
Overview of Reliable Messaging

Martin W. Sachs

1 General Concepts

· Sent message is guaranteed to be delivered all the way to a persistent store at the receiving application.

· Storage of the message in the persistent store constitutes delivery to the application for this purpose.

· Message in persistent store must survive events such as software failures and system crashes and must be able to be processed when recovery from the event has taken place.

· Reliable recovery from major system failures, including natural disasters, is well-understood technology.

· The application is relieved of the responsibility to deal with timeouts and retries.

· Semantics

· OnceAndOnlyOnce

· exactlyOnce

· onceAndOnlyOnce semantics

· onceAndOnlyOnce: Message will never be delivered more than once

· Delivery failures are permitted

· The receiving message service must send an acknowledgment to the sending message service after it persists the message.

· Receiving message service must not make the message available to the application if it determines that it is unable to send the acknowledgment (e.g. it detects network failure). The reason is that the sending message service will probably declare delivery failure (see below). Instead, the receiving message service should delete the message from the persistent store.

· NOTE: The presence of multiple hops complicates this issue since the sending and receiving message services may not always both see network failure. However, if the receiving message service is unable to send the acknowledgment but the sending message service does not detect the network failure, it will simply retry until the number of retries is exhausted.

· Sending message service retries (preferably a defined number of times) on failure to receive ACK within a specified time.

· Retries lead to possible duplicates, which must be detected and eliminated by the receiving message service. When a duplicate is detected, it is acknowledged.

· Delivery failure is declared if

· Sending message service fails to receives an acknowledgment after exhausting the permitted number of retries

· Sending message service detects a network failure.

· If a reasonable number of retries is defined, delivery failure should be a rare event, the result of a serious failure rather than the usual causes of message losses in the network.

· Sending message service notifies of sending application of delivery failure

· Keeping delivery failure notification within the sending system assures that it is reliable

· The combination of acknowledgments and delivery failure notification assures that the sending application is never in doubt about the status of the message at the recipient. Delivery failure notification permits the sending application to take corrective application-level action and later re-send the message without concern that it is sending a duplicate at the application level. Elimination of the in-doubt situation is the most important benefit of reliable messaging.

· There may be pathological cases, however, where the message was delivered although the sending application is assured that it was not delivered. After receiving a delivery failure notification the sending application may wish to confirm the status of the message at the recipient outband (e.g. phone call).

· exactlyOnce semantics

· The message will always be delivered to the persistent store at the receiving application

· Duplicates cannot occur

· No acknowledgments or retries are necessary

· The message will be "eventually" delivered. No maximum time is guaranteed

· Under the covers, there are aspects of onceAndOnlyOnce since messages may be lost any time the path traverses a network link.

· Under the covers, an implementation may deal with pathological cases

· Example: network failure persists for an unreasonable length of time (e.g. natural disaster)

· Treatment of the pathological cases is implementation-dependent.

2 Timeout issues

· The timeout used by the sending message service must take into account the number of hops since multiple hops extend the time to allow for an ACK to return (both network delays and the delays through the intermediaries).

· This means that the timeout must be a configuration parameter, not a matter internal to the message service implementation. The message service implementation does not know how many hops will be traversed.

· If reliable messaging is strictly hop by hop, with no end to end issues, then the sending message service may always use a timeout that includes only the round trip network delay.

· If the sending message service receives an acknowledgment after its timeout expires, it may have already retried the message. This does not seem to be a problem. However, the design of the message service must take into account that it might receive more than one acknowledgment to the same message.

· The maximum time before the sending message service declares a delivery failure depends on its timeout, the number of retries, and the defined retry interval. This time is currently ambiguous because the timeout is not defined and because the specification does not say whether the retry interval begins when the message is sent or when the timeout expires. It is not clear whether this ambiguity matters but it would matter if the other party needs to know what it is. It may also be a problem if the relationship between this time and persistDuration needs to be understood by both message services.

· If the maximum time before declaring a delivery failure is not well defined, the sending application does not know how long to wait for success or delivery failure notification. This may not be a problem since the MSH API can (should?) define a message status query that the application can issue.

3 Requirements on Layers above the Message Service and on Intermediaries

While the reliable messaging protocol is within the messaging service, the messaging service specification must state (as abstractly as possible) requirements that other components must satisfy to ensure that reliable messaging fulfi1ls its promise. Formally speaking, such statements are non-normative but they are crucial guidance to the implementations. The world has ample examples that implementations cannot be assumed to be "reasonable" unless fully specified.

Examples:

· Requirements on intermediaries should include statements such as "intermediaries are assumed to store and forward reliably".

· Requirements on the upper levels of the system include that once a message has been placed in the persistent store, it will be eventually processed in spite of system failures. The system is expected to recover from failure and resume processing messages in the persistent store.

4 Some Matters Regarding Reliable Messaging and Intermediaries

These notes refer to intermediaries that are forwarders and do not process the payload at all. An intermediary that does any processing of the payload is really an endpoint that executes a business process.

· Reliable messaging across multiple hops can cause the sending message service to fail to directly detect a delivery failure situation caused by a network failure beyond the first intermediary. However the network failure will cause failure to deliver the acknowledgments to the ending message service, which is another indication of delivery failure.

· When a message service sends a message reliably via an intermediary, it should still be true that when it receives an acknowledgment, it means that the message has been persisted at the ultimate destination. It must not receive an acknowledgment from intermediaries until the message has been persisted at the ultimate destination. This can be accomplished be either keeping the acknowledgment procedure end to end or by relaying the acknowledgments through the intermediaries such that each intermediary sends an acknowledgement only when it receives the acknowledgment from the upstream hop.

· Note that with this approach, an intermediary must not perform duplicate detection on messages for which it is not the endpoint. It also does not do its own retries. It merely forwards messages and relays the acknowledgements back toward the sending messaging service. Duplicate detection takes place only at the destination message service.

· Delivery failure notifications sent across the network are inherently unreliable. The intermediary aspects of reliable messaging across multiple hops should not prescribe delivery failure notifications to be sent across the network.

· Example: If an intermediary detects network failure on its outbound hop, it is not necessary for it to send a delivery failure notification to the sending message service. It is sufficient that the sending message service will fail to receive an acknowledgment.

· NOTE: Inability to persist a message at an intermediary point or the destination is not a cause to send delivery failure notification over the network. All that is required is not to send an acknowledgment.

rel.msg.overview.doc

09/30/01 6:42 PM
65
6
TPAstd.doc

9/30/01 6:49 PM

