions and associated
property assertions, token assertions and integrity and confidentiality assertions.

Table 1: Example security policy.

(01) <wsp:Policy>

(02) <sp:SymmetricBinding>

(03) <wsp:Policy>

(04) <sp:ProtectionToken>
(05) <wsp:Policy>
(06) <sp:KerberosV5APREQToken
sp: IncludeToken=".../IncludeToken/Once" />
7 </wsp:Policy>
(08) </sp:ProtectionToken>
(09) <sp:SignBeforeEncrypting />
(10) <sp:EncryptSignature />

Page 5 of 90

(@5 </wsp:Policy>

(12) </sp:SymmetricBinding>

(13) <sp:SignedParts>

(14 <sp:Body/>

(15) <sp:Header
Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

/>

(16) </sp:SignedParts>

(17) <sp:EncryptedParts>

(18) <sp:Body/>

(19) </sp:EncryptedParts>

(20) </wsp:Policy>

Line 1 in Table 1 indicates that this is a policy statement and that all assertions

contained by the wsp:Policy element are required to be satisfied. Line 2 indicates the

kind of security binding in force. Line 3 indicates a nested wsp:Policy element which

contains assertions that qualify the behavior of the SymmetricBinding assertion. Line 4

indicates a ProtectionToken assertion. Line 5 indicates a nested wsp:Policy element

which contains assertions indicating the type of token to be used for the

ProtectionToken. Line 6 indicates that a Kerberos V5 APREQ token is to be used by both

parties in a message exchange for protection. Line 9 indicates that signatures are

generated over plaintext rather than ciphertext. Line 10 indicates that the signature over

the signed messages parts is required to be encrypted. Lines 13-16 indicate which

message parts are to be covered by the primary signature; in this case the soap:Body

element, indicated by Line 14 and any SOAP headers in the WS-Addressing namespace,

indicated by line 15. Lines 17-19 indicate which message parts are to be encrypted; in

this case just the soap:Body element, indicated by Line 18.

2. Terminology and Notation

2.1 Terminology

Policy
A collection of policy alternatives.

Policy Alternative
A collection of policy assertions.

Policy Assertion
An individual requirement, capability, other property, or a behavior.

Initiator
The role sending the initial message in a message exchange.

Recipient
The targeted role to process the initial message in a message exchange.

Security Binding
A set of properties that together provide enough information to secure a given
message exchange.

Security Binding Property
A particular aspect of securing an exchange of messages.

Security Binding Assertion

Page 6 of 90

A policy assertion that identifies the type of security binding being used to secure an
exchange of messages.

Security Binding Property Assertion
A policy assertion that specifies a particular value for a particular aspect of securing
an exchange of message.

Assertion Parameter
An element of variability within a policy assertion.

Token Assertion
Describes a token requirement. Token assertions defined within a security binding
are used to satisfy protection requirements.

Supporting Token
A token used to provide additional claims.

2.2 Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy

Table 2 lists XML namespaces that are used in this specification. The choice of any
namespace prefix is arbitrary and not semantically significant.

Table 2: Prefixes and XML Namespaces used in this specification.
Prefix | Namespace Specification(s)
S http://schemas.xmlsoap.org/soap/envelope/ [SOAP11]
ds http://www.w3.0rg/2000/09/xmldsig# [XMLDSIG]
enc http://www.w3.0rg/2001/04/xmlenc# [XMLENC]
wsu http://docs.oasis-open.org/wss/2004/01/0asis-200401- | [WSS10]
wss-wssecurity-utility-1.0.xsd
wsse http://docs.oasis-open.org/wss/2004/01/0asis-200401- | [WSS10]
wss-wssecurity-secext-1.0.xsd
wssell | http://docs.oasis-open.org/wss/2005/xx/o0asis-2005xx- | [WSS11]
Wwss-wssecurity-secext-1.1.xsd
wsp http://schemas.xmlsoap.org/ws/2004/09/policy [WS-Policy], [WS-
PolicyAttachment]
xsd http://www.w3.0rg/2001/XMLSchema [XMLSchema Partl],
[XMLSchema Part2]
wst http://schemas.xmlsoap.org/ws/2005/02/trust [WS-Trust]
WSC http://schemas.xmlsoap.org/ws/2005/02/sc [WS-
SecureConversation]
wsa http://schemas.xmlsoap.org/ws/2004/08/addressing [WS-Addressing]
sp http://schemas.xmlsoap.org/ws/2005/07/securitypolicy | This specification

Page 7 of 90

2.3 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in REC2119.

This specification uses the following syntax to define outlines for messages:

e The syntax appears as an XML instance, but values in italics indicate data types
instead of literal values.

e Characters are appended to elements and attributes to indicate cardinality:
o "?(Oorl)
o "*" (0 or more)
o "+" (1 or more)

e The character "|" is used to indicate a choice between alternatives.

e The characters "(" and)" are used to indicate that contained items are to be
treated as a group with respect to cardinality or choice.

e The characters "[" and "]" are used to call out references and property names.

e Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or
attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. By default, if a
receiver does not recognize an extension, the receiver SHOULD ignore the
extension; exceptions to this processing rule, if any, are clearly indicated below.

e XML namespace prefixes (see Table 2) are used to indicate the namespace of the
element being defined.

In this document reference is made to the wsu: Id attribute and the wsu:Created and
wsu:Expires elements in a utility schema (http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd). The wsu: 1d
attribute and the wsu:Created and wsu:Expires elements were added to the utility
schema with the intent that other specifications requiring such an ID or timestamp could
reference it (as is done here).

WS-SecurityPolicy is designed to work with the general Web Services framework
including WSDL service descriptions, UDDI businessServices and bindingTemplates and
SOAP message structure and message processing model, and WS-SecurityPolicy should
be applicable to any version of SOAP. The current SOAP 1.2 namespace URI is used
herein to provide detailed examples, but there is no intention to limit the applicability of
this specification to a single version of SOAP.

2.4 Schema Files

A normative copy of the XML Schema [XML Schema Part 1, Part 2] description for this
specification can be retrieved from the following address:

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.xsd

2.5 Compliance

Normative text within this specification takes precedence over outlines, which in turn
take precedence over the XML Schema [XML Schema Part 1, Part 2], which in turn take
precedence over examples.

Sections 3.4, 11, 12, and all Appendices are not normative.

Page 8 of 90

3. Security Policy Model

This specification defines policy assertions for the security properties for Web services.
These assertions are primarily designed to represent the security characteristics defined
in the WSS: SOAP Message Security, WS-Trust and WS-SecureConversation
specifications, but they can also be used for describing security requirements at a more
general or transport-independent level.

The primary goal of this specification is to define an initial set of patterns or sets of
assertions that represent common ways to describe how messages are secured on a
communication path. The intent is to allow flexibility in terms of the tokens,
cryptography, and mechanisms used, including leveraging transport security, but to be
specific enough to ensure interoperability based on assertion matching.

It is a goal of the security policy model to leverage the WS-Policy framework’s
intersection algorithm for selecting policy alternatives and the attachment mechanism
for associating policy assertions with web service artifacts. Consequently, wherever
possible, the security policy assertions do not use parameters or attributes. This enables
first-level, QName based assertion matching without security domain-specific knowledge
to be done at the framework level. The first level matching is intended to provide a
narrowed set of policy alternatives that are shared by the two parties attempting to
establish a secure communication path.

In general, assertions defined in this specification allow additional attributes, based on
schemas, to be added on to the assertion element as an extensibility mechanism but the
WS-Policy framework will not match based on these attributes. Attributes specified on
the assertion element that are not defined in this specification or in WS-Policy are to be
treated as informational properties.

3.1 Security Assertion Model

The goal to provide richer semantics for combinations of security constraints and
requirements and enable first-level QName matching, is enabled by the assertions
defined in this specification being separated into simple patterns: what parts of a
message are being secured (Protection Assertions), general aspects or pre-conditions of
the security (Conditional Assertions), the security mechanism (Security Binding
Assertions) that is used to provide the security, the token types and usage patterns
(Supporting Token Assertions) used to provide additional claims, and token referencing
and trust options (WSS and Trust Assertions).

To indicate the scope of protection, assertions identify message parts that are to be
protected in a specific way, such as integrity or confidentiality protection, and are
referred to as protection assertions.

The general aspects of security includes the relationships between or characteristics of
the environment in which security is being applied, such as the tokens being used, which
are for integrity or confidentiality protection and which are supporting, the applicable
algorithms to use, etc.

The security binding assertion is a logical grouping which defines how the general
aspects are used to protect the indicated parts. For example, that an asymmetric token
is used with a digital signature to provide integrity protection, and that parts are
encrypted with a symmetric key which is then encrypted using the public key of the
recipient. At its simplest form, the security binding restricts what can be placed in the
wsse:Security header and the associated processing rules.

Page 9 of 90

The intent of representing characteristics as assertions, is so that QName matching will
be sufficient to find common alternatives, and so that many aspects of security can be
factored out and re-used. For example, it may be common that the mechanism is
constant for an endpoint, but that the parts protected vary by message action.

3.2 Nested Policy Assertions

Assertions may be used to further qualify a specific aspect of another assertion. For
example, an assertion describing the set of algorithms to use may qualify the specific
behavior of a security binding. To enable this set of functionality, this specification
introduces a mechanism for nesting policy assertions underneath other assertions. This
mechanism is described in Section 4.

3.3 Security Binding Abstraction

As previously indicated, individual assertions are designed to be used in multiple
combinations. The binding represents common usage patterns for security mechanisms.
These Security Binding assertions are used to determine how the security is performed
and what to expect in the wsse:Security header.

Bindings are described textually and enforced programmatically. This specification
defines several bindings but others can be defined and agreed to for interoperability if
participating parties support it.

A binding defines the following security characteristics:

e The minimum set of tokens that will be used and how they are bound to
messages

e Any necessary key transfer mechanisms
e Any required message elements (e.g. timestamps)

e The content and ordering of elements in the wsse:Security header. Elements
not specified in the binding are not allowed.

e How correlation of messages is performed securely (if applicable to the message
pattern)

Together the above pieces of information, along with the assertions describing
conditions and scope, provide enough information to secure messages between an
initiator and a recipient.

The following list identifies the bindings defined in this specification. The bindings are
identified primarily by the style of protection encryption used to protect the message
exchange. A later section of this document provides details on the assertions for these
bindings.

e TransportBinding (Section 8.3)

e SymmetricBinding (Section 8.4)

e AsymmetricBinding (Section 8.5)

4. Policy Considerations

The following sections discuss details of WS-Policy and WS-PolicyAttachment relevant to
this specification.

Page 10 of 90

4.1 Nested Policy

The WS-Policy specification defines a mechanism for describing capabilities and
requirements as assertions. These assertions are contained within one of wsp:Policy,
wsp:All, or wsp:ExactlyOne. The WS-Policy specification defines the nesting semantics
associated with the wsp:Policy, wsp:All and wsp:ExactlyOne. However these semantics
do not allow individual assertions to specify that the child elements contained within the
assertion should also be evaluated as assertions.

The following section is an overview of the nesting semantics of WS-Policy elements.

4.1.1 Nesting Policy Elements

To determine whether two assertions are "compatible”, the QName value, that is the
Name and Namespace of one assertion element is compared to the QName value of
another assertion. If they match, then they are compatible.

A wsp:Policy element may contain one or more assertions. To determine whether two
wsp:Policy elements are "compatible", each assertion in one wsp:Policy element is
compared, as described above, to the assertions in another wsp:Policy element. If all
assertions from each wsp:Policy element are matched exactly, they are compatible.

To enable richer sets of options to be expressed, WS-Policy defines the wsp:All and
wsp:ExactlyOne elements. These elements may be placed as immediate children of a
wsp:Policy element. In addition, these two elements may also appear under themselves.
This allows for a policy to describe alternative options within policy. Let’'s say that a
policy wishes to express requirements for A and (B or C). This could be described as two
policy statements:
<wsp:Policy>
<A />

</wsp:Policy>
<wsp:Policy>
<A />
<C />
</wsp:Policy>
Alternatively, we can use the wsp:All and wsp:ExactlyOne elements to describe the
alternative policy in a single wsp:Policy element:
<wsp:Policy>
<wsp:All>
<A />
<wsp:ExactlyOne>

<C />
</wsp:ExactlyOne>
</wsp:All>
</wsp:Policy>
This process is described in more detail in the WS-Policy specification.

Page 11 of 90

4.1.2 Nested Policy Assertions

Some assertions may need to declare that additional assertions, scoped only to that
assertion, further qualify the behavior and compatibility semantics of that assertion.
Whereas the wsp:All and wsp:ExactlyOne elements describe requirements and
alternatives of a wsp:Policy element, nested assertions describe requirements and
alternatives for the enclosing assertion element. To enable these semantics, this
specification defines some assertions such that they have a single wsp:Policy child
element which in turn contains assertions which qualify the behavior of the enclosing
assertion. Two such assertions are compatible if they have the same QName AND their
nested policy expressions (if any) are compatible.

For example, let’s say that a policy wishes to express requirements for A and B, and
furthermore that B requires C and D. The normalized policy statement would look like:
<wsp:Policy>
<A />

<wsp:Policy>
<C />
<D />
</wsp:Policy>

</wsp:Policy>
The policy above is fully normalized. Policy normalization DOES NOT promote nested
assertions to the outer scope.

The wsp:Policy element allows any assertion as content. However, assertions defined in
this specification that allow nested policy will typically constrain the content of that
nested policy.

Note: To enable automatic intersection of nested policy assertions, policy engines will
need to be modified to scan the contents of assertions to determine whether intersection
is required. This approach is being investigated by the WS-Policy working group to
formalize the notion of nested policy and to define processing behavior requirements for
nested policy. Additionally, an attribute may be defined to advertise to a policy engine
that scanning is required on a particular assertion. For example:
<wsp:Policy>
<A />
<B x:ContainsPolicy=""true">
<wsp:Policy>
</wsp:Policy>

</wsp:Policy>
Ideally the x:ContainsPolicy attribute will, at some point, be moved in the WS-Policy
namespace.

Page 12 of 90

4.1.3 Nesting Policy Processing Rules

This section provides rules for processing nested policy based on the informal description

above;
1.
2.

3.

Assertions MUST specify whether or not they contain nested policy.

Assertions SHOULD specify which other assertions can be present in their nested
policy.

Nested assertions need to be specifically designed for nesting inside one or more
outer assertions. Assertions SHOULD specify which assertions they can be nested
within.

Assertions from one domain SHOULD NOT be nested inside assertions from
another domain. For example, assertions from a transaction domain should not
be nested inside an assertion from a security domain.

Assertions containing nested policy are normalized recursively such that in the
normal form each nested policy contains no choices. Thus each outer assertion
that contains nested policy containing choices is duplicated such that there are as
many instances of the outer assertion as there are choices in the nested policy,
one instance for each nested choice, recursively. See Section 4.1.4 for a worked
example of normalization.

Nested policies are intersected in their own processing contexts with the
corresponding nested policy in a matching outer assertion. Thus two assertions
having nested policy intersect if the outer assertion QName matches and the
nested policies intersect. Intersection always occurs using the normalized form.
See Section 4.1.5 for a worked example of intersection.

An assertion with an empty nested policy does not intersect with the same
assertion without nested policy.

4.1.4 Nested Policy Normalization Worked Example

This section shows a worked example of normalizing assertions with nested policy.

Policy 1
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>

<A />

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<C/>
</wsp:All>
<wsp:All>
<D/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>

Page 13 of 90

</wsp:ExactlyOne>
</wsp:Policy>

The above policy is normalized by, in this case, creating two alternatives, both
containing an A assertion and a B assertion. One alternative contains a B assertion with
a nested C assertion while the other contains a B assertion with a nested D assertion;

Normalized form
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<A/>

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<C/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>
<wsp:All>
<A/>

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<D/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

4.1.5 Nested Policy Intersection Worked Example

This section shows a worked example of computing the intersection of two policies that
contain assertions with nested policy.

Policy 1
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>

Page 14 of 90

<A />

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<C/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>
<wsp:All>
<A />

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<D/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Policy 2
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<A />

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<C/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

</wsp:All>
<wsp:All>
<A />

Page 15 of 90

<wsp:Policy>

<wsp:ExactlyOne>

<wsp:All>
<E/>
</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

The two policies above, which are already in normal form, are intersected as follows;

firstly the QNames of the A and B assertions are intersected then the QNames of the

nested assertions inside the B assertions are intersected. In the nested case, only the
two B assertions that have nested C assertions match. Thus the intersection of the

nested policy is;

Intersected policy
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<A/>
<A/>

<wsp:Policy>

<wsp:ExactlyOne>

<wsp:All>
<C/>
</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

<wsp:Policy>

<wsp:ExactlyOne>

<wsp:All>
<C/>
</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

</wsp:All>

Page 16 of 90

</wsp:ExactlyOne>
</wsp:Policy>

4.2 Policy Subjects

WS-PolicyAttachment defines various attachment points for policy. This section defines
properties that are referenced later in this document describing the recommended or
required attachment points for various assertions. In addition, Appendix A groups the
various assertions according to policy subject.

Note: This specification does not define any assertions that have a scope of [Service
Policy Subject].

[Message Policy Subject]

This property identifies a Message Policy Subject [WS-PolicyAttachment]. WS-
PolicyAttachment defines seven WSDL [WSDL 1.1] policy attachment points with
Message Policy Subject:

wsdl:message
A policy expression containing one or more assertions with Message Policy Subject
MUST NOT be attached to a wsdl:message.

wsdl:portType/wsdl:operation/wsdl:input, ./wsdl:output, or ./wsdl:fault
A policy expression containing one or more assertions with Message Policy Subject
MUST NOT be attached to a descendant of wsdl:portType.

wsdl:binding/wsdl:operation/wsdl:input, ./wsdl:output, or ./wsdl:fault
A policy expression containing one or more of the assertions with Message Policy
Subject MUST be attached to a descendant of wsdl:binding.

[Operation Policy Subject]

A token assertion with Operation Policy Subject indicates usage of the token on a per-
operation basis:

wsdl:portType/wsdl:operation
A policy expression containing one or more token assertions MUST NOT be attached
to a wsdl:portType/wsdl:operation.

wsdl:binding/wsdl:operation
A policy expression containing one or more token assertions MUST be attached to a
wsdl:binding/wsdl:operation.

[Endpoint Policy Subject]

A token assertion instance with Endpoint Policy Subject indicates usage of the token for

the entire set of messages described for the endpoint:

wsdl:portType
A policy expression containing one or more assertions with Endpoint Policy Subject
MUST NOT be attached to a wsdl:portType.

wsdl:binding
A policy expression containing one or more of the assertions with Endpoint Policy
Subject SHOULD be attached to a wsdl:binding.

wsdl:port
A policy expression containing one or more of the assertions with Endpoint Policy
Subject MAY be attached to a wsdl:port

Page 17 of 90

5. Protection Assertions

The following assertions are used to identify what is being protected and the level of
protection provided. These assertions SHOULD apply to [Message Policy Subject]. Note
that when assertions defined in this section are present in a policy, the order of those
assertions in that policy has no effect on the order of signature and encryption
operations (see Section 7.3).

5.1 Integrity Assertions

Two mechanisms are defined for specifying the set of message parts to integrity protect.
One uses QNames to specify either message headers or the message body while the
other uses XPath expressions to identify any part of the message.

5.1.1 SignedParts Assertion

The SignedParts assertion is used to specify the parts of the message outside of security
headers that require integrity protection. This assertion can be satisfied using WSS:
SOAP Message Security mechanisms or by mechanisms out of scope of SOAP message
security, for example by sending the message over a secure transport protocol like
HTTPS. The binding details the exact mechanism by which the protection is provided.

There MAY be multiple SignedParts assertions present. Multiple SignedParts assertions
present within a policy alternative are equivalent to a single SignedParts assertion
containing the union of all specified message parts. Note that this assertion does not
require that a given part appear in a message, just that if such a part appears, it
requires integrity protection.

Syntax
<sp:SignedParts ... >
<sp:Body />?
<sp:Header Name="xs:NCName™? Namespace="'xs:anyURI"™ ... />*

</sp:SignedParts>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SignedParts
This assertion specifies the parts of the message that need integrity protection. If
no child elements are specified, all message headers targeted at the

UltimateReceiver role [SOAP12] or actor [SOAP11] and the body of the message
MUST be integrity protected.

/sp:SignedParts/sp:Body

Presence of this optional empty element indicates that the entire body, that is the
soap:Body element, it's attributes and content, of the message needs to be
integrity protected.

/sp:SignedParts/sp:Header

Presence of this optional element indicates a specific SOAP header (or set of such
headers) needs to be protected. There may be multiple sp:Header elements
within a single sp:SignedParts element. If multiple SOAP headers with the same
local name but different namespace names are to be integrity protected multiple
sp:Header elements are needed, either as part of a single sp:SignedParts
assertion or as part of separate sp:SignedParts assertions.

Page 18 of 90

/sp:SignedParts/sp:Header/@Name
This optional attribute indicates the local name of the SOAP header to be integrity
protected. If this attribute is not specified, all SOAP headers whose namespace
matches the Namespace attribute are to be protected.
/sp:SignedParts/sp:Header/@Namespace

This required attribute indicates the namespace of the SOAP header(s) to be
integrity protected.

5.1.2 SignedElements Assertion

The SignedElements assertion is used to specify arbitrary elements in the message that
require integrity protection. This assertion can be satisfied using WSS: SOAP Message
Security mechanisms or by mechanisms out of scope of SOAP message security, for
example by sending the message over a secure transport protocol like HTTPS. The
binding details the exact mechanism by which the protection is provided.

There MAY be multiple SignedElements assertions present. Multiple SignedElements
assertions present within a policy alternative are equivalent to a single SignedElements
assertion containing the union of all specified XPath expressions.

Syntax
<sp:SignedElements XPathVersion="'xs:anyURI"? ... >
<sp:XPath>xs:string</sp:XPath>+

</sp:SignedElements>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SignedElements

This assertion specifies the parts of the message that need integrity protection.
/sp:SignedElements/@XPathVersion

This optional attribute contains a URI which indicates the version of XPath to use.
/sp:SignedElements/sp:XPath

This element contains a string specifying an XPath expression that identifies the
nodes to be integrity protected. The XPath expression is evaluated against the
S:Envelope element node of the message. Multiple instances of this element may
appear within this assertion and should be treated as separate references in the
signature.

5.2 Confidentiality Assertions

Two mechanisms are defined for specifying the set of message parts to confidentiality
protect. One uses QNames to specify either message headers or the message body while
the other uses XPath expressions to identify any part of the message.

5.2.1 EncryptedParts Assertion

The EncryptedParts assertion is used to specify the parts of the message that require
confidentiality. This assertion can be satisfied with WSS: SOAP Message Security
mechanisms or by mechanisms out of scope of SOAP message security, for example by
sending the message over a secure transport protocol like HTTPS. The binding details
the exact mechanism by which the protection is provided.

Page 19 of 90

There MAY be multiple EncryptedParts assertions present. Multiple EncryptedParts
assertions present within a policy alternative are equivalent to a single EncryptedParts
assertion containing the union of all specified message parts. Note that this assertion
does not require that a given part appear in a message, just that if such a part appears,
it requires confidentiality protection.

Syntax
<sp:EncryptedParts ... >
<sp:Body/>?
<sp:Header Name='"xs:NCName'? Namespace="'xs:anyURI'™ ... />*

</sp:EncryptedParts>
The following describes the attributes and elements listed in the schema outlined above:
/sp:EncryptedParts

This assertion specifies the parts of the message that need confidentiality
protection. The single child element of this assertion specifies the set of message
parts using an extensible dialect.

If no child elements are specified, the body of the message MUST be
confidentiality protected.

/sp:EncryptedParts/sp:Body

Presence of this optional empty element indicates that the entire body of the
message needs to be confidentiality protected. In the case where mechanisms
from WSS: SOAP Message Security are used to satisfy this assertion, then the
soap:Body element is encrypted using the #Content encryption type.

/sp:EncryptedParts/sp:Header

Presence of this optional element indicates that a specific SOAP header (or set of
such headers) needs to be protected. There may be multiple sp:Header elements
within a single Parts element. Each header or set of headers MUST be encrypted.
Such encryption will encrypt such elements using WSS 1.1 Encrypted Headers. As
such, if WSS 1.1 Encrypted Headers are not supported by a service, then headers
cannot be encrypted using message level security. If multiple SOAP headers with
the same local name but different namespace names are to be encrypted then
multiple sp:Header elements are needed, either as part of a single
sp:EncryptedParts assertion or as part of separate sp:EncryptedParts assertions.

/sp:EncryptedParts/sp:Header/@Name

This optional attribute indicates the local name of the SOAP header to be
confidentiality protected. If this attribute is not specified, all SOAP headers whose
namespace matches the Namespace attribute are to be protected.

/sp:EncryptedParts/sp:Header/@Namespace

This required attribute indicates the namespace of the SOAP header(s) to be
confidentiality protected.

5.2.2 EncryptedElements Assertion

The EncryptedElements assertion is used to specify arbitrary elements in the message
that require confidentiality protection. This assertion can be satisfied using WSS: SOAP
Message Security mechanisms or by mechanisms out of scope of SOAP message

Page 20 of 90

security, for example by sending the message over a secure transport protocol like
HTTPS. The binding details the exact mechanism by which the protection is provided.

There MAY be multiple EncryptedElements assertions present. Multiple
EncryptedElements assertions present within a policy alternative are equivalent to a
single EncryptedElements assertion containing the union of all specified XPath
expressions.

Syntax
<sp:EncryptedElements XPathVersion=""xs:anyURI"? ... >
<sp:XPath>xs:string</sp:XPath>+

</sp:EncryptedElements>
The following describes the attributes and elements listed in the schema outlined above:
/sp:EncryptedElements

This assertion specifies the parts of the message that need confidentiality
protection. Any such elements are subject to #Element encryption.

/sp:EncryptedElements/@XPathVersion
This optional attribute contains a URI which indicates the version of XPath to use.
/sp:EncryptedElements/sp:XPath

This element contains a string specifying an XPath expression that identifies the
nodes to be confidentiality protected. The XPath expression is evaluated against
the S:Envelope element node of the message. Multiple instances of this element
may appear within this assertion and should be treated as separate references.

5.3 Required Elements Assertion

A mechanism is defined for specifying, using XPath expressions, the set of header
elements that a message MUST contain.

Note: Specifications are expected to provide domain specific assertions that specify
which headers are expected in a message. This assertion is provided for cases where
such domain specific assertions have not been defined.

5.3.1 RequiredElements Assertion

The RequiredElements assertion is used to specify header elements that the message
MUST contain. This assertion specifies no security requirements.

There MAY be multiple RequiredElements assertions present. Multiple RequiredElements
assertions present within a policy alternative are equivalent to a single
RequiredElements assertion containing the union of all specified XPath expressions.

Syntax
<sp:RequiredElements XPathVersion=""xs:anyURI"? ... >
<sp:XPath>xs:string</sp:XPath>+

</sp:RequiredElements>
The following describes the attributes and elements listed in the schema outlined above:
/sp:RequiredElements

This assertion specifies the headers elements that MUST appear in a message.

Page 21 of 90

/sp:RequiredElements/@XPathVersion
This optional attribute contains a URI which indicates the version of XPath to use.
/sp:RequiredElements/sp: XPath

This element contains a string specifying an XPath expression that identifies the
header elements that a message MUST contain. The XPath expression is
evaluated against the S:Envelope/S:Header element node of the message.
Multiple instances of this element may appear within this assertion and should be
treated as a combined XPath expression.

6. Token Assertions

Token assertions specify the type of tokens to use to protect or bind tokens and claims
to the message. These assertions do not recommend usage of a Policy Subject.
Assertions which contain them SHOULD recommend a policy attachment point. With the
exception of transport token assertions, the token assertions defined in this section are
not specific to any particular security binding.

6.1 Token Inclusion

Any token assertion may also carry an optional sp: IncludeToken attribute. The schema
type of this attribute is xs-zanyURI. This attribute indicates whether the token should be
included, that is written, in the message or whether cryptographic operations utilize an
external reference mechanism to refer to the key represented by the token. This
attribute is defined as a global attribute in the WS-SecurityPolicy namespace and is
intended to be used by any specification that defines token assertions.

6.1.1 Token Inclusion Values

The following table describes the set of valid token inclusion mechanisms supported by
this specification:

http://schemas.xmisoap.org/ws/2005/07 | The token MUST NOT be included in any
/securitypolicy/IncludeToken/Never messages sent between the initiator and the
recipient; rather, an external reference to the
token should be used.

http://schemas.xmlsoap.org/ws/2005/07 | The token MUST be included in only one
/securitypolicy/IncludeToken/Once message sent from initiator to the recipient.
References to the token MAY use an internal
reference mechanism. Subsequent related
messages sent between the recipient and the
initiator may refer to the token using an
external reference mechanism.

http://schemas.xmlsoap.org/ws/2005/07 | The token MUST be included in all messages
/securitypolicy/IncludeToken/AlwaysToRe | sent from initator to the recipient. The token
cipient MUST NOT be included in messages sent from
the recipient to the initiator.

http://schemas.xmlsoap.org/ws/2005/07 | The token MUST be included in all messages
/securitypolicy/IncludeToken/AlwaysToln | sent from recipient to the initiator. The token
itiator MUST NOT be included in messages sent from
the initiator to the recipient.

Page 22 of 90

http://schemas.xmlsoap.org/ws/2005/07 | The token MUST be included in all messages
/securitypolicy/IncludeToken/Always sent between the initiator and the recipient.
This is the default behavior.

Note: In examples, the namespace URI is replaced with "..." for brevity. For example,
.../IncludeToken/Never is actually
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never. Other
token inclusion URI values MAY be defined but are out-of-scope of this specification.

The default behavior characteristics defined by this specification if this attribute is not
specified on a token assertion are .../IncludeToken/Always.

6.2 Token Properties

6.2.1 [Derived Keys] Property

This boolean property specifies whether derived keys should be used as defined in WS-
SecureConversation. If the value is 'true’, derived keys MUST be used. If the value is
'false’, derived keys MUST NOT be used. The value of this property applies to a specific
token. The value of this property is populated by assertions specific to the token. The
default value for this property is 'false’.

Where the key material associated with a token is asymmetric, this property applies to
the use of symmetric keys encrypted with the key material associated with the token.

6.3 Token Assertions Types
The following sections describe the token assertions defined as part of this specification.

6.3.1 UsernameToken Assertion

This element represents a requirement to include a username token. The default version
of this token is the wsse:UsernameToken as defined in [WSS: Username Token Profile
1.0].

Syntax
<sp:UsernameToken sp:IncludeToken="xs:anyURI"? ... >
<wsp:Policy>
<sp:RequireDerivedKeys /> ?

(
<sp:WssUsernameTokenl0 ... /> |
<sp:WssUsernameTokenll ... />
) ?

</wsp:Policy> ?
</sp:UsernameToken>
The following describes the attributes and elements listed in the schema outlined above:

/sp:UsernameToken
This identifies a UsernameToken assertion.

/sp:UsernameToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

Page 23 of 90

/sp:UsernameToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:UsernameToken assertion.

/sp:UsernameToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:UsernameToken/wsp:Policy/sp:WssUsernameToken10
This optional element indicates that a Username token should be used as defined in
[WSS: Username Token Profile 1.0]. As noted above, this is the default version of
this token.
/sp:UsernameToken/wsp:Policy/sp:WssUsernameTokenll
This optional element indicates that a Username token should be used as defined in
[WSS: Username Token Profile 1.1].
Note: While Username tokens could be used cryptographically, such usage is
discouraged in general because of the relatively low entropy typically associated with
passwords. This specification does not define a cryptographic binding for the Username
token. A new token assertion could be defined to allow for cryptographic binding.

6.3.2 IssuedToken Assertion

This element represents a requirement for an issued token, that is one issued by some
token issuer using the mechanisms defined in WS-Trust. This assertion is used in 3™
party scenarios. For example, the initiator may need to request a SAML token from a
given token issuer in order to secure messages sent to the recipient.

Syntax

<sp:IssuedToken sp:IncludeToken="'xs:anyURI"? ... >
<sp: Issuer>wsa:EndpointReferenceType</sp: Issuer>?
<sp:RequestSecurityTokenTemplate TrustVersion="'xs:anyURI"? >
</sp:RequestSecurityTokenTemplate>
<wsp:Policy>

<sp:RequireDerivedKeys ... /> ?
<sp:RequireExternalReference ... /> ?
<sp:RequirelnternalReference ... /> ?

</wsp:Policy> ?
</sp: IssuedToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:lssuedToken
This identifies an IssuedToken assertion.

/sp:lssuedToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:lIssuedToken/sp:Issuer

This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the issued token.

/sp:lssuedToken/sp:RequestSecurityTokenTemplate

Page 24 of 90

This required element contains elements which MUST be copied into the request sent
to the specified issuer. Note: the initiator is not required to understand the contents
of this element.

See Appendix B for details of the content of this element.
/sp:lIssuedToken/sp:RequestSecurityTokenTemplate/@TrustVersion

This optional attribute contains a URI identifying the version of WS-Trust referenced

by the contents of this element.

/sp:lssuedToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:IssuedToken assertion.

/sp:lssuedToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:lssuedToken/wsp:Policy/sp:RequirelnternalReference
This optional element indicates whether an internal reference is required when
referencing this token.
Note: This reference will be supplied by the issuer of the token.

/sp:lssuedToken/wsp:Policy/sp:RequireExternalReference
This optional element indicates whether an external reference is required when
referencing this token.
Note: This reference will be supplied by the issuer of the token.

Note: The IssuedToken may or may not be associated with key material and such key
material may be symmetric or asymmetric. The Binding assertion will imply the type of
key associated with this token. Services may also include information in the
sp:RequestSecurityTokenTemplate element to explicitly define the expected key type.
See Appendix B for details of the sp:RequestSecurityTokenTemplate element.

6.3.3 X509Token Assertion

This element represents a requirement for a binary security token carrying an X509
token. The default version of this token and associated profile is the X509 Version 3
token as specified in [WSS: X509 Certificate Token Profile 1.0].

Syntax

<sp:X509Token sp:IncludeToken="xs:anyURI"? ... >
<wsp:Policy>

<sp:RequireDerivedKeys /> ?

<sp:RequireKeyldentifierReference ... /> ?

<sp:RequirelssuerSerialReference ... /> ?

<sp:RequireEmbeddedTokenReference ... /> ?

<sp:RequireThumbprintReference ... /> ?

(
<sp:WssX509V3Tokenl0 ... /> |
<sp:WssX509Pkcs7Tokenl0 ... /> |
<sp:WssX509PkiPathV1Tokenl0 ... /> |
<sp:WssX509V1iTokenll ... /> |
<sp:WssX509V3Tokenll ... /> |
<sp:WssX509Pkcs7Tokenll ... /> |

Page 25 of 90

<sp:WssX509PkiPathV1Tokenll ... />
) ?

</wsp:Policy> ?

</sp:X509Token>
The following describes the attributes and elements listed in the schema outlined above:

/sp:X509Token
This identifies an X509Token assertion.

/sp:X509Token/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:X509Token/wsp:Policy
This optional element identifies additional requirements for use of the sp:X509Token
assertion.

/sp:X509Token/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:X509Token/wsp:Policy/sp:RequireKeyldentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.

/sp:X509Token/wsp:Policy/sp:RequirelssuerSerialReference
This optional element indicates that an issuer serial reference is required when
referencing this token.
/sp:X509Token/wsp:Policy/sp:RequireEmbeddedTokenReference
This optional element indicates that an embedded token reference is required when
referencing this token.
/sp:X509Token/wsp:Policy/sp:RequireThumbprintReference
This optional element indicates that a thumbprint reference is required when
referencing this token.
/sp:X509Token/wsp:Policy/sp:WssX509V3Token10
This optional element indicates that an X509 Version 3 token should be used as
defined in [WSS: X509 Token Profile 1.0]. As noted above, this is the default version
of this token.
/sp:X509Token/wsp:Policy/sp:WssX509Pkcs7Token10
This optional element indicates that an X509 PKCS7 token should be used as defined
in [WSS: X509 Token Profile 1.0].
/sp:X509Token/wsp:Policy/sp:WssX509PkiPathV1Token10
This optional element indicates that an X509 PKI Path Version 1 token should be
used as defined in [WSS: X509 Token Profile 1.0].
/sp:X509Token/wsp:Policy/sp:WssX509V1Token1l
This optional element indicates that an X509 Version 1 token should be used as
defined in [WSS: X509 Token Profile 1.1].
/sp:X509Token/wsp:Policy/sp:WssX509V3Tokenl1l
This optional element indicates that an X509 Version 3 token should be used as
defined in [WSS: X509 Token Profile 1.1].

/sp:X509Token/wsp:Policy/sp:WssX509Pkcs7Token11

Page 26 of 90

This optional element indicates that an X509 PKCS7 token should be used as defined
in [WSS: X509 Token Profile 1.1].

/sp:X509Token/wsp:Policy/sp:WssX509PkiPathV1Token11
This optional element indicates that an X509 PKI Path Version 1 token should be
used as defined in [WSS: X509 Token Profile 1.1].

6.3.4 KerberosToken Assertion

This element represents a requirement for a Kerberos token. The default version of this
token and associated profile is the GSS Kerberos Version 5 AP-REQ security token as
specified in [WSS: Kerberos Token Profile 1.1].

Syntax

<sp:KerberosToken sp:IncludeToken="xs:anyURI"? ... >
<wsp:Policy>
<sp:RequireDerivedKeys ... /> ?
<sp:RequireKeyldentifierReference ... /> ?
(
<sp:WssKerberosV5ApReqTokenll ... /> |
<sp:WssGssKerberosV5ApReqTokenll ... />

) ?

</wsp:Policy> ?
</sp:KerberosToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:KerberosToken
This identifies a KerberosV5ApRegToken assertion.
/sp:KerberosToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:KerberosToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:KerberosToken assertion.

/sp:KerberosToken/wsp:Policy/sp:RequireDerivedKeys

This optional element sets the [Derived Keys] property for this token to 'true’.
/sp:KerberosToken/wsp:Policy/sp:RequireKeyldentifierReference

This optional element indicates that a key identifier reference is required when

referencing this token.
/sp:KerberosToken/wsp:Policy/sp:WssKerberosV5ApReqTokenll

This optional element indicates that a Kerberos Version 5 AP-REQ token should be

used as defined in [WSS: Kerberos Token Profile 1.1].
/sp:KerberosToken/wsp:Policy/sp:WssGssKerberosV5ApReqToken11

This optional element indicates that a GSS Kerberos Version 5 AP-REQ token should

be used as defined in [WSS: Kerberos Token Profile 1.1]. As noted above, this is the

default version of this token.

Page 27 of 90

6.3.5 SpnegoContextToken Assertion

This element represents a requirement for a SecurityContextToken obtained by
executing an n-leg RST/RSTR SPNEGO binary negotiation protocol with the Web Service,
as defined in WS-Trust.

Syntax
<sp:SpnegoContextToken sp:IncludeToken=""xs:anyURI"? ... >

<sp: Issuer>wsa:EndpointReferenceType</sp: Issuer> ?

<wsp:Policy>

<sp:RequireDerivedKeys ... /> ?

</wsp:Policy> ?
</sp:SpnegoContextToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SpnegoContextToken

This identifies a SpnegoContextToken assertion.

/sp:SpnegoContextToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SpnegoContextToken/sp:lIssuer

This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the Spnego Context Token.

/sp:SpnegoContextToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:SpnegoContextToken assertion.

/sp:SpnegoContextToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

6.3.6 SecurityContextToken Assertion

This element represents a requirement for a SecurityContextToken token. The default
version of this token is the Security Context Token as specified in [WS-
SecureConversation].

Syntax

<sp:SecurityContextToken sp:IncludeToken="xs:anyURI"? ... >
<wsp:Policy>
<sp:RequireDerivedKeys ... /> ?
<sp:RequireExternalUriReference ... /> ?
<sp:SC200502SecurityContextToken ... /> ?
</wsp:Policy> ?
</sp:SecurityContextToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SecurityContextToken

Page 28 of 90

This identifies a SecurityContextToken assertion.

/sp:SecurityContextToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SecurityContextToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:SecurityContextToken assertion.

/sp:SecurityContextToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:SecurityContextToken/wsp:Policy/sp:RequireExternalUriReference
This optional element indicates that an external URI reference is required when
referencing this token.

/sp:SecurityContextToken/wsp:Policy/sp:SC200502SecurityContextToken
This optional element indicates that a Security Context Token should be used as
defined in [WS-SecureConversation].

Note: This assertion does not describe how to obtain a Security Context Token but
rather assumes that both parties have the token already or have agreed separately on a
mechanism for obtaining the token. If a definition of the mechanism for obtaining the
Security Context Token is desired in policy, then either the sp:SecureConversationToken
or the sp:IssuedToken assertion should be used instead.

6.3.7 SecureConversationToken Assertion

This element represents a requirement for a Security Context Token retrieved from the
indicated issuer address. The default version of this token and associated protocol is the
Security Context Token as defined in [WS-SecureConversation]. If the sp:Issuer address
is absent, the protocol MUST be executed at the same address as the service endpoint
address.

Note: This assertion describes the token accepted by the target service. Because this
token is issued by the target service and may not have a separate port (with separate
policy), this assertion SHOULD contain a bootstrap policy indicating the security binding
and policy that is used when requesting this token from the target service. That is, the
bootstrap policy is used to obtain the token and then the current (outer) policy is used
when making requests with the token. This is illustrated in the diagram below.

Initiator Recipient

RST
RSTR

A4

Bootstrap Policy

A

Application Request

Y.

Outer Policy

Syntax

<sp:SecureConversationToken sp:IncludeToken="xs:anyURI"? ... >
<sp: Issuer>wsa:EndpointReferenceType</sp: Issuer>?

Page 29 of 90

<wsp:Policy>

<sp:RequireDerivedKeys ... /> ?
<sp:RequireExternalUriReference ... /> ?
<sp:SC200502SecurityContextToken ... /> ?
<sp:BootstrapPolicy ... > ?

<wsp:Policy> ... </wsp:Policy>

</sp:BootstrapPolicy>
</wsp:Policy> ?
</sp:SecureConversationToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SecureConversationToken
This identifies a SecureConversationToken assertion.

/sp:SecureConversationToken/@sp: IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.
/sp:SecureConversationToken/sp:lIssuer
This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the Security Context Token.

/sp:SecureConversationToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:SecureConversationToken assertion.

/sp:SecureConversationToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:SecureConversationToken/wsp:Policy/sp:RequireExternalUriReference
This optional element indicates that an external URI reference is required when
referencing this token.

/sp:SecureConversationToken/wsp:Policy/sp:SC200502SecurityContextToken
This optional element indicates that a Security Context Token should be used as
obtained using the protocol defined in [WS-SecureConversation].
/sp:SecureConversationToken/wsp:Policy/sp:BootstrapPolicy
This optional element contains the policy indicating the requirements for obtaining
the Security Context Token.
/sp:SecureConversationToken/wsp:Policy/sp:BootstrapPolicy/wsp:Policy
This element contains the security binding requirements for obtaining the Security
Context Token.
Example
<wsp:Policy>
<sp:SymmetricBinding>
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:SecureConversationToken>
<sp: Issuer>

Page 30 of 90

<wsa:Address>http://example.org/sts</wsa:Address>
</sp:Issuer>
<wsp:Policy>
<sp:SCl0SecurityContextToken />
<sp:BootstrapPolicy>
<wsp:Policy>
<sp:AsymmetricBinding>
<wsp:Policy>
<sp:InitiatorToken>
</sp:InitiatorToken>
<sp:RecipientToken>
</sp:RecipientToken>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:SignedParts>
</sp:SignedParts>
</wsp:Policy>
</sp:BootstrapPolicy>
</wsp:Policy>
</sp:SecureConversationToken>
</wsp:Policy>
</sp:ProtectionToken>
</wsp:Policy>
</sp:SymmetricBinding>
<sp:SignedParts>
</sp:SignedParts>

</wsp:Policy>

6.3.8 SamlIToken Assertion

This element represents a requirement for a SAML token. The default version of this
token and associated profile is SAML Version 1.0 token as described in the [WSS: SAML

Token Profile].

Syntax
<sp:SamlToken sp:IncludeToken="xs:anyURI"? ... >
<wsp:Policy>
<sp:RequireDerivedKeys ... /> ?

Page 31 of 90

<sp:RequireKeyldentifierReference ... /> ?

(
<sp:WssSamlV11Tokenl0 ... /> |
<sp:WssSamlV11iTokenll ... /> |
<sp:WssSamlV20Tokenll ... />
) ?

</wsp:Policy> ?

</sp:SamlToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:SamlToken
This identifies a SamIToken assertion.
/sp:SamlToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SamlToken/wsp:Policy
This optional element identifies additional requirements for use of the sp:SamlIToken
assertion.

/sp:SamlToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:SamlToken/wsp:Policy/sp:RequireKeyldentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.
/sp:SamlToken/wsp:Policy/sp:WssSamlV11Tokenl10
This optional element identifies that a SAML Version 1.1 token should be used as
defined in [WSS: SAML Token Profile 1.0].
/sp:SamlToken/wsp:Policy/sp:WssSamlV11Tokenl1
This optional element identifies that a SAML Version 1.1 token should be used as
defined in [WSS: SAML Token Profile 1.1].
/sp:SamlToken/wsp:Policy/sp:WssSamlV20Token11
This optional element identifies that a SAML Version 2.0 token should be used as
defined in [WSS: SAML Token Profile 1.1].
Note: This assertion does not describe how to obtain a SAML Token but rather assumes
that both parties have the token already or have agreed separately on a mechanism for
obtaining the token. If a definition of the mechanism for obtaining the SAML Token is
desired in policy, the sp:lIssuedToken assertion should be used instead.

6.3.9 RelToken Assertion

This element represents a requirement for a REL token. The default version of this token
and associate profile is the REL Version 1.0 token as described in the [WSS: REL Token
Profile].

Syntax

<sp:RelToken sp:IncludeToken="xs:zanyURI"? ... >
<wsp:Policy>

Page 32 of 90

<sp:RequireDerivedKeys ... /> ?

<sp:RequireKeyldentifierReference ... /> ?

(
<sp:WssRelV10Tokenl0 ... /> |
<sp:WssRelV20Tokenl0 ... /> |
<sp:WssRelV10Tokenll ... /> |
<sp:WssRelV20Tokenll ... />

) ?

</wsp:Policy> ?

</sp:RelToken>
The following describes the attributes and elements listed in the schema outlined above:
/sp:RelToken

This identifies a RelToken assertion.

/sp:RelToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:RelToken/wsp:Policy
This optional element identifies additional requirements for use of the sp:RelToken
assertion.

/sp:RelToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true’.

/sp:RelToken/wsp:Policy/sp:RequireKeyldentifierReference
This optional element indicates that a ke